Процессы механической обработки металла
Особенности процесса строгания. Элементы режима резания и геометрия срезаемого слоя при строгании. Силы и момент при сверлении. Влияние факторов на осевую силу и крутящий момент при сверлении. Цилиндрическое фрезерование. Особенности процесса резания.
Рубрика | Производство и технологии |
Вид | курс лекций |
Язык | русский |
Дата добавления | 17.11.2010 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Совершенствование различных технологических процессов обработки резанием обусловлено целым рядом факторов:
- возрастанием точности обработки и качества обработанной поверхности. Использование новых технологий обработки поверхности инструмента обеспечивает идеальную остроту режущих кромок, что позволяет заменить полирование и притирку. Такая обработка относится к так называемым нанотехнологиям и получила название сверхточной;
- повышением скоростей резания до максимально допустимого уровня с точки зрения безопасности работы станка. Такой процесс получил название сверхскоростной обработки и сопровождается целым рядом изменений в физических процессах, происходящих в зоне резания;
- ограничением использования СОЖ. Затраты на использование и последующую утилизацию СОЖ в современном производстве в несколько раз превышают затраты на режущие инструменты. Кроме того, СОЖ отрицательно влияет на состояние здоровья человека и окружающую среду. В связи с этим все более широкое распространение получает резание без использования либо с минимальным использованием СОЖ;
- использованием лезвийной обработки высокотвердых и закаленных материалов вместо шлифования. Такие технологии находят все более широкое применение благодаря расширенному использованию сменных пластин из сверхтвердых материалов и режущей керамики.
Определенным условием расширения традиционных границ обработки материалов является введение в зону обработки дополнительной энергии, которая либо поступает извне, либо остается после предыдущих технологических операций.
Сверхскоростное резание
Идея сверхскоростного резания (СКР) (скорости резания до 18000 м/мин) была высказана в 30-х годах прошлого века. Согласно ей при резании на очень высоких скоростях температура в зоне резания должна резко снижаться за счет изменения условий теплоотвода. В итоге при сверхвысоких скоростях она будет близка к температуре, возникающей при традиционных условиях резания (рис. 68 ).
В связи с чрезвычайно высокими скоростями протекания физических процессов в зоне резания их закономерности в условиях сверхскоростного резания в значительной степени отличаются от традиционных. Рассмотрим некоторые из них.
Изменения закономерностей стружкообразования в условиях СКР обусловлены известным теоретическим положением физики твердого тела, согласно которому при увеличении скорости пластической деформации металла область последней уменьшается и металл становится более хрупким. Вследствие этого уменьшается относительная работа пластической деформации. Скорость резания при СКР оказывает весьма существенное влияние на процесс формирования стружки. При относительно низких скоростях резания вся зона основных пластических деформаций находится практически в равных условиях. По мере роста скорости возрастают температура и ее градиент, снижая эффект упрочнения обрабатываемого материала. При сверхвысоких скоростях могут возникнуть адиабатические условия протекания процессов деформирования. При достижении баланса между эффектами упрочнения и разупрочнения образуется стружка в виде отдельных сегментов. Материал образующихся фрагментов стружки практически не подвергается деформированию, за исключением очень тонкого слоя, соединяющего сегменты.
Коэффициент укорочения стружки при сверхвысоких скоростях для широкого круга обрабатываемых материалов значительно меньше, чем при обычном резании. В ряде случаев он может быть меньше единицы при одновременном уменьшении ширины стружки.
Весьма важную роль в физических процессах в зоне резания при сверхвысокой обработке играют силы инерции. В условиях обычного резания они совершенно незначительны, при сверхскоростном - составляют до 30 - 50 % от силы Рz. Для осуществления сверхскоростного резания необходимо повышать мощность станка. Так, например, при обработке стали 45 при t = 5 мм, s = 0,3 мм, v = 120м/мин мощность резания равна 6,47 кВт, а при v /мин - 161 кВт.
При сверхскоростном резании, начиная с критического значения скорости резания, происходит снижение температуры (рис. ). Это объясняется тем, что начиная с критических значений скорости резания, отделение срезаемого слоя происходит в результате не пластического, а хрупкого разрушения. Наблюдается локализация пластических деформаций в малых объемах и интенсивный разогрев контактных слоев, приводящий к снижению сил трения.
Отсутствие нароста, застойной зоны и упрочнения металла в зоне пластического контакта повышают интенсивность адгезионных и диффузионных процессов в условиях СКР - возникает значительный износ контактных площадок вблизи режущей кромки. Динамика и интенсивность износа при обычных и сверхвысоких (больших в 300 раз) скоростях при прочих равных условиях могут примерно одинаковой или несколько более высокой в последнем случае. Для обеспечения высокого периода стойкости режущие инструменты оснащаются сменными пластинами из твердых сплавов с многослойными покрытиями из минералокерамики и сверхтвердых материалов.
При сверхскоростной обработке в значительной степени изменяются подходы к использованию СОЖ. Исследования показывают, что в таких условиях более эффективно резание всухую либо с подводом газовой среды.
Исследования показывают, что при сверхскоростной обработке наибольший съем металла при постоянном периоде стойкости и минимальный относительный износ обеспечиваются при значительных подачах и меньшей скорости резания. В связи с резким возрастанием скоростей резания производительность обработки чрезвычайно велика - при одинаковой точности обработки она может быть в 1,5 - 4 раза выше, чем при шлифовании.
35. Резание всухую. Ротационное резание.
СОЖ в последние годы рассматривают все чаще как нежелательный фактор в производстве. Это обусловлено экономическими и экологическими причинами, в том числе все более жесткими международными законодательными актами об охране окружающей среды. В крупносерийном производстве на долю процессов, связанных с применением СОЖ (доставка, использование, регенерация и т. д.), приходится от 7,5 до 17 % общих производственных затрат, тогда как расходы на инструмент составляют только 4 %. Весьма значительны затраты на последующую утилизацию и регенерацию СОЖ. Важную роль играют также экологические последствия от использования СОЖ. С одной стороны, учитывается их отрицательное влияние на окружающую среду, с другой - вредное воздействие на здоровье работников.
Известно, что резание всухую приводит к повышению температуры и, как следствие, ускоренному изнашиванию инструмента, возрастанию термических напряжений в заготовке, ее тепловым деформациям и другим отрицательным последствиям.
Эти воздействия можно уменьшить за счет:
- выбора технологии обработки, не требующей использования СЩЖ;
- изменения конструкции и геометрии инструмента (размеров поверхностей, контактирующих с заготовкой и стружкой);
- использования износостойких покрытий режущего инструмента;
- подбора марки инструментального материала с повышенными теплостойкостью и теплопроводностью;
- использования твердых, газообразных смазочных веществ, либо СОЖ с минимальным расходом в распыленном состоянии.
Применение СОЖ в малых количествах не требует значительных затрат на ее очистку и утилизацию, но в то же время обеспечивает снижение коэффициента трения и схватывания на контактных площадках инструмента.
Основная проблема при резании всухую - правильный выбор инструментального материала с учетом специфики процесса резания. Режущие инструменты при сухой обработке должны обеспечить приемлемые условия резания и иметь высокий период стойкости.
В первую очередь при такой обработке рекомендуется использовать твердые сплавы с износостойкими покрытиями, минералокерамику и сверхтвердые материалы.
Ротационное резание
Ротационное резание - это метод механической обработки, когда на обычную кинематическую схему резания (вращательное движение заготовки Dr и движение подачи резца DS) накладывается дополнительное движение вдоль главной режущей кромки резца (DP).
Наиболее широко применяемой схемой ротационного резания является обработка круглыми вращающимися резцами (КВР) (рис.69). Рабочая часть этих резцов может быть выполнена в виде конической чашки, грибка, трубки, цилиндрического столбика.
Обработку круглым вращающимся резцом производят по двум схемам: с принудительным вращением резца и с применением самовращающихся резцов, когда вращение резца возникает под действием сил резания, возникающих в процессе обработки.
Рациональная область применения ротационного резания - токарная обработка наружных и внутренних поверхностей вращения, а также строгание и протягивание плоскостей.
Основные затруднения при внедрении данной схемы
Рис. 69 Схема резания круглым вращающимся резцом
резания связаны с возникновением интенсивных вибраций вследствие снятия широких и тонких стружек, что требует обеспечения высокой жесткости технологической системы.
36. Резание с опережающим пластическим деформированием. Ультразвуковое резание.
Резание с определяющим пластическим деформированием (ОПД) (рис.70) обеспечивает улучшение условий стружкообразования путем рационального изменения физико-механических свойств материала срезаемого слоя вследствие его упрочнения до процесса срезания.
Упрочнение обрабатываемого материала осуществляют накатным устройством, которое создает глубину и степень наклепа в срезаемом слое, необходимые для получения максимальной эффективности последующего процесса резания.
Рис. 70 Схема резания с опережающими пластическими деформациями
При обычном резании металлов основная доля работы резания расходуется на пластическое деформирование снимаемого слоя.
Сущность резания с определяющим пластическим деформированием материала срезаемого слоя состоит в совмещении двух процессов - опережающего пластического деформирования и непосредственно
процесса резания. При этом к моменту начала воздействия режущего инструмента на материал срезаемого слоя (т.е. к началу резания) часть работы, затрачиваемой на пластические деформации в процессе стружкообразования, уже предварительно выполняется накатным устройством. Следовательно, в процессе резания с ОПД режущим инструментом совершается не вся работа, а только ее часть. Это обеспечивает снижение силы резания и температуры резания, что ведет к повышению периода стойкости инструмента и производительности обработки.
Определяющее пластическое деформирование может производиться по поверхности резания (как показано на рис.70) или по обрабатываемой поверхности. При черновой обработке применение резания с ОПД приводит к повышению периода стойкости инструмента или производительности обработки. При чистовой обработке ОПД используется прежде всего как средство улучшения шероховатости поверхности.
Резание с ОПД наряду со значительным повышением периода стойкости инструмента позволяет улучшить эксплуатационные характеристики обрабатываемых деталей. При этом поверхностный слой получается повышенной твердости, в нем образуются остаточные сжимающие напряжения. Применяется резание с ОПД в основном для обработки заготовок из труднообрабатываемых материалов.
Ультразвуковое резание
Ультразвуковыми методами обработки называют способы, использующие ультразвуковые колебания. Ультразвуковые колебания могут применяться в качестве основного воздействия для снятия материала, например, размерная ультразвуковая обработка, которая будет рассмотрена в разделе физико-химических способов обработки, или в сочетании с другими видами воздействия (механическим, электрическим, химическим) как средство интенсификации какого-то другого метода обработки, как например, ноложение ультразвуковых колебаний на режущий инструмент при резании. Механическая обработка с ультразвуковыми колебаниями является разновидностью резания с вибрациями. Эта обработка позволяет улучшить процесс резания жаропрочных сталей и сплавов. Наложение ультразвуковых колебаний приводит к ликвидации нароста, снижению сил резания и наклепа обработанной поверхности, а также ее шероховатости. Повышение периода стойкости наблюдается только для быстрорежущего инструмента и абразивного инструмента.
37. Обработка резанием с вибрациями. Абразивная обработка с вибрациями.
Процесс вибрационного резания заключается в том, что на обычно принятую кинематическую схему обработки на данной операции накладывается дополнительное вибрационное движение инструмента или заготовки.
Общими особенностями резания с вибрациями являются: кратковременное периодическое увеличение скоростей резания; переменная циклическая нагрузка на деформируемый в процессе резания материал; снижение сил трения на контактных поверхностях инструмента; повышение эффективности применения СОЖ.
Эти особенности приводят к улучшению условий работы режущего инструмента в результате снижения сил резания и температур, периодического «отдыха» режущей кромки инструмента вследствие кратковременного уменьшения или полного снятия нагрузки на режущий клин инструмента.
Применение вибрационного резания обеспечивает эффективное дробление стружки, а также значительное улучшение обрабатываемости резанием материалов, прежде всего труднообрабатываемых.
Наложение вибраций может производиться в следующих плоскостях (рис. 75): в осевой плоскости (вибрации направлены вдоль оси заготовки - плоскость Х-Х); в радиальной плоскости (вибрации направлены вдоль оси
режущего инструмента - плоскость Y-Y); в тангенциальной плоскости (вибрации направлены в плоскости Z-Z).
Рис. 71 Схема резания с вибрациями
Как показывают многочисленные исследования, наличие радиальных вибраций значительных амплитуд отрицательно сказывается на процессе резания - сильно ухудшается шероховатость поверхности. Резание с осевыми вибрациями применяется для дробления стружки. Наряду с этим оно обеспечивает получение удовлетворительной шероховатости поверхности, сохранение точности обработки, периода стойкости инструмента, что и при обычном резании в тех же условиях. Вибрационное резание с тангенциальными колебаниями применяется для повышения периода стойкости инструмента при обработке труднообрабатываемых материалов.
Абразивная обработка с вибрациями
Вибрации при абразивной обработке используют по двум направлениям: обработка заготовок в вибрирующем бункере с абразивной средой и наложение вибраций на обычные схемы абразивной обработки.
Обработка заготовок в вибрирующем бункере с абразивом успешно используется для повышения качества поверхности деталей вместо шлифования и полирования, очистки поверхности деталей от окалины, снятия заусенцев и др. Кроме того, она позволяет заменить ручную обработку и обработку войлочными кругами, которую применяют для декоративного шлифования и полирования.
Обработку в вибробункерах осуществляют по следующей схеме (рис.72): заготовки и абразив помещают в бункер, которому сообщается колебательное движение. При этом обработка в вибробункере может осуществляться в сухую или с жидкостью.
Наложение вибраций на операции шлифования и хонингования упрощает эти операции. Это объясняется повышением равномерности загрузки отдельных абразивных зерен, лучшим доступом СОЖ и удалением продуктов обработки и износа из зоны резания.
38. Физико-химические методы обработки (электроэрозионная обработка, электрохимическая обработка).
В настоящее время широко применяется конструкционные и инструментальные материалы, которые трудно обрабатываются резанием. Это металлокерамика, минералокерамика, тугоплавкие сплавы на основе вольфрама и т.д. Для их обработки применяются физико-химические методы обработки, к которым относятся: электроэрозионная, электрохимическая, ультразвуковая, светолучевая и химическая обработки.
В этих способах разрушение поверхностных слоев обрабатываемого материала обычно происходит не за счет больших пластических деформаций, что имеет место при лезвийном резании, а путем химической или электрической эрозии. Химическая эрозия это местное разрушение металла под действием химических или электрохимических процессов. Электрическая эрозия - это направленный выброс металла под действием импульсных электрических разрядов.
Физико-химические методы размерной обработки не исключают, а дополняют существующие процессы резания металлов.
Электроэрозионная обработка
Электроэрозионная обработка осуществляется путем импульсивного электрического разряда, вызывающего эрозионное разрушение материала.
При данном методе обработки (рис.73) инструмент и обрабатываемую заготовку включают в цепь с генератором электрических импульсов. Электрический разряд между заготовкой и инструментом происходит в жидкой среде (маловязких маслах, керосине, этилом спирте и др.). Электрическая эрозия происходит в результате испарения, плавления и гидродинамического выброса расплавленного металла.
Все процессы, вызывающие электроэрозионную обработку, протекают в межэлектродном промежутке (МЭП). При подводе напряжения в МЭП возникает электрическое поле. Максимальная напряженность будет между наиболее близкими микронеровностями на поверхностях инструмента и детали. При определенном значении напряженности поля электрическая прочность жидкости нарушается и происходит пробой МЭП. Это вызывает импульсивный
Рис. 73 Схема электроэрозионной обработки: 1- инструмент;
1- заготовка; 3- генератор электрических импульсов
разряд, в результате которого выделяется тепловая энергия высокой плотности и происходит местное плавление и испарение металла заготовки.
Электроэрозионные методы наиболее эффективны при изготовлении деталей сложной конфигурации: пресс-форм, отверстий сложной формы и др. Основными видами электроэрозионной обработки являются: электроискровая и электроимпульсная.
Электрохимическая обработка
Электрохимическая обработка (рис. 78) основана на явлении анодного растворения: при прохождении электрического тока через электролит на поверхности заготовки-анода происходит химические реакции и растворение поверхностного слоя заготовки.
Рис. 74 Схема электрохимической обработки:
1- инструмент- катод; 2- заготовка- анод
Катод изготовлен из материала, который не вступает в химическую реакцию с электролитом. Процесс идет в условиях интенсивного движения электролита и малом зазоре между электродами. Прокачка электролита обеспечивает стабильное протекание химических реакций, удаление из зоны анодных плёнок и отвод тепла.
Рис. 75 Схема анодно-механической обработки: 1- инструмент; 2- заготовка
Различают три метода электрохимической обработки: анодно-гидравлический, анодно-механический и анодно-абразивный. Анодно-механический метод применяется обычно для разрезки заготовок из труднообрабатываемых материалов (рис. 75).
Рис. 76 Схема анодно-абразивного шлифования:
1- шлифовальный круг; 2- заготовка
При анодно-абразивном шлифовании (рис. 76) шлифовальный круг содержит электропроводный наполнитель (графит, свинец и др. металлы). Данный метод применяется при шлифовании труднообрабатываемых материалов.
39. Физико-химические методы обработки (ультразвуковая обработка, электронно-лучевая и лазерная обработка)
В настоящее время широко применяется конструкционные и инструментальные материалы, которые трудно обрабатываются резанием. Это металлокерамика, минералокерамика, тугоплавкие сплавы на основе вольфрама и т.д. Для их обработки применяются физико-химические методы обработки, к которым относятся: электроэрозионная, электрохимическая, ультразвуковая, светолучевая и химическая обработки.
В этих способах разрушение поверхностных слоев обрабатываемого материала обычно происходит не за счет больших пластических деформаций, что имеет место при лезвийном резании, а путем химической или электрической эрозии. Химическая эрозия это местное разрушение металла под действием химических или электрохимических процессов. Электрическая эрозия - это направленный выброс металла под действием импульсных электрических разрядов.
Физико-химические методы размерной обработки не исключают, а дополняют существующие процессы резания металлов
Ультразвуковая обработка
Данная обработка основана на использовании энергии ультразвуковых колебаний. Источником ультразвука являются магнитострикционные преобразователи, возбуждаемые от ультразвуковых генераторов. Известны четыре области применения энергия ультразвуковых колебаний при механической обработке:
1. Обработка мелких деталей свободным абразивом
2. Размерная ультразвуковая обработка хрупких материалов
3. Очистка шлифовальных кругов в процессе обработки
4. применение ультразвука для облегчения обычных процессов резания вязких материалов.
Рис. 77 Схемы ультразвуковой обработки: а) обработка свободным абразивом; б) размерная ультразвуковая обработка
При обработке по первой разновидности (рис.77, а) заготовки небольших размеров помещают в абразивную суспензию, в которой возбуждаются интенсивные ультразвуковые колебания. Под действием гидродинамических потоков абразивные зерна и заготовки двигаются с различными скоростями и происходит декоративное шлифование и снятие заусенцев.
При размерной ультразвуковой обработке (рис.77, б) инструмент 1 совершает продольные колебания с ультразвуковой частотой и небольшой амплитудой. Инструмент прижимается к заготовке 2 со статической силой Рст (2-15 кгс). В рабочую зону подается взвешенный в воде абразив, обычно зерна карбида бора.
Области применения размерной ультразвуковой обработки - изготовление деталей сложной конфигурации
Рис. 78 Схема очистки шлифовальных кругов:
1- шлифовальный круг; 2- насадка
из стекла, кварца, керамики, полупроводниковых материалов. Ультразвуковая обработка состоит из двух основных процессов: ударного внедрения абразивных зерен, которое вызывает выкалывание небольших частиц материала заготовки и процесса циркуляции и смены абразива в рабочей зоне, в результате чего происходит унос выколотых частиц и доставка свежего абразива.
Схема очистки шлифовальных кругов показана на рис.78. Под действием ультразвука в жидкости, попадающей в пространство между кругом и насадкой, возникает кавитация, способствующая очистке круга.
Электронно-лучевая и лазерная обработка
Электронно-лучевой метод состоит в локальном испарении вещества из зоны касания луча, имеющего чрезвычайно высокую плотность энергии, с заготовкой в результате преобразования кинетической энергии электронов в тепловую.
Лазерная обработка осуществляется с помощью оптических квантовых генераторов, называемых лазерами. Действие лазера основано на использовании внутренней энергии атомов и молекул некоторых веществ. Лазеры работают в импульсном режиме. Энергия их светового импульса невелика, но она сфокусирована в луче диаметром около 0,01 мм и выделяется в миллионные доли секунды. При такой концентрации энергии и ее мгновенном выделении обрабатывающий материал нагревается до высоких темпе
Подобные документы
Назначение режима резания при сверлении, зенкеровании и развертывании. Изучение особенностей фрезерования на консольно-фрезерном станке заготовки. Выполнение эскизов обработки; выбор инструментов. Расчет режима резания при точении аналитическим способом.
контрольная работа [263,8 K], добавлен 09.01.2016Элементы конструкции и геометрические параметры цилиндрической и торцовой фрез. Расстояние между двумя зубьями вдоль оси фрезы. Элементы резания и размеры срезаемого слоя при фрезеровании насадными цилиндрическими фрезами. Определение высоты трохоиды.
презентация [273,7 K], добавлен 29.09.2013Экономическая эффективность обработки металла давлением. Процесс получения поковок горячей объемной штамповки. Расчет режима резания при сверлении. Технология токарной обработки. Преимущества штамповки в закрытых штампах. Точность обработки заготовок.
курсовая работа [92,2 K], добавлен 13.12.2010Расчет параметров режимов резания для каждой поверхности по видам обработки. Определение норм времени. Назначение геометрических параметров режущей части резца. Расчет режимов резания при сверлении и фрезеровании. Выбор инструмента и оборудования.
курсовая работа [161,2 K], добавлен 25.06.2014Расчет параметров режимов резания при сверлении отверстия в заготовке и при шлифовании вала на круглошлифовальном станке. Сравнительный анализ эффективности обработки плоских поверхностей с заданной точностью при процессах строгания и фрезерования.
контрольная работа [392,7 K], добавлен 19.11.2014Методика расчета скорости резания при обтачивании и растачивании резцами из твердых сплавов, при нарезании резьбы метчиком, поправочные коэффициенты. Допустимая скорость резания при сверлении, ее повышение за счет улучшения геометрии режущей части.
презентация [432,5 K], добавлен 29.09.2013Виды инструмента общего назначения, его особенности, методы повышения эффективности использования. Разработка инструментальной наладки детали. Выбор заготовки, расчет режимов резания при фрезеровании, сверлении отверстия и точении поверхности резцом.
реферат [622,0 K], добавлен 26.02.2015Табличный метод расчета режимов резания при точении, сверлении и фрезеровании. Выбор марки инструментального материала и геометрических параметров режущей части инструмента. Расчет скорости резания, мощности электродвигателя станка, машинного времени.
курсовая работа [893,5 K], добавлен 12.01.2014Ручные, гаечные и машинные метчики. Элементы срезаемого слоя при нарезании резьбы. Элементы конструкции протяжки и схемы резания при протягивании. Процесс образования стружки, её усадка. Текстура деформации, образование нароста на передней поверхности.
лекция [604,1 K], добавлен 29.09.2013Определение числа ходов при сверлении, инструментального материала, смазочно-охлаждающей жидкости, глубины, силы, мощности резания и проведение расчета частоты вращения с целью исполнения операций токарных, осевой обработки, фрезерных, шлифовальных.
курсовая работа [181,5 K], добавлен 25.02.2010