Основы стандартизации, метрологии и сертификации

Стандартизация, метрология и сертификация как инструменты обеспечения качества продукции, работ и услуг - важного аспекта коммерческой деятельности. Сущность качества и требования к нему. Анализ методов и правил стандартизации, метрологии и сертификации.

Рубрика Менеджмент и трудовые отношения
Вид учебное пособие
Язык русский
Дата добавления 27.12.2010
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В стандартах на методы контроля (испытаний, измерений, анализа) должно быть соблюдено главное условие обеспечения единства измерений -- указаны погрешности измерений для заданной вероятности. Например, в стандарте на методы определения плотности молока и молочных продуктов указывается погрешность определения плотности молока (ареометрическим методом) не более ±0,5 кг/м3 при вероятности 0,99.

Метрологическая служба -- совокупность субъектов деятельности и видов работ, направленных на обеспечение единства измерений (Закон РФ).

По существу, метрологическая служба -- это сеть организаций, отдельных организаций или отдельных подразделений, на которые возложена ответственность за обеспечение единства измерений. Различают понятия “государственная метрологическая служба”, “метрологические службы государственных органов управления РФ” и “метрологические службы юридических лиц”

Поверка средства измерений -- совокупность операций, выполняемых органами государственной метрологической службы (другими уполномоченными на то органами, организациями) с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям (Закон РФ).

1.2 Краткая история метрологии, роль измерений и значение метрологии

Метрология как область практической деятельнов-ти зародилась в древности. На всем пути развития человеческого общества измерения были основой отношений людей между собой, с окружающими предметами, природой. При этом вырабатывались единые представления о размерах, формах, свойствах предметов и явлений, а также правила и способы их сопоставления.

Наименования единиц измерения и их размеры появлялись в давние времена чаще всего в соответствии с возможностью применения единиц и их размер ров без специальных устройств, т. е. создавались с ориентацией на те единицы, что были “под руками и ногами”. В России в качестве единиц длины были “пядь”, “локоть”.

Для поддержания единства установленных мер еще в древние времена создавались эталонные (образцовые) меры. К ним относились бережно: в древности они хранились в храмах, церквях как наиболее надежных местах для хранения ценных предметов.

По мере развития промышленного производства повышались требования к применению и хранению мер, усиливалось стремление к унификации размеров единиц физических величин.

В начале 1840 г. во Франции была введена метрическая система мер. Значимость метрической системы глубоко оценил Д.И. Менделеев. В 1867 г. с трибуны съезда русских естествоиспытателей он выступил с призывом содействовать под-? готовке метрической реформы в России. По его инициативе--^ Петербургская академия наук предложила учредить международную организацию, которая обеспечивала бы единообразие средств измерений в международном масштабе. Это предложение получило одобрение, и в 1875 г. на Дипломатической метрологической конференции, проведенной в Париже, в которой участвовали 17 государств (в том числе Россия) была Принята Метрическая конвенция.

По мере унификации единиц измерений во многих государствах вводились законодательные нормы, которые защищали покупателей от недобросовестности производителей и распространителей товаров и услуг. В России в XVI в. контроллеры (целовальники) на рынках разыскивали и отбирали старые (неофициальные) меры. За пользование ими налагали большой штраф и даже заключали виновных в тюрьму.

Еще больше усилился надзор за мерами в XVII в. Им занимались таможни, “кружечные дворы”. В Москве действовали Померная изба и Большая таможня. Померная изба проводила периодическую (“как год минет”) поверку мер и изымала неправильные (“воровские”) меры.

В наказе царя Федора Алексеевича Большой Московской таможне о сборе таможенных пошлин (1681 г.) говорилось, что за найденные у торговцев воровские меры определялась конфискация товаров и ссылка с семьей.

Решительный и жесткий характер Петра I проявился в его наказе “О сборе в Московской Большой таможне пошлин” (1698): “за найденные непрямые, воровские весы лавки опечатать, товары отобрать и семьей сослать”. Он же в Уставе воинских артикулов (1716) писал: “Наказание за обмер и обвес -- возвратить добро втрое, взимать штраф, подвергнуть телесному наказанию”. В 1745 г. публикуется Указ сенатский о рассылке из камер-коллегии во все города заклейменных мер для хлеба и о взыскании штрафа с того, у кого окажутся неуказанные меры. В 1858 г. Елизавета Петровна повелела: “Сделать аршины железные верные и с обеих концов заклейменные так, чтобы ни урезать, ни упиловать невозможно было”. Долгое время метрология была в основном описательной наукой о различных мерах и соотношениях между ними. Но в процессе развития общества роль измерений возрастала, и с конца прошлого века благодаря прогрессу физики метрология поднялась на качественно новый уровень. Большую роль в становлении метрологии в России сыграл Д.И. Менделеев, руководивший отечественной метрологией в период с 1892 по 1907 г. “Наука начинается... с тех пор, как начинают измерять”, -- в этом научном кредо великого ученого выражен, по существу, важнейший принцип развития науки, который не утратил актуальности и в современных условиях.

Развитие естественных наук привело к появлению все новых и новых средств измерений (СИ), а они, в свою очередь, стимулировали развитие наук, становясь все более мощным средством исследования. Так, повышение точности измерений плотности воды привело в 1932 г. к открытию тяжелого изотопа водорода -- дейтерия. Подобных примеров, которые подтверждают роль измерений как инструмента познания, множество. Здесь уместно привести высказывание крупнейшего русского физика и электротехника Б.С. Якоби: “Искусство измерений является могущественным оружием, созданным человеческим разумом для проникновения в законы природы и подчинения ее сил нашему господству”.

Можно выделите три главные функции измерений в народном хозяйстве:

1. учет продукции народного хозяйства, исчисляющейся по массе, длине, объему, расходу, мощности, энергии;

2. измерения, проводимые для контроля и регулирования технологических процессов (особенно в автоматизированных производствах) и для обеспечения нормального функционирования транспорта и связи;

3. измерения физических величин, технических параметров, состава и свойств веществ, проводимые при научных исследованиях, испытаниях и контроле продукции в различных отраслях народного хозяйства.

От качества СИ зависит эффективность выполнения указанных функций. Приведем несколько примеров, относящихся к первой функции СИ: погрешности эксплуатируемых в настоящее время счетчиков энергии (в среднем 2%) приводят к неопределенности в учете такого же количества электроэнергии; состояние современного весового хозяйства таково, что : в процессе взвешивания остается неучтенным около 1% всех измеряемых продуктов производства. Повышение точности- измерений позволяет определить недостатки тех или иных технологических процессов и устранить эти недостатки. Все это в конечном счете приводит к повышению качества продукции, экономии энергетических и тепловых ресурсов, а также сырья и материалов.

Например, известно, что урожайность сельскохозяйственных культур в значительной мере зависит от оптимального и заранее устанавливаемого количества вносимых в почву удобрений и расхода воды при : поливе и, следовательно, от точности измерений массы удобрений и расхода воды. Повышение технического ресурса подшипников на 40% -- результат внедрения эталона отклонения от круглости, а эталон шероховатости позволяет сэкономить 1 кг краски на каждую тонну отливки при ее окраске.

В нашей стране ежедневно производится около 200 млрд. измерений, свыше 4 млн. человек считают измерения своей профессией. Доля затрат на измерения составляет 10--15% затрат общественного труда, а в отраслях промышленности, производящих сложную технику (электротехника, станкостроение и др.), она достигает 50--70%. О масштабах затрат на получение достоверных результатов измерений свидетельствуют следующие цифры: в 1998 г. стоимость этих работ в России была равна 3,8% от величины валового национального продукта (ВНП). В развитых странах эта цифра достигает 9--12% ВВП [38]. Подсчитано, что число СИ растет прямо пропорционально квадрату прироста промышленной продукции. Это означает, что при увеличении объема промышленной продукции в 2 раза число СИ может вырасти в 4 раза. В настоящее время в нашей стране насчитывается более 1,5 млрд. СИ.

Эффект, получаемый в народном хозяйстве благодаря применению СИ, составляет примерно 8--10 руб. на 1 руб. затрат |38].

Таким образом, измерения являются важнейшим инструментом познания объектов и явлений окружающего мира и играют огромную роль в развитии народного хозяйства.

Повышение качества измерений и успешное внедрение новых методов измерений, зависят от уровня развития метрологии как науки.

Метрология -- наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой, точности. Метрологию подразделяют на теоретическую, прикладную и законодательную.

Теоретическая метрология занимается вопросами фундаментальных исследований, созданием системы единиц измерений, физических постоянных, разработкой новых методов измерения.

Прикладная (практическая) метрология занимается вопросами практического применения в различных сферах деятельности результатов теоретических исследований в рамках метрологии.

Законодательная метрология включает совокупность взаимообусловленных правил и норм, направленных на обеспечение единства измерений, которые возводятся в ранг правовых положений (уполномоченными на то органами государственной власти), имеют обязательную силу и находятся под контролем государства.

2. ОСНОВЫ ТЕХНИЧЕСКИХ ИЗМЕРЕНИЙ

2.1 Общая характеристика объектов измерений

Основным объектом измерения в метрологии являются физические величины.

Физическая величина (краткая форма термина -- “величина”) применяется для описания материальных систем и объектов (явлений, процессов и т.п.), изучаемых в любых науках (физике, химии и др.) Как известно, существуют основные и производные величины. В качестве основных выбирают величины, которые характеризуют фундаментальные свойства материального мира. Механика базируется на трех основных величинах, теплотехника -- на четырех, физика -- на семи. ГОСТ 8.417 устанавливает семь основных физических величин -- длина, масса, время, термодинамическая температура, количество вещества, сила света, сила электрического тока, с помощью которых создается все многообразие производных физических величин и обеспечивается описание любых свойств физических объектов и явлений.

Измеряемые величины имеют качественную и количественную характеристики.

Формализованным отражением качественного. различия измеряемых величин является их размерность. Согласно международному стандарту ИСО размерность обозначается символом dim. Размерность основных физических величин -- длины, массы и времени -- обозначается соответствующими заглавными буквами:

dim l = L; dim т = М; dim t = Т.

Размерность производной физической величины выражается через размерность основных физических величин с помощью степенного одночлена:

,

где L, М, Т -- размерности соответствующих основных физических величин; a , b , g -- показатели размерности (показатели степени, в которую возведены размерности основных физических величин).

Каждый показатель размерности может быть положительным или отрицательным, целым или дробным, нулем. Если все показатели размерности равны нулю, то величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений).

Количественной характеристикой измеряемой величины служит ее размер. Получение информации ( размере физической или нефизической величины является содержанием любого измерения.

Простейший способ получения информации, который позволяет составить некоторое представлена о размере измеряемой величины, заключается в сравнении его с другим по принципу “что больше (меньше)?” или “что лучше (хуже)?” При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в порядке возрастания или убывания размеры измеряемых величин образуют шкалы порядка. Операция расстановки размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием. Для обеспечения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных). Точкам шкалы могут быть присвоены цифры, часто называемые баллами. Знания, например оценивают по четырех балльной реперной шкале имеющей следующий вид: неудовлетворительно удовлетворительно, хорошо, отлично. По реперным шкалам измеряются твердость минералов, чувствительность пленок и другие величины интенсивности землетрясений измеряется по двенадцати балльной шкале, называемой международной сейсмической шкалой).

Недостатком реперных шкал является неопределенность интервалов между реперными точками, Например по шкале твердости, в которой одна крайняя точка соответствует наиболее твердому минералу -- алмазу, а другая наиболее мягкому -- тальку, нельзя сделать заключение о соотношении эталонных материалов по твердости. Так, если твердость алмаза по шкале 10, а кварца -- 7, то это не означает, что первый тверже второго в 1,4 раза. Определение твердости путем вдавливания алмазной пирамиды (метод М.М. Хрущева) показывает, что твердость алмаза 10060, а кварца -- 1120, т.е. в 9 раз больше.

Более совершенна в этом отношении шкала интервалов. Примером ее может служить шкала измерения времени, которая разбита на крупные интервалы (годы), равные периоду, обращения Земли вокруг Солнца; на более мелкие (сутки), равные периоду обращения Земли вокруг своей оси. По шкале интервалов можно судить не только о том, что один размер больше другого, но и том, на сколько больше. Однако по шкале интервалов нельзя оценить, во сколько раз один размер больше другого. Это обусловлено тем, что на шкале интервалов известен только масштаб, а начало отсчета может быть выбрано произвольно.

Наиболее совершенной является шкала отношений. Примером ее может служить температурная шкала Кельвина. В ней за начало отсчета принят абсолютный нуль температуры, при котором прекращается тепловое движение молекул; более низкой температуры быть не может. Второй реперной точкой служит температура таяния льда. По шкале Цельсия интервал между этими реперами равен 273,16 °С. По. шкале отношений можно определить не только, на ;; сколько один размер больше или меньше другого, но и во сколько раз больше или меньше.

В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по разному. Например, длина перемещения некоторого тела на 1 м может быть представлена как L = 1 м = 100 см = 1000 мм. Отмеченные три варианта являются значениями измеряемой величины -- оценками размера физической величины в виде некоторого числа принятых для нее единиц. Входящее в него отвлеченное число называется числовым значением. В приведенном примере это 1, 100, 1000.

Значение физической величины получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения:

Q=X[Q] (2)

где Q -- значение физической величины; Х -- числовое значение измеряемой величины в принятой единице; [Q] -- выбранная для измерения единица.

Допустим, измеряется длина отрезка прямой в 10 см с помощью линейки, имеющей деления в сантиметрах и миллиметрах. Для данного случая Q1 = 10 см при X1 = 10 и [Q1] = 1 см; Q2 = 100 мм при X2 = 100 и [Q2] = 1 мм; Q1 = Q2, так как 10 см = 100 мм. Применение различных единиц (1 см и 1 мм) привело к изменению числового значения результата измерений.

2.2 Понятие видов и методов измерений

Цель измерения -- получение значения этой величины в форме, наиболее удобной для пользования. С помощью измерительного прибора сравнивают размер величины, информация о котором преобразуется в перемещение указателя, с единицей, хранимой шкалой этого прибора.

Измерения могут быть классифицированы:

· по характеристике точности -- равноточные (ряд измерений какой-либо величины, выполненных одинаковыми по точности СИ и в одним и тех же условиях), неравноточные (ряд измерений какой-либо величины, выполненных несколькими различными по точности СИ и (или) в нескольких разных условиях);

· по числу измерений в ряду измерений -- однократные, многократные;

· по отношению к изменению измеряемой величины -- статические (измерение неизменной во вре-;м<;ни физической величины, например измерение длины детали при нормальной температуре или измерение размеров земельного участка), динамические (измерение изменяющейся по размеру физической величины, например измерение переменного напряжения электрического тока, измерение расстояния до уровня земли со снижающегося самолета);

· по выражению результата измерений -- абсолютные (измерение, основанное на прямых измерениях величин и (или) использовании значений физических констант, например измерение силы F основано на измерении основной величины массы т и использовании физической постоянной -- ускорения свободного падения g) и относительные (измерение отношения величины к одноименной величине, выполняющей роль единицы);

· по общим приемам получения результатов измерений -- прямые (измерение, при котором искомое значение физической величины получают непосредственно, например измерение массы на весах, длины детали микрометром), косвенные (измерение, при котором искомое значение величины определяют на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной, например определение твердости (ИВ) металлов путем вдавливания стального шарика определенного диаметра (D) с определенной нагрузкой (Р) и получения при этом определенной глубины отпечатка (h): НВ = Р/ (p D * h)).

Понятие о методах измерений. Метод измерений ---прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.

Методы измерений классифицируют по нескольким признакам.

По общим приемам получения результатов измерений различают: 1) прямой метод измерений; 2) косвенный метод измерений. Первый реализуется при прямом измерении, второй -- при косвенном измерении, которые описаны выше.

По условиям измерения различают контактный и бесконтактный методы измерений.

Контактный метод измерений основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром). Бесконтактный метод измерений основан на том, что чувствительный элемент прибора де приводится в контакт с объектом измерения (изменение расстояния до объекта радиолокатором, изменение температуры в доменной печи пирометром).

Исходя из способа сравнения измеряемой величины с ее единицей, различают методы непосредственной оценки и метод сравнения с мерой.

При методе непосредственной оценки определяют значение величины непосредственно по отсчетному устройству показывающего СИ (термометр, вольтметр и пр.). Мера, отражающая единицу измерения, в измерении не участвует. Ее роль играет в СИ шкала, проградуированная при его производстве с помощью достаточно точных СИ.

При методе сравнения с мерой измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы на рычажных весах с уравновешиванием гирями). Существует ряд разновидностей этого метода: нулевой метод, метод измерений с замещением, метод совпадений [31].

2.3 Характеристика средств измерений

Средством измерений (СИ) называют техническое средство (или их комплекс), используемое при измерениях и имеющее нормированные метрологические характеристики. В отличие от таких технических средств, как индикаторы, предназначенных для обнаружения физических свойств (компас, лакмусовая бумага, осветительная электрическая лампочка), СИ позволяют не только обнаружить физическую величину, но и измерить ее, т.е. сопоставить неизвестный размер с известным. Если физическая величина г известного размера есть в наличии, то она непосредственно используется для сравнения (измерение плоского угла транспортиром, массы -- с помощью весов с гирями). Если же физической величины известного размера в наличии нет, то сравнивается реакция (отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера (измерение силы тока амперметром). Для облегчения сравнения еще на стадии изготовления прибора отклик на известное воздействие фиксируют на шкале отсчетного устройства, после чего наносят на шкалу деления в кратном и дольном отношении. Описанная процедура называется градуировкой шкалы. При измерении она позволяет по положению указателя получать результат сравнением непосредственно по шкале отношений. Итак, СИ (за исключением некоторых мер -- гирь, линеек) в простейшем случае производят две операции: обнаружение физической % величины; сравнение неизвестного размера с известным или сравнение откликов на воздействие известного и неизвестного размеров.

Другими отличительными признаками СИ являются, во-первых, “умение” хранить (или воспроизводить) единицу физической величины; во-вторых, неизменность размера хранимой единицы. Если же размер единицы в процессе измерений изменяется более, чем установлено нормами, то с помощью такого средства невозможно получить результат с требуемой ; точностью. Отсюда следует, что измерять можно только тогда, когда техническое средство, предназначенное для этой цели, может хранить единицу, достаточно неизменную по размеру (во времени).

СИ можно классифицировать по двум признакам:

1. конструктивное исполнение;

2. метрологическое назначение.

По конструктивному исполнению СИ подразделяют на меры, измерительные преобразователи; измерительные приборы, измерительные установки, измерительные системы.

Меры физической величины -- СИ, предназначенные для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров. Различают меры: однозначные (гиря 1 кг, калибр, конденсатор постоянной емкости); многозначные (масштабная линейка, конденсатор переменной емкости); наборы мер (набор гирь, набор калибров). Набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях, называется магазином мер. Примером такого набора может быть магазин электрических сопротивлений, магазин индуктивностей. Сравнение с мерой выполняют с помощью специальных технических средств -- компараторов (рычажные весы, измерительный мост и т.д.).

К однозначным мерам можно отнести стандартные образцы (СО). Существуют стандартные образцы состава и стандартные образцы свойств.

СО состава вещества (материала) -- стандартный образец с установленными значениями величин, характеризующих содержание определенных компонентов в веществе (материале).

СО свойств веществ (материалов) -- стандартный образец с установленными значениями величин, характеризующих физические, химические, биологические и другие свойства.

Новые СО допускаются к использованию при условии прохождения , ими метрологической аттестации. Указанная процедура -- это признание этой меры, узаконенной для применения на основании исследования СО. Метрологическая аттестация проводится органами метрологической службы.

Примером СО состава является СО состава углеродистой стали определенной марки. Примером СО свойств является уже упомянутая выше шкала твердости Мооса, которая представляет собой набор 10 эталонных минералов для определения числа твердости по условной шкале. Каждый последующий минерал этой шкалы является более твердым, чем предыдущий. Эту шкалу используют для оценки относительной твердости стекла и керамики.

Одна из главных функций СО состава и свойств -- контроль методики выполнения измерений (МВИ) в порядке внутреннего контроля, в частности, в рамках “раунд тестирования” (см. с.17). Например, если аналитическая лаборатория металлургического предприятия располагает аттестованным СО углеродистой стали конкретной марки, то она на указанном СО может проверить надежность методики качественного и количественного химического анализа.

В зависимости от уровня признания (утверждения) и сферы применения различают категории СО -- межгосударственные, государственные, отраслевые и СО предприятия (организации).

В практике метрологическими службами используются СО разной категории для выполнения различных задач.

Так, создаваемые в Центральном институте агрохимического обслуживания сельского хозяйства государственные и отраслевые образцы состава почв аттестованы на содержание макро- и микроэлементов (марганца, кобальта, цинка, меди, молибдена, бора) и другие характеристики (величина РН и др.). Эти СО были аттестованы в межлабораторном эксперименте и предназначаются для градуировки приборов, поверки СИ, для контроля правильности анализов почв по аттестованным в СО показателям, для аттестации СО предприятий методом сличения.

Измерительные преобразователи (ИП) -- СИ, служащие для преобразования измеряемой величины в другую величину или сигнал измерительной информации, удобный для обработки, хранения, дальнейших преобразований. По характеру преобразования различают аналоговые (АП), цифро-аналоговые (ЦАП), аналого-цифровые (АЦП) преобразователи.

По месту в измерительной цепи различают первичные (ИП, на который непосредственно воздействует измеряемая физическая величина) и промежуточные (ИП, занимающий место в измерительной цепи после первичного ИП) преобразователи.

Конструктивно обособленный первичный ИП, от которого поступают сигналы измерительной информации, является датчиком. Датчик может быть вынесен на значительное расстояние от СИ, принимающего его сигналы. Например, датчики запущенного метеорологического радиозонда передают информацию о температуре, давлении, влажности я других параметрах атмосферы.

Если преобразователи не входят в измерительную цепь и их метрологические свойства не нормированы, то они не относятся к измерительным. Таковы, например, силовой трансформатор в радиоаппаратуре, термопара в термоэлектрическом холодильнике.

Измерительный прибор -- СИ, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Прибор, как правило, содержит устройство для преобразования измеряемой величины и ее индикации в форме, наиболее доступной для восприятия. Во многих случаях устройство для индикации имеет шкалу со стрелкой или другим устройством, диаграмму с пером или цифроуказатель, с помощью, которых могут быть произведены отсчет или регистрация значений физической величины. В случае сопряжения прибора с мини-ЭВМ отсчет может производиться с помощью дисплея.

По степени индикации значений измеряемой величины измерительные приборы подразделяют на показывающие и регистрирующие. Показывающий прибор допускает только отсчитывание показаний измеряемой величины (микрометр, аналоговый или цифровой вольтметр). В регистрирующем приборе предусмотрена регистрация показаний -- в форме диаграммы, путем печатания показаний (термограф, разрывная машина с пишущим элементом, измерительный прибор, сопряженный с ЭВМ, дисплеем и устройством для печатания показаний).

Измерительная установка -- совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенных для измерений одной или нескольких физических величин и расположенных в одном месте. Примером являются установка для измерения удельного сопротивления электротехнических материалов, установка для испытаний магнитных материалов. Измерительную установку, предназначенную для испытаний каких-либо .изделий, иногда называют испытательным стендом.

Измерительная система - совокупность функций тонально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого пространства с целью измерений одной или нескольких физических величин, свойственных этому пространству. Примером может служить радионавигационная система для определения местоположения судов, состоящая из ряда измерительных комплексов, разнесенных в пространстве на значительном расстоянии друг от друга.

“Лицо” современной измерительной техники определяется автоматизированными измерительными системами (АИС), информационно-измерительными системами (ИИС), измерительно-вычислительными комплексами (ИВК). Типичная ИИС содержит в своем составе ЭВМ и обеспечивает сбор, обработку и хранение информации, поступающей от многочисленных датчиков, характеризующих состояние объекта или процесса. При этом результаты измерений выдаются как по заранее заданной программе, так и по запросу.

Применение новейших измерительных систем позволяет не только ускорить процесс измерения (что немаловажно для скоропортящихся товаров), но и дать более объективную характеристику качества конкретной партии товара.

Рассмотрим эффективность новейших измерительных систем на примере швейцарской системы анализа хлопка. При традиционном контроле на наших хлопковых заводах (проба от кипы партии) один образец проверяется не менее 8--12 ч. В случае измерительной системы за 20--25 с проверяется не выборочно (4%, каждая 24-я кипа), а 100%! 100%-ная проверка показывает, что в каждой из кип в среднем 12--15% хлопка оказывается более высокого качества, чем отражается в заводских протоколах испытаний при выборочном контроле.

Если эти теряемые 12% умножить на объемы ежегодно экспортируемого волокна и перевести все это в валюту, то получается достаточно большая сумма потерь.

По метрологическому назначению все СИ подразделяются на два вида -- рабочие СИ и эталоны.

Рабочие СИ (РСИ) предназначены для проведения технических измерений. По условиям применения они могут быть: 1) лабораторными, используемыми при научных исследованиях, проектировании технических устройств, медицинских измерениях; 2) производственными, используемыми для контроля характеристик технологических процессов, контроля качества готовой продукции, контроля отпуска товаров; 3) полевыми, используемыми непосредственно при эксплуатации таких технических устройств, как самолеты, автомобили, речные и морские суда и др. К каждому виду РСИ предъявляются специфические требования: к лабораторным -- повышенная точность и чувствительность; к производственным -- повышенная стойкость к ударно-вибрационным нагрузкам, высоким и низким температурам; к полевым -- повышенная стабильность в условиях резкого перепада температур, высокой влажности.

Эталоны являются высокоточными СИ, а поэтому используются для проведения метрологических измерений в качестве средств, передачи информации : о размере единицы. Размер единицы передается “сверху вниз”, от более точных СИ к менее точны” ;“по цепочке”: первичный эталон -- вторичный эталон -- рабочий эталон 0-го разряда -- рабочий эталон 1-го разряда... -- рабочее средство измерений.

Передача размера осуществляется в процессе поверки СИ. Целью поверки является установление пригодности СИ к применению.

Соподчинение СИ, участвующих в передаче размера единицы от эталона к РСИ, устанавливается в' поверочных схемах СИ.

Госстандарт России располагает самой современной эталонной базой. Она входит в тройку самых со-. вершенных наряду с базами США и Японии. Эталонная база в дальнейшем будет развиваться в количественном и главным образом в качественном отношении. Перспективно создание многофункциональных эталонов, т.е. эталонов, воспроизводящих на единой конструктивной и метрологической основе не одну, а .несколько единиц физических величин или одну - единицу, но в широком диапазоне измерений. Так, .метрологические институты страны создают единый эталон времени, частоты и длины, который позволит, кстати, уменьшить погрешность воспроизведения единицы длины до 1 - 10 ч.

Если технический уровень первичных эталонов в России благодаря успехам науки и энтузиазму ученых можно оценить как вполне удовлетворительный, то состояние парка СИ, находящихся в практическом обращении, прежде всего рабочих эталонов и РСИ, внушает тревогу. Если в 80-х гг. срок обновления отечественной измерительной техники, как правило, составлял 5--6 лет (для сравнения в США и Японии -- не более 3 лет), то наблюдаемый сейчас регресс в области отечественного приборостроения еще больше увеличил сроки обновления рабочих эталонов и РСИ, что ведет к значительному старению измерительной техники.

Другой проблемой отечественных производителей СИ является высокая стоимость их разработок в сравнении с зарубежными фирмами. Для преодоления традиционного отставания необходимо также в отечественных приборах предусматривать: высокую степень автоматизации на базе микропроцессорной технологии, быстродействие, высокую надежность, пониженные массу, габариты и энергопотребление, высокий уровень эстетики и эргономики.

Многообразие СИ обусловливает необходимость применения специальных мер по обеспечению единства измерений. Как указывалось выше, одно из условий соблюдения единства измерений -- установление для СИ определенных (нормированных) метрологических характеристик.

2.4 Метрологические свойства и метрологические характеристики средств измерений

Метрологические свойства СИ -- это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками.

Метрологические характеристики, устанавливаемые НД, называют нормируемыми метрологическими характеристиками.

Все метрологические свойства СИ можно разделить на две группы:

1. свойства, определяющие область применения СИ;

2. свойства, определяющие качество измерения.

К основным метрологическим характеристикам, определяющим свойства первой группы, относятся диапазон измерений и порог чувствительности.

Диапазон измерений -- область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значения величины, ограничивающие диапазон измерений снизу или сверху (слева и справа), называют соответственно нижним или верхним пределом измерений.

Порог чувствительности -- наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала. Например, если порог чувствительности весов равен 10 мг, то это означает, что заметное перемещение стрелки весов достигается при таком малом изменении массы, как 10 мг.

К метрологическим свойствам второй группы относятся три главных свойства, определяющих качество измерений: точность, сходимость и воспроизводимость измерений.

Наиболее широко в метрологической практике используется первое свойство -- точность измерений. Рассмотрим его наиболее подробно. Точность измерений СИ определяется их погрешностью.

Погрешность -- это разность между показаниями СИ и истинным (действительным) значением измеряемой физической величины. Поскольку истинное значение физической величины неизвестно, то на практике пользуются ее действительным значением. Для рабочего СИ за действительное значение принимают показания рабочего эталона низшего разряда (допустим, 4-го), для эталона 4-го разряда, в свою очередь, -- значение физической величины, полученное с помощью рабочего эталона 3-го разряда. Таким образом, за базу для сравнения принимают значение СИ, которое является в поверочной схеме вышестоящим по отношению к подчиненному -СИ, подлежащему поверке.

(3)

где DXn -- погрешность поверяемого СИ; Xn --- значение той же самой величины, найденное с помощью поверяемого СИ; X0 -- значение СИ, принятое за базу для сравнения -- действительное значение.

Например, при измерении барометром атмосферного давления получено значение Xn = 1017 гПа. За действительное значение принято показание рабочего эталона, которое равнялось X0 = 1020 гПа. Следовательно, погрешность измерения барометром составила:

DXn = 1017 - 1020 = - 3 гПа.

Погрешности СИ могут быть классифицированы по ряду признаков, в частности:

· по способу выражения -- абсолютные, относительные;

· по характеру проявления -- систематические, случайные;

· по отношению к условиям применения основные, дополнительные.

Наибольшее распространение получили метрологические свойства, связанные с первой группировкой -- с абсолютными и относительными погрешностями.

Точность измерений СИ -- качество измерений, отражающее близость их результатов к действительному (истинному) значению измеряемой величины. Точность определяется показателями абсолютной и "относительной погрешности.

Определяемая по формуле (3) DXn является абсолютной погрешностью. Однако в большей степени точность СИ характеризует относительная погрешность (5), т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению величины, измеряемой или воспроизводимой данным СИ:

(4)

Точность может быть выражена обратной величиной относительной погрешности -- 1/d . Если погрешность d = 0,1% или 0,001=10-3, то точность равна 103.

В стандартах нормируют характеристики точности, связанные с другими погрешностями.

Систематическая погрешность -- составляющая погрешности результата измерения, остающаяся постоянной (или же закономерно изменяющейся) при повторных измерениях одной и той же величины. Ее примером может быть погрешность градуировки, в частности погрешность показаний прибора с круговой шкалой и стрелкой, если ось последней смещена на некоторую величину относительно центра шкалы. Если эта погрешность известна, то ее исключают из результатов разными способами, в частности введением поправок.

При нормировании систематической составляющей погрешности СИ устанавливают пределы допускаемой систематической погрешности СИ -- конкретного типа -- D. Величина систематической погрешности определяет такое метрологическое свойство, как правильность измерений СИ.

Случайная погрешность -- составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. В появлении этого вида погрешности не наблюдается какой-либо закономерности. Они неизбежны и неустранимы, всегда присутствуют в результатах измерения. При многократном и достаточно точном измерении они порождают рассеяние результатов.

Характеристиками рассеяния являются средняя арифметическая погрешность, средняя квадратическая погрешность, размах результатов измерений. Поскольку рассеяние носит вероятностный характер, то при указании на значения случайной погрешности задают вероятность.

Укажем в качестве примера на две нормируемые метрологические характеристики, отражающие точность СИ.

Доверительная погрешность -- верхняя и нижняя границы интервала погрешности результата измерений при данной доверительной вероятности. Например, в поверочной схеме для гирь и весов (табл. 2) установлено для гирь 1--3-го разрядов значение доверительной абсолютной погрешности (?) при вероятности 0,95.

Средняя квадратическая погрешность (среднее квадратическое отклонение (Sd) -- характеристика рассеяния результатов измерений одной и той же величины вследствие влияния случайных погрешностей. Применяется для оценки точности первичных и вторичных эталонов. Например, в поверочной схеме (см. табл. 2) для гири как вторичного эталона (эталона-копии) дано значение погрешности через такую разновидность показателя, как суммарная погрешность результата измерений (SdS).

Она представляет среднюю квадратическую погрешность результата измерений, состоящую из случайных и не исключенных систематических погрешностей.

Наконец, показатели точности могут устанавливаться в связи с группировкой погрешностей СИ по условиям измерения.

Основная погрешность СИ -- погрешность, определяемая в нормальных условиях применения СИ.

Дополнительная погрешность СИ -- составляющая погрешности СИ, дополнительно возникающая вследствие отклонения какой-либо из влияющих величин (температуры, относительной влажности, напряжения сети переменного тока и пр.) от ее нормального значения.

Обычно метрологические характеристики нормируют раздельно для нормальных и рабочих условий применения СИ. Нормальными считаются условия, при которых изменением характеристик под воздействием внешних факторов (температура, влажность и пр.) принято пренебрегать. Так, для многих типов СИ нормальными условиями применения являются температура (293 ± 5) К, атмосферное давление(100 ± 4) кПа, относительная влажность (65 ± 15)%, электрическое напряжение в сети питания 220 В ± 10%. Рабочие условия отличаются от нормальных более широкими диапазонами изменения влияющих величин. И те и другие метрологические характеристики указываются в НД.

Оценка погрешности измерений СИ, используемых для определения показателей качества товаров, определяется спецификой применения последних. Например, погрешность измерения цветового тона керамических плиток для внутренней отделки жилища должна быть по крайней мере на порядок ниже, чем погрешность измерения аналогичного показателя серийно выпускаемых картин, сделанных цветной фотопечатью. Дело в том, что разнотонность двух наклеенных рядом на стену кафельных плиток будет бросаться в глаза, тогда как разнотонность отдельных экземпляров одной картины заметно не проявится, так как они используются разрозненно.

Выше были подробно рассмотрены характеристики точности результатов измерений. Рассмотрим два других свойства, определяющих качество измерений, -- сходимость и воспроизводимость результатов измерений.

Сходимость результатов измерений -- характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом, в одинаковых условиях и с одинаковой тщательностью.

Количественная оценка сходимости может быть дана с помощью разных показателей. Так, в стандартах на методы определения химического состава мяса сходимость указывается в различной форме: при определении нитрита за результат анализа принимают среднее арифметическое из двух параллельных определений при расхождении по отношению к среднему не более 10% при Р= 0,95; при определении азота разница между результатами двух определений, выполненных одновременно или с небольшими промежутками времени одним и тем же химиком-аналитиком, , не должна превышать 0,10 г азота на 10 г образца. ;

Высокая сходимость результатов измерения очень важна при оценке показателей качества товаров,' приобретаемых потребителем в виде партии (см. выше пример с керамической плиткой).

Воспроизводимость результатов измерений -- повторяемость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными операторами, в разное время, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.).

Например, в стандарте на методы определения плотности молока воспроизводимость регламентируется в следующей форме: допускаемое расхождение между результатами определения плотности молока одним типом ареометра в различных условиях (в разное время, в разных местах и разными операторами) не должно превышать 0,8 кг/м3.

В процедурах сличения результатов анализа качества однотипной продукции в разных лабораториях рекомендуется [9] оценивать воспроизводимость по методике, изложенной в следующем примере.

Пусть в двух лабораториях (например, контролирующей и контролируемой) при измерениях на одном и том же образце продукции некоторого показателя получены значения C1 и С2 и при этом известны граничные значения абсолютной погрешности результатов измерений D гр1 и D гр 2 , относящиеся к одной и той же вероятности Р = 0,95. В этом случае модуль разности С1 -- С2 не должен с вероятностью Р = 0,9 превышать суммы модулей гр1 и гр2, т.е. должно выполняться соотношение: С1 -- C2 < |rp1| + |rp2|.

Номенклатура нормируемых метрологических характеристик СИ определяется назначением, условиями эксплуатации и многими другими факторами. У СИ, применяемых для высокоточных измерений, нормируется до десятка и более метрологических характеристик в стандартах технических требований (технических условий) и ТУ. Нормы на основные метрологические характеристики приводятся в эксплуатационной документации на СИ. Учет всех нормируемых характеристик необходим при измерениях высокой точности и в метрологической практике. В повседневной производственной практике широко пользуются обобщенной характеристикой -- классом точности.

Класс точности СИ -- обобщенная характеристика, выражаемая пределами допускаемых (основной и дополнительной) погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в НД. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Например, для вольтметров нормируют предел допускаемой основной погрешности и соответствующие нормальные условия; пределы допускаемых дополнительных погрешностей; пределы допускаемой вариации показаний; невозвращение указателя к нулевой отметке. У плоскопараллельных концевых мер длины такими характеристиками являются пределы допускаемых отклонений от номинальной длины и плоскопараллельности;

пределы допускаемого изменения длины в течение года. У мер электродвижущей силы (нормальных элементов) нормируют пределы допускаемой нестабильности ЭДС в течение года.

Обозначение классов точности осуществляется следующим образом.

Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обозначается прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, присваиваются буквы, находящиеся ближе к началу алфавита.

Для СИ, пределы допускаемой основной погрешности которых принято выражать в форме относительной погрешности, обозначаются числами, которые равны этим пределам, выраженным в процентах. Так, класс точности 0,001 нормальных элементов свидетельствует о том, что их нестабильность за год не превышает 0,001%. Обозначения класса точности наносят на циферблаты, щитки и корпуса СИ, приводят в НД. СИ с несколькими диапазонами измерений одной и той же физической величины или предназначенным для измерений разных физических величин могут быть присвоены различные классы точности для каждого диапазона или каждой измеряемой величины. Так, электроизмерительному прибору, предназначенному для измерений напряжения и сопротивления, могут быть присвоены два класса точности: один как вольтметру, другой как омметру.

Присваиваются классы точности СИ при их разработке (по результатам приемочных испытаний). В связи с тем что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс . точности по результатам поверки (калибровки).

Итак, класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.

Точность и методика производимых измерений требует специального рассмотрения.

2.5 Основы теории и методики измерений

Основной постулат метрологии. Выше, при рассмотрении количественной характеристики измеряемых величин, было упомянуто уравнение измерения, в котором отражена процедура сравнения неизвестного размера Q с известным [Q]: Q/[Q] = X. В качестве единицы измерения [Q] при измерении физических величин выступает соответствующая единица Международной системы. Информация о ней заложена либо в градуированной характеристике СИ, либо в разметке шкалы отсчетного устройства, либо в значении вещественной меры. Указанное уравнение является математической моделью измерения по шкале отношений.

Теоретически отношение двух размеров должно быть вполне определенным, неслучайным числом. Но практически размеры сравниваются в условиях множества случайных и неслучайных обстоятельств, точный учет которых невозможен. Поэтому при многократном измерении одной и той же величины постоянного размера результат, называемый отсчетом по шкале отношений, получается все время разным. Это положение, установленное практикой, формулируется в виде аксиомы, являющейся основным постулатом метрологии: отсчет является случайным числом.

Факторы, влияющие на результат измерения (влияющие факторы). При подготовке и проведении высокоточных измерений в метрологической практике учитывают влияние объекта измерения, субъекта (эксперта или экспериментатора), метода измерения, средства измерения, условий измерения.

Объект измерения должен быть всесторонне изучен. Так, при измерении плотности вещества должно быть гарантировано отсутствие инородных включений, при измерении диаметра вала нужно быть уверенным в том, что он круглый. В зависимости от характера объекта и цели измерения учитывают (или отвергают) необходимость корректировки измерений. Например, при измерении площадей сельскохозяйственных угодий пренебрегают кривизной земли, что нельзя делать при измерении поверхности океанов. При измерении периода обращения 3емли вокруг Солнца можно заранее пренебречь его неравномерностью, а можно, наоборот, сделать ее объектом исследования.


Подобные документы

  • Понятие, виды, цели и характерные черты стандартизации и сертификации, их роль в решении проблем качества. Национальная система стандартизации и сертификации в Украине. История возникновения и развития стандартизации с древних времен и до наших дней.

    реферат [30,4 K], добавлен 28.12.2009

  • Государственная система стандартизации России. Сертификация товаров и услуг на соответствие требованиям безопасности для здоровья людей и охраны окружающей среды. Принципы и правила проведения сертификации. Правовые основы метрологической деятельности.

    контрольная работа [20,1 K], добавлен 29.12.2014

  • Система управления качеством. Стандартизация и сертификация в управлении качеством услуг. Методы стандартизации. Государственная система стандартизации Российской Федерации (ГСС), основы сертификации. Сертификация как гарантия качества туристских услуг.

    контрольная работа [379,7 K], добавлен 09.11.2010

  • Метрология как наука об измерениях, его методах, средствах и обеспечении их единства, способах достижения требуемой точности. Организационно-правовые основы метрологии. Роль метрологии в сертификации систем качества. Основные свойства состояния измерений.

    реферат [51,6 K], добавлен 21.10.2014

  • Основные понятия о сертификации и стандартизации продукции. Метрология в управлении качеством продукции. Формирование экспертной комиссии. Общие сведения, сущность и область применения экспертных методов. Оценка ряда измерений на наличие грубых ошибок.

    курсовая работа [348,4 K], добавлен 20.07.2012

  • Теоретические основы качества, стандартизации и сертификации продукции. Понятие и показатели качества продукции. Расчет потребного количества оборудования и рабочих мест с определением коэффициента загрузки оборудования. Расчет издержек предприятия.

    курсовая работа [126,7 K], добавлен 10.09.2016

  • Понятие и принципы стандартизации продукции, этапы ее проведения, используемые методы и основные приемы. Исследование и анализ значения деятельности органов по сертификации системы качества и производства, оценка их полномочий, права и обязанности.

    курсовая работа [62,5 K], добавлен 07.05.2014

  • Основы технического регулирования качества продукции, работ, услуг и процессов связанных с ними. Принципы и нормативно-законодательные акты правового регулирования процессов стандартизации и сертификации. Существующие в данной сфере проблемы, их решение.

    контрольная работа [30,3 K], добавлен 26.04.2014

  • Сертификация как процедура, удостоверяющая качество продукции. Процесс сертификации товаров и услуг. Характеристика Законов Российской Федерации о единстве измерений и о стандартизации. Проведение процедуры добровольной и обязательной сертификации.

    реферат [32,8 K], добавлен 29.11.2012

  • Сущность сертификации, ее необходимость и обязательность для различных товаров на современном этапе, нормативно-правовая база. Проблемы и методы обеспечения качества продукции. Особенности, требования системы сертификации продукции в Республике Беларусь.

    контрольная работа [27,2 K], добавлен 23.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.