Законы развития технических систем
Базирование механизмов решения изобретательских задач на законах развития технических систем. Закон полноты частей системы и согласования их ритмики. Энергетическая проводимость системы, увеличение степени ее идеальности, переход с макро- на микроуровень.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 09.01.2013 |
Размер файла | 3,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Законы развития технических систем
Содержание
- Введение
- 1. Статика
- 1.1 Закон полноты частей системы
- 1.2 Закон "энергетической проводимости" системы
- 1.3 Закон согласования ритмики частей системы
- 2. Кинематика
- 2.1 Закон увеличения степени идеальности системы
- 2.2 Закон неравномерности развития частей системы
- 2.3 Закон перехода в надсистему
- 3. Динамика
- 3.1 Закон перехода с макроуровня на микроуровень
- 3.2 Закон увеличения степени вепольности
- 4. Другие законы
- 4.1 Закон s-образного развития ТС
- 4.2 Законы эволюции ТС
- 5. Структура законов развития систем В. Петрова
- 5.1 Закон единства и борьбы противоположностей
- 5.2 Закон перехода количественных изменений в качественные
- 5.3 Закон отрицания отрицания
- 6. Законы организации технических систем
- Источники
Введение
Человечество переступило порог третьего тысячелетия. Наше общество связывает свои надежды с ожидаемыми переменами. В этих условиях недопустимо оставаться на позициях формализма и догматизма, которые в инженерной, особенно научной и учебной деятельности, нивелируют способности и оставляют в тени творческую индивидуальность личности.
В качестве проверочного теста (обоснования) выделим три вопроса.
Вопрос 1. Мы все слышали о системном подходе и системотехнике. Что вы знаете об их сущности и возможностях?
Вопрос 2. Окружающий мир условно можно разделить на два: естественный, где господствуют законы природы и искусственный - антропогенный мир созданный человеком, частью которого является мир техники. Законы естественного мира глубоко изучаются в курсах физики, биологии и др. Но знакомы ли Вы с законами и закономерностями развития антропогенного мира, как используете их в своей инженерной, учебной и исследовательской деятельности.
Вопрос 3. Какие методы принятия решений Вам известны? Обучали ли Вас методам принятия решений?
Мы считаем, что специалист, не имеющий основательной методологической подготовки, не может должным образом ориентироваться в непрерывно обновляющемся многообразии мира техники, даже в относительно узкой "своей" специальной области, не говоря уже о межотраслевых задачах. Для полной деятельности совершенно не достаточно иметь даже очень хорошую, но относительно узкую подготовку. Необходимо сформировать свою мировоззренческую позицию, связанную с научным и инженерным творчеством в Вашей области деятельности.
Сегодня без ускорения научно-технического прогресса наше общество не решит своих экономических и социальных проблем. Особое внимание следует уделять анализу проблем на стыке разных наук - естественных, технических и общественных. Поэтому необходимо в общей взаимосвязи, на основе системного подхода овладение законами развития технических наук, эволюции антропогенного мира.
Необходимо привлечь внимание к формированию мировоззренческих позиций инженеров, научных работников и преподавателей. Каждому из нас необходимо овладеть искусством системного подхода, использовать объективные законы и закономерности развития техники и на их основе принимать практические решения.
Законы развития технических систем (ЗРТС), на которых базируются все основные механизмы решения изобретательских задач в ТРИЗ, впервые сформулированы Г.С. Альтшуллером в книге "Творчество как точная наука" (М.: "Советское радио", 1979, с.122-127), и в дальнейшем дополнялись последователями.
закон техническая система энергетический
1. Статика
Законы развития технических систем можно разделить на три группы: "статику", "кинематику" и "динамику".
Начнем со "СТАТИКИ" - законов, которые определяют начало жизни технических систем.
Любая техническая система возникает в результате синтеза в единое целое отдельных частей. Не всякое объединение частей дает жизнеспособную систему. Существуют по крайней мере три закона, выполнение которых необходимо для того, чтобы система оказалась жизнеспособной.
1.1 Закон полноты частей системы
Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.
Каждая техническая система должна включать четыре основные части: двигатель, трансмиссию, рабочий орган и орган управления. Смысл закона 1 заключается в том, что для синтеза технической системы необходимо наличие этих четырех частей и их минимальная пригодность к выполнению функций системы, ибо сама по себе работоспособная часть системы может оказаться неработоспособной в составе той или иной технической системы. Например, двигатель внутреннего сгорания, сам по себе работоспособный, оказывается неработоспособным, если его использовать в качестве подводного двигателя подводной лодки.
Закон 1 можно пояснить так: техническая система жизнеспособна в том случае, если все ее части не имеют "двоек", причем "оценки" ставятся по качеству работы данной части в составе системы. Если хотя бы одна из частей оценена "двойкой", система нежизнеспособна даже при наличии "пятерок" у других частей. Аналогичный закон применительно к биологическим системам был сформулирован Либихом еще в середине прошлого века ("закон минимума").
Из закона 1 вытекает очень важное для практики следствие.
Чтобы техническая система была управляемой, необходимо, чтобы хотя бы одна ее часть была управляемой.
"Быть управляемой" - значит менять свойства так, как это надо тому, кто управляет.
Знание этого следствия позволяет лучше понимать суть многих задач и правильнее оценивать полученные решения.
Любая техническая система, самостоятельно выполняющая какую-либо функцию, имеет четыре основные части - двигатель, трансмиссию, рабочий орган и средство управления. Поясним это.
Двигатель - элемент технической системы, являющийся преобразователем энергии, необходимой для выполнения требуемой функции. Источник энергии может находиться либо в системе (например, бензин в баке для двигателя внутреннего сгорания автомобиля), либо в надсистеме (электроэнергия из внешней сети для электродвигателя станка).
Трансмиссия - элемент, передающий энергию от двигателя к рабочему органу с преобразованием её качественных характеристик (параметров).
Рабочий орган - элемент, передающий энергию на обрабатываемый объект, и завершающий выполнение требуемой функции. В идеальном случае рабочий орган - энергия. Например, инструмент для плазменной обработки. Этот частный случай представляет собой одну из тенденций развития техники.
Средство управления - элемент, регулирующий поток энергии к частям технической системы и согласующий их работу во времени и пространстве.
Если в системе отсутствует какая-либо из этих частей, то её функцию выполняет человек или окружающая среда.
Анализируя любую автономно работающую систему, будь то холодильник, часы, телевизор или авторучка, везде можно видеть эти четыре элемента.
Примеры:
Фрезерный станок. Рабочий орган: фреза. Двигатель: электродвигатель станка. Всё что находится между электродвигателем и фрезой можно считать трансмиссией. Средство управления - человек-оператор, рукоятки и кнопки, или программное управление (станок с программным управлением). В последнем случае программное управление "вытеснило" человека-оператора из системы.
1.2 Закон "энергетической проводимости" системы
Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.
Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу.
Передача энергии от одной части системы к другой может быть вещественной (например, вал, шестерни, рычаги и т.д.), полевой (например, магнитное поле) и вещественно-полевой (например, передача энергии потоком заряженных частиц). Многие изобретательские задачи сводятся к подбору того или иного вида передачи, наиболее эффективного в заданных условиях.
Важное значение имеет следствие из закона 2.
Чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления.
В задачах на измерение и обнаружение можно говорить об информационной проводимости, но она часто сводится к энергетической, только слабой. Примером может служить решение задачи об измерении диаметра шлифовального круга, работающего внутри цилиндра. Решение задачи облегчается, если рассматривать не информационную, а энергетическую проводимость. Тогда для решения задачи нужно прежде всего ответить на два вопроса: в каком виде проще всего подвести энергию к кругу и в каком виде проще всего вывести энергию сквозь стенки круга (или по валу)? Ответ очевиден: в виде электрического тока. Это еще не окончательное решение, но уже сделан шаг к правильному ответу.
Данный закон по другому называется в других источниках как закон сквозного прохода энергии.
Итак, любая работающая система состоит из четырёх основных частей и любая из этих частей является потребителем и преобразователем энергии. Но мало преобразовать, надо ещё без потерь передать эту энергию от двигателя к рабочему органу, а от него - на обрабатываемый объект. Это закон сквозного прохода энергии. Нарушение этого закона ведёт к возникновению противоречий внутри технической системы, что в свою очередь порождает изобретательские задачи.
Главным условием эффективности технической системы с точки зрения энергопроводимости является равенство способностей частей системы по принятию и передаче энергии.
Примеры:
Импедансы передатчика, фидера и антенны должны быть согласованы - в этом случае в системе устанавливается режим бегущей волны, наиболее эффективный для передачи энергии. Рассогласование ведёт к появлению стоячих волн и диссипации энергии.
Различают несколько правил энергопроводимости систем.
Первое правило энергопроводимости системы.
Если элементы при взаимодействии друг с другом образуют энергопроводящую систему с полезной функцией, то для повышения её работоспособности в местах контактирования должны быть вещества с близкими или одинаковыми уровнями развития.
Второе правило энергопроводимости системы.
Если элементы системы при взаимодействии образуют энергопроводящую систему с вредной функцией, то для её разрушения в местах контактирования элементов должны быть вещества с различными или противоположными уровнями развития.
Пример:
При застывании бетон сцепляется с опалубкой, и её трудно потом отделить. Две части хорошо согласовались между собой по уровням развития вещества - оба твёрдые, шероховатые, неподвижные и т.д. Образовалась нормальная энергопроводящая система. Чтобы не допустить её образования, нужно максимальное рассогласование веществ, например: твёрдое - жидкое, шероховатое - скользкое, неподвижное - подвижное. Здесь может быть несколько конструктивных решений - образование прослойки воды, нанесение специальных скользких покрытий, вибрация опалубки и др.
Третье правило энергопроводимости системы.
Если элементы при взаимодействии друг с другом образуют энергопроводящую систему с вредной и полезной функцией, то в местах контактирования элементов должны быть вещества, уровень развития которых и физико-химические свойства изменяются под воздействием какого-либо управляемого вещества или поля.
Пример:
Согласно этому правилу выполнено большинство устройств в технике, где требуется соединять и разъединять энергопотоки в системе. Это различные муфты включения в механике, вентили в гидравлике, диоды в электронике и многое другое.
1.3 Закон согласования ритмики частей системы
Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.
По другому в других источниках данный закон называется как закон динамизации.
Надёжность, стабильность и постоянство системы в динамичном окружении зависят от её способности изменяться. Развитие, а значит и жизнеспособность системы, определяется главным показателем: степенью динамизации, то есть способностью быть подвижной, гибкой, приспосабливаемой к внешней среде, меняющей не только свою геометрическую форму, но и форму движения своих частей, в первую очередь рабочего органа. Чем выше степень динамизации, тем, в общем случае, шире диапазон условий, при которых система сохраняет свою функцию. Например, чтобы заставить крыло самолёта эффективно работать в существенно разных режимах полёта (взлёт, крейсерский полёт, полёт на предельной скорости, посадка), его динамизируют путём добавления закрылков, предкрылков, интерцепторов, системы изменения стреловидности и проч.
Однако, для подсистем закон динамизации может нарушаться - иногда выгоднее искусственно уменьшить степень динамизации подсистемы, тем самым упростив её, а меньшую стойкость/приспособляемость компенсировать созданием стабильной искусственной среды вокруг неё, защищённой от внешних факторов. Но в итоге совокупная система (надсистема) всё же получает большую степень динамизации. Например, вместо того, чтобы приспосабливать трансмиссию к загрязнению путём её динамизации (самоочистка, самосмазка, перебалансировка), можно поместить её в герметичный кожух, внутри которого создана среда, наиболее благоприятная для движущихся частей (прецизионные подшипники, масляный туман, подогрев и проч.)
Другие примеры:
В 10-20 раз снижается сопротивление движению плуга, если его лемех вибрирует с определенной частотой в зависимости от свойств грунта.
Ковш экскаватора, превратившись в роторное колесо, породил новую высокоэффективную систему добычи полезных ископаемых.
Автомобильное колесо из жёсткого деревянного диска с металлическим ободом стало подвижным, мягким и эластичным.
2. Кинематика
К "КИНЕМАТИКЕ" относятся законы, определяющие развитие технических систем, независимо от конкретных технических и физических факторов, обусловливающих это развитие.
2.1 Закон увеличения степени идеальности системы
Развитие всех систем идет в направлении увеличения степени идеальности.
Идеальная техническая система - это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система - это когда системы нет, а функция ее сохраняется и выполняется.
Несмотря на очевидность понятия "идеальная техническая система", существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т.д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15-20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение к. п. д. двигателя и т.д.) направлялось на увеличение скорости автомобиля и того, что "обслуживает" эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).
Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т.д.) маскирует первичный процесс увеличения степени идеальности технической системы. Но при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности - это надежный критерий для корректировки задачи и оценки полученного ответа.
Техническая система в своём развитии приближается к идеальности. Достигнув идеала, система должна исчезнуть, а её функция продолжать выполняться.
Основные пути приближения к идеалу:
повышение количества выполняемых функций,
"свертывание" в рабочий орган,
переход в надсистему.
При приближении к идеалу техническая система вначале борется с силами природы, затем приспосабливается к ним и, наконец, использует их для своих целей.
Закон увеличения идеальности наиболее эффективно применяется к тому элементу, который непосредственно расположен в зоне возникновения конфликта или сам порождает нежелательные явления. При этом повышение степени идеальности, как правило, осуществляется применением незадействованных ранее ресурсов (веществ, полей), имеющихся в зоне возникновения задачи. Чем дальше от зоны возникновения конфликта будут взяты ресурсы, тем в меньшей степени удастся продвинуться к идеалу.
2.2 Закон неравномерности развития частей системы
Развитие частей системы идет неравномерно; чем сложнее система, тем неравномерное развитие ее частей.
Неравномерность развития частей системы является причиной возникновения технических и физических противоречий и, следовательно, изобретательских задач. Например, когда начался быстрый рост тоннажа грузовых судов, мощность двигателей быстро увеличилась, а средства торможения остались без изменения. В результате возникла задача: как тормозить, скажем, танкер водоизмещением 200 тыс. тонн. Задача эта до сих пор не имеет эффективного решения: от начала торможения до полной остановки крупные корабли успевают пройти несколько миль…
По другому закон также называется в некоторых источниках как закон опережающего развития рабочего органа, данное наименование полнее отражает суть закона.
В технической системе основной элемент - рабочий орган. И чтобы его функция была выполнена нормально, его способности по усвоению и пропусканию энергии должны быть не меньше, чем двигатель и трансмиссия. Иначе он или сломается, или станет неэффективным, переводя значительную часть энергии в бесполезное тепло. Поэтому желательно, чтобы рабочий орган опережал в своём развитии остальные части системы, то есть обладал большей степенью динамизации по веществу, энергии или организации.
Часто изобретатели совершают ошибку, упорно развивая трансмиссию, управление, но не рабочий орган. Такая техника, как правило, не даёт значительного прироста экономического эффекта и существенного повышения КПД.
Пример:
Производительность токарного станка и его техническая характеристика оставались почти неизменными на протяжении многих лет, хотя интенсивно развивались привод, трансмиссия и средства управления, потому что сам резец как рабочий орган оставался прежним, то есть неподвижной моносистемой на макроуровне. С появлением вращающихся чашечных резцов производительность станка резко поднялась. Ещё больше она возросла, когда была задействована микроструктура вещества резца: под действием электрического тока режущая кромка резца стала колебаться до нескольких раз в секунду. Наконец, благодаря газовым и лазерным резцам, полностью изменившим облик станка, достигнута невиданная ранее скорость обработки металла.
2.3 Закон перехода в надсистему
Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет на уровне надсистемы.
Или другая трактовка данного закона: закон перехода "моно - би - поли".
Первый шаг - переход к бисистемам. Это повышает надежность системы. Кроме того, в бисистеме появляется новое качество, которое не было присуще моносистеме. Переход к полисистемам знаменует собой эволюционный этап развития, при котором приобретение новых качеств происходит только за счет количественных показателей. Расширенные организационные возможности расположения однотипных элементов в пространстве и времени позволяют полнее задействовать их возможности и ресурсы окружающей среды.
Примеры:
Двухмоторный самолет (бисистема) надёжней своего одномоторного собрата и обладает большей маневренностью (новое качество).
Конструкция комбинированного велосипедного ключа (полисистема) привела к заметному снижению расхода металла и уменьшению габаритов в сравнении с группой отдельных ключей.
Лучший изобретатель - природа - продублировала особо важные части организма человека: у человека два легких, две почки, два глаза и т.д.
Многослойная фанера намного прочнее доски тех же размеров.
Имеет место предел развития:
Но на каком-то этапе развития в полисистеме начинают появляться сбои. Упряжка из более чем двенадцати лошадей становится неуправляемой, самолет с двадцатью моторами требует многократного увеличения экипажа и трудноуправляем. Возможности системы исчерпались. Что дальше? А дальше полисистема снова становится моносистемой… Но на качественно новом уровне. При этом новый уровень возникает только при условии повышения динамизации частей системы, в первую очередь рабочего органа.
Примеры:
Вспомним тот же велосипедный ключ. Когда динамизировался его рабочий орган, т.е. губки стали подвижными, появился разводной ключ. Он стал моносистемой, но в то же время способным работать со многими типоразмерами болтов и гаек.
Многочисленные колёса вездеходов превратились в одну подвижную гусеницу.
3. Динамика
Перейдем к "ДИНАМИКЕ".
Она включает законы, отражающие развитие современных технических систем под действием конкретных технических и физических факторов. Законы "статики" и "кинематики" универсальны - они справедливы во все времена и не только применительно к техническим системам, но и к любым системам вообще (биологическим и т.д.). "Динамика" отражает главные тенденции развития технических систем именно в наше время.
3.1 Закон перехода с макроуровня на микроуровень
Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.
В большинстве современных технических систем рабочими органами являются "железки", например винты самолета, колеса автомобиля, резцы токарного станка, ковш экскаватора и т.д. Возможно развитие таких рабочих органов в пределах макроуровня: "железки" остаются "железками", но становятся более совершенными. Однако неизбежно наступает момент, когда дальнейшее развитие на макроуровне оказывается невозможным. Система, сохраняя свою функцию, принципиально перестраивается: ее рабочий орган начинает действовать на микроуровне. Вместо "железок" работа осуществляется молекулами, атомами, ионами, электронами и т.д.
Переход с макро - на микроуровень - одна из главных (если не самая главная) тенденций развития современных технических систем. Поэтому при обучении решению изобретательских задач особое внимание приходится обращать на рассмотрение перехода "макро-микро" и физических эффектов, реализующих этот переход.
Переход с макро - на микроуровень - главная тенденция развития всех современных технических систем.
Для достижения высоких результатов задействуются возможности структуры вещества. Вначале используется кристаллическая решетка, затем ассоциации молекул, единичная молекула, часть молекулы, атом и, наконец, части атома.
Пример:
В погоне за грузоподъёмностью на закате поршневой эры самолёты снабжались шестью, двенадцатью и более моторами. Затем рабочий орган - винт - всё же перешел на микроуровень, став газовой струёй.
3.2 Закон увеличения степени вепольности
Развитие технических систем идет в направлении увеличения степени вепольности.
Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличения степени дисперсности веществ, числа связей между элементами и отзывчивости системы.
4. Другие законы
4.1 Закон s-образного развития ТС
Эволюцию множества систем можно изобразить логистической кривой, показывающей, как меняются во времени темпы её развития. Выделяются три характерных этапа:
"детство". Идёт, как правило, достаточно долго. В этот момент идёт проектирование системы, её доработка, изготовление опытного образца, подготовка к серийному выпуску.
"расцвет". Она бурно совершенствуется, становится всё более мощной и производительной. Машина выпускается серийно, её качество улучшается и спрос на неё растёт.
"старость". С какого-то момента улучшать систему становится всё труднее. Мало помогают даже крупные увеличения ассигнований. Несмотря на усилия конструкторов, развитие системы не поспевает за всё возрастающими потребностями человека. Она пробуксовывает, топчется на месте, меняет свои внешние очертания, но остаётся такой, какая есть, со всеми своими недостатками. Все ресурсы окончательно выбраны. Если попытаться в этот момент искусственно увеличивать количественные показатели системы или развивать её габариты, оставляя прежний принцип, то сама система вступает в конфликт с окружающей средой и человеком. Она начинает больше приносить вреда, чем пользы.
В качестве примера рассмотрим паровоз. Вначале был достаточно долгий экспериментальный этап с единичными несовершенными экземплярами, внедрение которых вдобавок сопровождалось сопротивлением общества. Затем последовало бурное развитие термодинамики, совершенствование паровых машин, железных дорог, сервиса - и паровоз получает публичное признание и инвестиции в дальнейшее развитие. Затем, несмотря на активное финансирование, произошёл выход на природные ограничения: предельный тепловой КПД, конфликт с окружающей средой, неспособность увеличивать мощность без увеличения массы - и, как следствие, в области начался технологический застой. И, наконец, произошло вытеснение паровозов более экономичными и мощными тепловозами, и электровозами. Паровой двигатель достиг своего идеала - и исчез. Его функции взяли на себя ДВС и электромоторы - тоже вначале несовершенные, затем бурно развивающиеся и, наконец, упирающиеся в развитии в свои природные пределы. Затем появится другая новая система - и так бесконечно.
4.2 Законы эволюции ТС
Структура законов эволюции технических систем
Эти законы определяют общее направление развития технических систем. Структура этих законов изображена на рис.1.
Рис.1. Структурная схема законов эволюции систем.
В своем развитии техника становится все более идеальной, т.е. ее развитие определяется законом увеличения степени ИДЕАЛЬНОСТИ.
Увеличение степени идеальности осуществляется выявлением и разрешением противоречий, которые возникают вследствие неравномерности развития систем.
Разрешение противоречий осуществляется использованием законов увеличения степени ДИНАМИЧНОСТИ системы, согласования и переходом системы в НАДСИСТЕМУ.
Увеличение степени динамичности проводится по функциям, структуре и управлению системой, которые осуществляются использованием закономерностей переходом системы на МИКРОУРОВЕНЬ, увеличением степени ВЕПОЛЬНОСТИ и ИНФОРМАЦИОННОЙ насыщенности систем.
Переход структуры системы с макро - на микроуровень осуществляется изменением масштабности и связанности элементов технической системы, а также использованием более сложных и энергетически насыщенных форм управления. Закон перехода с макро - на микроуровень, прежде всего, необходимо применять к рабочему органу. На рис.2 показана структура закона перехода системы на микроуровень. Механизмы каждой из закономерностей, например, дробления системы.
Рис. 2
Согласование структуры системы может осуществляться согласованием элементов и связей системы. Согласование должно быть функциональное и параметрическое, согласование по уровням (системы с надсистемой - внешнее согласование, системы с подсистемами и подсистем между собой - внутреннее согласование). Приведем пример одного из видов параметрического согласования системы с надсистемой - согласования ритмики.
Пример. При добыче угля угольные пласты ослабляют, обрабатывая их мощными импульсами воды, подаваемые из гидромонитора. Повысить эффективность этого способа можно, если импульсы подавать с частотой, равной частоте собственных колебаний расшатываемого массива.
В общем случае закон перехода в надсистему имеет два направления: выполнение системой функций надсистемы (или придание системе дополнительных функций) и объединение системы с другой (другими) системой (системами). Структурная схема закона перехода в надсистему показана на рис.3.
Рис.3. Структура закона перехода системы в надсистему.
В свою очередь первое направление выполняется выявлением альтернативных способов осуществления функции надсистемы без использования существующей системы, и придать системе дополнительные функции.
Пример. Существует система доска, на которой пишут мелом. Функция писать на доске. Эту же функцию можно выполнить, если писать. Более общая функция оставлять изображение. Ее можно выполнить, если писать на больших листах бумаги, например, фломастером. Можно проектировать изображение на экран с помощью проектора, соединенного с компьютером.
При придании системе дополнительных функций систему объединяют с другой функцией. В общем случае это может происходить по технологии описанной ниже. В качестве примера можно привести радио с часами.
Г. Альтшуллер сформулировал закон перехода в надсистему формулируется следующим образом: исчерпав ресурсы развития, система объединяется с другой системой, образуя новую, более сложную систему. Кроме того, Альтшуллер предложил механизм такого перехода. Он состоит в объединении двух исходных систем, при этом получают бисистему, или нескольких систем с получением полисистемы. Переход "моно-би-поли" - неизбежный этап в развитии всех технических систем. Механизм перехода "моно-би-поли" показан на рис.4. После объединения систем в би - или полисистему происходит некоторое изменение новой системы. При этом сокращаются вспомогательные элементы, и устанавливается более тесная связь между отдельными системами. Такие системы называются частично свернутыми.
Рис.4. Объединение системы с другими системами.
Дальнейшее развитие приводит к полностью свернутым системам, в которых один объект выполняет несколько функций. Полностью (а иногда и частично) свернутая би - или полисистема становится новой моносистемой и может совершить новый виток спирали.
5. Структура законов развития систем В. Петрова
Природа, различные области знания, деятельности, мышление и любые объекты материального мира, в том числе и техника, развиваются по своим определенным законам. Но существуют и некоторые общие законы развития, появившиеся вследствие единства материального мира. Самые общие из них - законы диалектики.
Рис.5. Уровни законов развития систем.
Техника развивается в тесном взаимодействии с общественным развитием и экосферой, вследствие чего наблюдаются значительное проникновение и обогащение законов развития общества, природы и техники. Например, развитие техники во многом зависит от потребностей общества и влияет на развитие природы. В данной книге будет в общих чертах изложена система законов, кратко описаны все законы и более детально изложены наиболее важные законы, которые читатель может использовать. Подробно с законами можно ознакомиться в специальной книге по законам развития систем.
В общем, виде система законов техники должна иметь уровни потребностей, функций и систем. Схематично это изображено на рис.5.
Рис.6. Структура законов развития систем.
Закономерности развития потребностей определяют тенденции их изменения. Это необходимо для определения функций и систем, с помощью которых можно удовлетворить возрастающие потребности. Закономерности развития функций описывают тенденции их изменения. Они связаны с закономерностями развития потребностей, но имеют и свою специфику, например, переход систем к многофункциональности (универсальности) или, наоборот, к однофункциональности (специализации).
Законы развития потребностей и функций здесь рассматриваться не будут. Подробнее с ними можно ознакомиться в учебном пособии по законам развития технических систем и статьях.
Собственно законы техники можно разделить на две группы (см. рис.6):
1. законы организации систем (определяющие жизнеспособность системы),
2. законы эволюции систем (определяющие развитие технических систем).
Законы диалектики в развитии технических систем
Наиболее общие из законов диалектики следующие:
1. единство и борьба противоречий,
2. переход количественных изменений,
3. отрицание отрицания.
Действие этих законов распространяется на все области бытия и мышления, по-разному развиваясь в каждой из них. Именно поэтому каждая вновь создаваемая наука должна опираться на эти законы.
5.1 Закон единства и борьбы противоположностей
Закон единства и борьбы противоположностей - ядро диалектики. Он служит источником возникновения любых объектов, в том числе материального мира и, в частности, технических систем. Закон характеризует одно из основных понятий ТРИЗ - противоречие, которое будет подробно рассмотрено дальше.
Понятие единства и борьбы противоположностей было ведено более 5000 лет древними китайскими философами в описании картины Мира, включающую материальную и духовную стороны. По мнению китайских философов, вселенная образована из энергии Чи (Chi), которая является средством взаимодействия мировых сил Инь (Yin) и Ян (Yang).
Силы Инь - символизируют Тьму, Холод, Зло, Покой, все отрицательное, плохое, женское начало.
Силы Ян - символизируют Свет, Тепло, Добро, Деятельность, все положительное, хорошее, мужское начало.
Силы Инь и Ян взаимодействуют, взаимопреодолевают и превращаются друг в друга.
Рис.7. Инь-Ян.
Постепенно нарастая одна в другой, они переходят стадию предела, когда преодоление одного начала сменяется преодолением другого. Затем начинается обратное движение. Этот процесс бесконечен, ибо движение во вселенной вечно.
Идею вечного движения и борьбы противоположных начал воплощает известный графический образ Инь-Ян (монада) - темная и светлая доли круга.
Символически это показано на рис.7, где белая часть круга - сила Ян, а черная - Инь.
Черный кружок на белом фоне означает, что Ян рождает Инь, а белый кружок на черном - Инь рождает Ян. Уменьшение Ян приводит к увеличению Инь (см. внизу круга) и, наоборот (верх круга).
5.2 Закон перехода количественных изменений в качественные
Закон перехода количественных изменений в качественные вскрывает общий механизм развития. В процессе развития количественные изменения в системе происходят непрерывно. При достижении определенного предела совершаются качественные изменения. Новое качество ускоряет темпы роста. Количественные изменения при этом совершаются постепенно (эволюционно), а качественные - скачком. Характер и продолжительность скачка могут быть разнообразными - длительными и кратковременными, бурными и относительно спокойными, с взрывом и без него и так далее. Любая система (в том числе и техническая) проходит несколько этапов своего развития.
Рис.8. S-образная кривая. Где: P - параметр системы, t - время.
Вначале система развивается медленно (участок I), при достижении некоторого уровня развитие ускоряется (участок II) и после достижения некоторого более высокого уровня скорость роста уменьшается и в конечном итоге рост параметра системы прекращается (участок III), что означает появление в системе некоторых противоречий. Иногда параметры начинают уменьшаться (участок IV) - система "умирает".
Подобные кривые часто называют S - образными.
Для технических систем:
участок I - "зарождение" системы (появление идеи и опытных образцов),
участок II - промышленное изготовление системы и доработка системы в соответствии с требованиями рынка,
участок III - незначительное "дожимание" системы, как правило, основные параметры системы уже не изменяются, происходят "косметические" изменения, чаще всего не существенные изменения внешнего вида или упаковки,
участок IV - ухудшение определенных параметров системы, которое может вызываться несколькими фактами:
следование моде, влияние экономической, социальной или политической ситуации, религиозные ограничения и т.п.;
физическое и моральное старение системы.
Рис.9. Скачкообразное развитие систем
Рис.10. Огибающая кривая.
Как правило, на участке IV система прекращает свое существование или утилизируется. Прекращение роста данной системы не означает прекращение прогресса в этой области. Появляются новые более совершенные системы - происходит скачок в развитии. Это типичный пример проявления закона перехода количественных изменений в качественные. Такой процесс изображен на рис.9.
На смену системе 1 приходит 2. Скачкообразное развитие продолжается - появляются системы 3, 4 и т.д. (рис.10).
Общий прогресс в отрасли можно показать при помощи касательной к данным кривым (показанная на рисунке пунктирной линией) - так называемой огибающей кривой.
Развитие любого вида техники может быть примером, подтверждающим этот закон. Обратимся к судостроению.
Пример. Скорость передвижения гребных судов постепенно повышалась за счет увеличения числа весел, но не превышало 7-8 узлов.
Скачок в развитии - появление парусных судов. Рост скорости здесь осуществлялся путем увеличения общей площади парусов. Однако самые быстроходные парусные корабли не показывали более 12-13 уз. В то же время коммерческие клиперы середины XIX в. развивали до 20 уз.
Дальнейшее повышения скорости передвижения и независимость его от скорости и направления ветра привело к очередному скачку - появились суда с двигателями. Увеличение скорости хода в этом типе судна происходило путем совершенствования двигателей и замены их на другие типы с большей удельной мощностью.
Следующим скачком в развитии судостроения было вынесение водоизмещающей части корпуса судна из воды. Появились суда на подводных крыльях и полупогруженные суда. В дальнейшем еще уменьшили сопротивление воды о корпус (о стойки крыльев) - придумали суда на воздушной подушке. И, наконец, дальнейшее уменьшение сопротивление движению корпуса - судно вынесли еще дальше от воды - появились экранопланы.
Учет закона перехода количественных изменений в качественные происходит на этапе выбора задачи и прогнозирования развития систем.
5.3 Закон отрицания отрицания
Суть закона отрицания отрицания заключается в том, что процесс поступательного развития происходит в относительной повторяемости, как бы по пройденным ступеням. Но повторение каждый раз происходит на более высоком уровне с применением новых элементов, материалов, технологий и т.д. Можно сказать, что процесс развития происходит по спирали. Наиболее ярко это заметно в моде.
Проиллюстрируем этот закон.
Рис.11. Шахта в корме.
Пример. В XIX веке на парусно-винтовых судах двигатели использовались только при штиле. Чтобы гребной винт не создавал сопротивления при плавании под парусами, его делали съемным и поднимали через шахту в корме на палубу.
Совершенствование силовой установки позволило избавиться от парусов. Потребность в съеме винта отпала. Шахту в корме над винтом делать перестали. В ХХ веке большие гребные винты стали делать со съемными лопастями. Судно оснастили оборудованием для замены лопастей гребного винта на плаву. И снова появилась необходимость делать в корме шахты. В изобретении Великобритании, сделанном в 1968 году и запатентованном и в СССР предложено для улучшения условий ремонтопригодности, в навесной корме, расположенной над гребным винтом, сделать шахту, через которую поднимают и опускают ремонтируемую лопасть.
Вот еще одно решение этой проблемы для транспортных и рыболовных судов прибрежного плавания, оснащенных и двигателем и парусами. Датские инженеры создали необычный винт. Когда судно движется под парусами, винт автоматически складывается и практически не создает сопротивления. Но стоит упасть скорости судна, как лопасти винта тотчас занимают рабочее положение. Одновременно включается и двигатель. Суда с таким винтом развивают скорость на 10% выше обычных.
Пример. С появлением пароходов роль парусного флота стала уменьшаться, и сейчас паруса используются лишь на небольших рыболовецких, спортивных или учебных судах. Однако в Гамбургском институте кораблестроения (ФРГ) разработан проект коммерческого парусного судна
Паруса напоминают поставленные вертикально самолетные крылья. Мачты судов поворачиваются вокруг своей оси, ставя паруса под наиболее благоприятным углом к ветру. КПД новых парусов в 1,5 раза больше традиционных. Паруса ставятся и убираются по такому же принципу, как раздвижной занавес в театре.
Судно автоматизировано, и им можно было бы даже управлять на расстоянии. При среднем ветре под парусами судно может идти со скоростью 12-15 узлов, как и современные морские транспортные суда; при попутном ветре до 20 узлов (у судов в двигателями скорость при свежем ветре падает). Система парусов позволяет использовать самый слабый порыв ветра. На случай полного безветрия, что случается крайне редко, придется установить на судне маломощный двигатель. В ветреную погоду он будет управлять парусами. На паруснике установлен компьютер, обрабатывающий метеорологическую информацию, постоянно поступающую со спутника земли или наземной станции, и рекомендует капитану оптимальный курс.
В условиях энергетического кризиса паруса с успехом могут соперничать с любым двигателем, работающем на жидком топливе. Конструкторы считают, что достаточно вместительные парусники могут быть экономичнее даже судов с ядерными установками.
6. Законы организации технических систем
Законы организации представляют собой критерии жизнеспособности для разработки новых технических систем. Структура этих законов представлена на рис.12.
Рис.12. Структурная законов организации систем.
Жизнеспособность системы тесно связана с понятием системность.
Разрабатываемый объект будет жизнеспособен, если он выполнен системным.
Под системностью понимается работоспособная система, с определенной структурой, отвечающей ее предназначению. Эта структура должна обеспечивать главную цель системы, и выполнять все основные и вспомогательные функции.
Состав системы включает: собственно систему, ее подсистемы, надсистему и окружающую или внешнюю среду. Работоспособность зависит не только от структуры системы, но и учета всех взаимосвязей и взаимовлияний системы на надсистему, окружающую среду, системы на подсистемы и обратного влияния. Отсутствие учета таких влияний может не только отрицательно сказаться на работоспособности системы, но и влиять на внешнюю среду.
Системность учитывает и закономерности исторического развития исследуемого объекта.
Структурная схема системности представлена на рис.13.
Таким образом, системность учитываться использованием законов полноты и избыточности системы и минимального согласования и обеспечение желательных взаимосвязей и взаимовлияний.
Полнота и избыточность могут быть функциональные и структурные.
Рис.13. Системность.
Функциональная полнота и избыточность должны обеспечивать главную цель системы, и выполнять все основные и вспомогательные функции, т.е. выполнять одно из требований системности.
Структурная полнота и избыточность должна обеспечить наличие необходимых элементов и связей системы, т.е. выполнять другое требование системности - обеспечение состава и структуры системы.
В качестве основных элементов системы можно назвать:
Источник и преобразователь энергии
Рабочий орган
Система управления.
Связи могут иметь самый разнообразный характер, в частности они могут представлять собой трансмиссию, которая передает и/или преобразует энергию.
Элементы и связи могут быть вещественные, энергетические и информационные. Которые должны содержаться в необходимом количестве и обеспечивать определенное качество.
Таким образом, закономерности организации определяют функциональный состав и структуру системы, обеспечивающие ее минимальную работоспособность.
В наиболее общем виде система может выполнять функции переработки, транспортировки и хранения. Функциональный состав должен соответствовать функциональному назначению системы, прежде всего ее главной функции. Работоспособность структуры определяется минимальным набором основных функций.
Минимальное согласование проводится по функциям, структуре и соответствия структуры функциям. Это третье требование системности - учет взаимосвязей и взаимовлияний. Таким образом, согласование бывает:
· Функциональное
· Структурное
· Функционально-структурное.
Последнее требование системности - учет исторического развития системы необходим при прогнозировании развития объекта исследования. Это происходит путем учета выявленных тенденций исторического и логического развития данного объекта, и учета общих законов развития систем.
Основными законами организации технических систем являются:
полнота частей системы;
избыточность частей системы;
наличие связей между частями системы и системы с над системой;
минимальное согласование частей и параметров системы.
В наиболее общем виде структура основных законов организации систем представлена на рис.14.
Рис.14. Основные законы организации ТС.
Источники
1. http://ru. wikibooks.org/wiki/Учебник_ТРИЗ/Законы_развития_технических_систем
2. Материал из свободной энциклопедии, Википедии. http://ru. wikipedia.org/
3. Официальный фонд Альтшуллера. http://www.altshuller.ru/triz/zrts1. asp
4. Альтшуллер Г.С. О законах развития технических систем. - Баку, 20.01.1977.
5. Золотин Б.Л., Зусман А.В. Законы развития и прогнозирования технических систем. Кишенев, Прогресс, 1989 г.
6. Петров В.М. Закономерности развития технических систем. - Методология и методы технического творчества. - Тезисы докладов и сообщений к научно-практической конференции 30 июня - 2 июля 1984 г. - Новосибирск, 1984 г.
Размещено на Allbest.ru
Подобные документы
Исследование составляющих элементов теории решения изобретательских задач и её значение для науки, изобретателей и производства. Анализ степени изменения объекта в зависимости от степени трудоемкости: закон полноты, ритмики и увеличения степени системы.
контрольная работа [20,5 K], добавлен 10.02.2011Закономерности существования и развития технических систем. Основные принципы использования аналогии. Теория решения изобретательских задач. Нахождение идеального решения технической задачи, правила идеальности систем. Принципы вепольного анализа.
курсовая работа [3,3 M], добавлен 01.12.2015Основные понятия и определения алгоритма решения изобретательских задач (АРИЗ) как комплексной программы алгоритмического типа, основанной на законах развития технических систем. Классификация противоречий, логика и структура АРИЗ. Пример решения задачи.
реферат [382,9 K], добавлен 16.06.2013Принцип работы устройства для измерения давления фундамента на грунт. Анализ устройства по законам развития технических систем. Энергетическая и информационная проводимость. Статическая модель технического противоречия на основе катастрофы типа сборка.
курсовая работа [1,1 M], добавлен 04.11.2012Основные количественные показатели надежности технических систем. Методы повышения надежности. Расчет структурной схемы надёжности системы. Расчет для системы с увеличенной надежностью элементов. Расчет для системы со структурным резервированием.
курсовая работа [129,7 K], добавлен 01.12.2014Динамика рабочих сред в регулирующих устройствах и элементах систем гидропневмопривода, число Рейнольдса. Ограничитель расхода жидкости. Ламинарное движение жидкости в специальных технических системах. Гидропневматические приводы технических систем.
курсовая работа [524,5 K], добавлен 24.06.2015Изучение принципа работы устройства для измерения давления фундамента на грунт. Анализ и синтез по закону полноты частей системы, по закону энергетической и информационной проводимости, по закону согласования-рассогласования. Синтез и разрушение веполей.
курсовая работа [824,6 K], добавлен 27.10.2012Понятие и основные этапы жизненного цикла технических систем, средства обеспечения их надежности и безопасности. Организационно-технические мероприятия повышения надежности. Диагностика нарушений и аварийных ситуаций, их профилактика и значение.
презентация [498,7 K], добавлен 03.01.2014Алгоритм решения изобретательских задач. Замена специальных терминов на функциональные. Применение системы изобретательских стандартов к модели задачи. Описание приспособления (упаковки саморазогревающейся), используемого для разогрева продуктов питания.
курсовая работа [61,7 K], добавлен 16.01.2013Уровень развития технологических и технических систем. Расчет освещения, электроснабжения и вентиляции помещения салона красоты, сечения проводников и кабелей, тепло- и влагоизбытков, надежности оборудования. Подбор вентилятора и электродвигателя.
курсовая работа [567,0 K], добавлен 17.02.2013