Расчет двухступенчатого редуктора

Определение мощностей, частот вращения и моментов на валах привода. Расчет на контактную выносливость. Определение толщины стенки и размеров фланцев корпуса и прочих размеров редуктора. Расчет ременной передачи. Первая эскизная компоновка редуктора.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 17.06.2010
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

III участок (0z3105)

MУ(Z3) = -Fшк · z3 (уравнение наклонной прямой)

MУ (Z3=0) = 0

MУ (Z3= 2а=105)= -Fшк · 105 = -1267,1 · 105= 133 051 кН·м

Горизонтальная плоскость:

Определяем реакции опор:

= 0, -50Ft + 115· R2t = 0,

-50·3123 + 115· R2t = 0,

115· R2t = 156 150, Rt2 = 1357,8 Н

= 0, -65Ft + 115· R1t = 0,

-65·3123 + 115· R1t = 0,

115· R1t = 202 995, Rt1 = 1765,2 Н

Проверка: ?Fi(Y) = 0, Ft - R1t- R2t = 0

-1357,8 + 3123 - 1765,2 = 0

0?0 - абсолютное тождество, те. реакции определены верно.

Строим эпюру МX

I участок ( 0z1 65 )

MУ(Z1) = - R1t r · z1 (уравнение наклонной прямой)

MУ (Z1=0) = 0,

MУ (Z1=а=65) =- R1t · 65 = -1357,8 · 65= -88 257 Н·мм

Суммарный изгибающий момент вычисляется по формуле:

МИ1= 0

МИ2 = 150 897 Н·мм

МИ3= 133 051 Н·мм

МИ4 = 0

Опасным является сечение 2 , так как в нем одновременно действует наибольший изгибающий момент М = 150 897 Н·мм и крутящий момент Т =180 670 Н·мм.

Побор диаметра вала под колесом 3 по третьей гипотезе прочности

= 235 397 Н·мм

Условие прочности по III гипотезе прочности

?[?],

, отсюда = , выбираем диаметр из стандартного ряда d = 42.

Побор диаметра вала под подшипники по третьей гипотезе прочности

= 224 380 Н·мм

Условие прочности по III гипотезе прочности

?[?],

, отсюда = ,

выбираем диаметр из стандартного ряда диаметров подшипников d = 40.

Рассмотрим вал №2:

Построение эпюр изгибающих моментов в вертикальной и горизонтальной плоскостях.

Вертикальная плоскость:

Определяем реакции опор:

= 0, 63· Fr2Б - Fa·d/2 + 199· Fr2Т - 270· R2r = 0,

63· 1293,5 - 1160·209/2 + 199· 1888,4 - 270· R2r = 0,

270· R2r = 336 062,1, Rr2 = 1244,9 Н

= 0,- 207· Fr2Б - Fa·d/2 - 71· Fr1Т + 270· R1r = 0,

-207· 1293,5 - 1160·209/2 - 71· 1888,4 + 270· R1r = 0,

270· R1r = 523 051, Rr1 = 1937 Н

Проверка: ?Fi(Y) = 0, Rr1 - Fr2Б - Fr2Т + R2r = 0

1937- 1293,5 - 1888,4 + 1244,9 = 0

0?0 - абсолютное тождество, те. реакции определены верно.

Строим эпюру МУ

I участок ( 0z1 63 )

MУ(Z1) = R1r · z1 (уравнение наклонной прямой)

MУ (Z1=0) = 0,

MУ (Z1=а=63) = R1r · 63 = 1937 · 63= 122 031 Н·мм

II участок (0z2 136 )

MУ(Z2) = R1r · (63 + z2) - Fa·d/2 - Fr2б z2 (уравнение наклонной прямой)

MУ (Z2= а=0 )= R1r · 63 - 1160·209/2 = 122 031 - 121 220 = 811 Н·мм

MУ (Z2= а=136 )= 1937· (63 + 136) - 1160·209/2 - 1293,5·136= 88 388 Н·мм;

III участок (0z371)

MУ(Z3) = R2r · z3 (уравнение наклонной прямой)

MУ (Z3=0) = 0

MУ (Z3= 2а=71)= R2r · 71 = 1244,9 · 71= 88 388 кН·м

Горизонтальная плоскость:

Определяем реакции опор:

= 0, 63Ft + 199· Ft- 270R2t = 0,

63·3123 + 199· 5188,24 - 270R2t = 0,

270· R2t = 1 299 209, R2t = 4552,62 Н

= 0, -207Ft - 71· Ft+ 270R1t = 0,

-207·3123 - 71· 5188,24 - 270R1r = 0,

270· R1t = 1 014 826, R1t = 3758,62 Н

Проверка: ?Fi(Y) = 0, R1t - Ft - Ft + R2t = 0

4552,62 - 3123 - 5188,24 + 3758,62 = 0

0?0 - абсолютное тождество, те. реакции определены верно.

Строим эпюру МX

I участок ( 0z1 63 )

MУ(Z1) = R1t · z1 (уравнение наклонной прямой)

MУ (Z1=0) = 0,

MУ (Z1=а=65) = R1t · 63 = 3758,62 · 63= 236 793 Н·мм

II участок (0z2 136 )

MУ(Z2) = R1t · (63 + z2) - Ft z2 (уравнение наклонной прямой)

MУ (Z2= а=0 )= R1t · 63 = 236 793 Н·мм

MУ (Z2= а=136 )= 3758,62 · (63 + 136) - 3123·136= 323 237,4 Н·мм;

III участок (0z371)

MУ(Z3) = R2t · z3 (уравнение наклонной прямой)

MУ (Z3=0) = 0

MУ (Z3= 2а=71)= R2t · 71 = 4552,62 · 71 = 323 237,4 кН·м

Суммарный изгибающий момент вычисляется по формуле:

МИ1= 0

МИ2 = 266 388 Н·мм

МИ3= 335 104 Н·мм

МИ4 = 0

Опасным является сечение 3 , так как в нем одновременно действует наибольший изгибающий момент М = 355 104 Н·мм и крутящий момент Т =326 345 Н·мм.

Побор диаметра вала под колесом 5 по третьей гипотезе прочности

= 482 286 Н·мм

Условие прочности по III гипотезе прочности

?[?],

, отсюда = ,

принимаем диаметр из стандартного ряда диаметр вала под колесом 5 d=50 мм, диаметр вала под колесом 4 d=48 мм,

Рассмотрим вал №3:

Построение эпюр изгибающих моментов в вертикальной и горизонтальной плоскостях.

Вертикальная плоскость:

Определяем реакции опор:

= 0, - 65· Frт - 133· R2r = 0,

65·1888,4 - 133· R2r = 0,

133· R2r = 122 746, Rr2 = 923 Н

= 0, - 68· F - 133· R1r = 0,

68·1888,4 - 133· R1r = 0,

133· R1r = 128 411, Rr1 = 965,4 Н

Проверка: ?Fi(Y) = 0, - R1r + F- R2r = 0

-923 + 1888,4- 965,4 = 0

0?0 - абсолютное тождество, те. реакции определены верно.

Строим эпюру МУ

I участок ( 0z1 68 )

MУ(Z1) = -R2r · z1 (уравнение наклонной прямой)

MУ (Z1=0) = 0,

MУ (Z1=а=50) =-R2r · 68 = -БЬЛ 68= -65 647 Н·мм

Горизонтальная плоскость:

Определяем реакции опор:

= 0, -65·Ft + 133· R2t - 293·Fм = 0,

-65·5188,24 + 133· R2t - 293·4619,4 = 0,

133· R2t = 1 690 720, Rt2 = 12 712 Н

= 0, 68·Ft + 133· R1t - 160·Fм = 0,

68·5188,24 + 133· R2t - 160·4619,4 = 0,

133· R1t = 386 293, Rt1 = 2904,6 Н

Проверка: ?Fi(Y) = 0, Rt1 + Ft - R2t + Fм = 0

2904,6 + 5188,24 - 12712 + 4619,4 = 0

0?0 - абсолютное тождество, те. реакции определены верно.

Строим эпюру МX

I участок ( 0z1 65 )

MУ(Z1) = R1t · z1 (уравнение наклонной прямой)

MУ (Z1=0) = 0,

MУ (Z1=а=65) =R1t · 65 = 2904,6 · 65= 188 793 Н·мм

II участок (0z2 68 )

MУ(Z2) = R1t · (68 + z2) + FtТ z2 (уравнение наклонной прямой)

MУ (Z2= а=0 )= R1t · 65 = 188 793 Н·мм

MУ (Z2= а=68 )= 2904,6 · (63 + 68) + 5188,4·68= 739 104 Н·мм;

III участок (0z3160)

MУ(Z3) = Fм · z3 (уравнение наклонной прямой)

MУ (Z3=0) = 0

MУ (Z3= 2а=160)= Fм · 160 = 4619,4 · 160 = 739 104 кН·м

Суммарный изгибающий момент вычисляется по формуле:

МИ1= 0

МИ2 = 199 881 Н·мм

МИ3= 739 104 Н·мм

МИ4 = 0

Опасным является сечение 3, так как в нем одновременно действует наибольший изгибающий момент М = 739 104 Н·мм и крутящий момент Т =524 920 Н·мм.

Побор диаметра вала по третьей гипотезе прочности

= 906 541 Н·мм

Условие прочности по III гипотезе прочности

?[?],

, отсюда = ,

диаметр вала под подшипники принимаем d = 60 мм

Уточненный расчет валов

Материал вала сталь 45:

?В = 500 МПа;

?? = 280 МПа;

?? = 150 МПа;

?-1 = 250 МПа;

?-1 = 150 МПа;

?? = 0;

К? = 1,6,

К? = 1,4,

??= ??( при d=40мм)=0,73,

Входной вал (шпонка под колесом 3):

, [n] = 1,5 …3.

Запас прочности по напряжениям изгиба по III циклу напряжения:

,

= 6431мм3;

= 13 840 мм3;

Запас прочности по напряжениям кручения

,

,

,

так запас прочности больше трех, то диаметр вала можно уменьшить. По нормальному ряду

Промежуточный вал (шпонка под колесом 4):

??= ??( при d=48мм)=0,7,

, [n] = 1,5 …3.

Запас прочности по напряжениям изгиба по III циклу напряжения:

,

= 9576,2мм3;

= 20 635,4 мм3;

Запас прочности по напряжениям кручения

,

,

,

так запас прочности больше трех, то диаметр вала можно уменьшить, следующий диаметр по стандартному ряду 45 мм.

= 7744 мм3;

= 16 890 мм3;

Запас прочности по напряжениям кручения

,

,

, следовательно оставляем диаметр 45 мм.

Промежуточный вал (шпонка под колесом 5):

??= ??( при d=50мм)=0,7,

, [n] = 1,5 …3.

Запас прочности по напряжениям изгиба по III циклу напряжения:

,

= 10 976мм3;

= 23 476 мм3;

Запас прочности по напряжениям кручения

,

,

,

так как запас прочности больше трех то диаметр вала можно уменьшить, принимаем следующий по нормальному ряду диаметр 48.

= 9576,2мм3;

= 20 635,4 мм3;

Запас прочности по напряжениям кручения

,

,

,

оставляем диаметр вала 48 мм.

Выходной вал (шпонка под колесом 6):

??= ??( при d=63 мм)=0,681,

, [n] = 1,5 …3.

Запас прочности по напряжениям изгиба по III циклу напряжения:

,

= 21869мм3;

= 46873 мм3;

Запас прочности по напряжениям кручения

,

,

,

так как мы не можем уменьшить диаметр исходя из особенности конструкции, то оставляем диаметр 63 мм.

Расчет подшипников

Для входного вала выбираем подшипники радиальные «Подшипник 408 ГОСТ 8338 - 75»:

Динамическая грузоподъемность С - 50,03 кН;

Статическая грузоподъемность С0 - 37 кН;

V = 1, при вращении внутреннего кольца;

Диаметр шарика Dw = 22,23 мм;

Частота вращения вала 483,333 об/мин;

Требуемый ресурс наработки 16704 часа;

Окружная сила Ft = 2 ·М2 / d2 =3123 H;

Радиальная сила - Fr = 1293,5 H;

Осевая сила - Fa1 = 1160H;

Rr1 = 2421,5 Н Rr2 = 2447,9 Н

Rt1 = 1765,2 Н Rt2 = 1357,8 Н

Суммарные реакции опор:

Осевая сила Fa нагружающая подшипник, равна внешней силе, действующей на вал. Осевую силу воспринимают оба подшипника на консольных концах вала, так как они ограничивают перемещение вала под действием этой силы.

Радиальная реакции подшипника приложена к оси вала в точке пересечения с ней нормали, проведенной через середины контактных площадок. Для радиальных подшипников эта точка расположена по середине ширины подшипника. Подшипник 1 наиболее нагружен так как он воспринимает большую нагрузку.

/дунаев/

Коэффициент осевого нагружения для радиального подшипника:

, отношение Fa/VFr = 1160/2997 = 0,387 > e. Окончательно принимаем:

Х = 0,56, У = 0,44/е = 1,982.

Принимаем коэффициент динамичночти нагрузки Кб для редуктора равным 1,4, Температурный коэффициент Кт = 1 (tраб < 100°С). Тогда эквивалентная динамическая радиальная нагрузка:

Pr = (VXFr + YFa)· Кб· Кт = (1·0,56·2997 + 1,982·1160)·1,4·1 = 5569 Н.

Расчетный скорректированный ресурс подшипника при а1 = 1( вероятность безотказной работы 90%), а23 = 0,7 (обычные условия применения), к=3 (шариковый подшипник):

, условие выполняется.

Для промежуточного вала выбираем подшипники радиальные «Подшипник 308 ГОСТ 8338 - 75»:

Динамическая грузоподъемность С - 31,9 кН;

Статическая грузоподъемность С0 - 22,7 кН;

V = 1, при вращении внутреннего кольца;

Диаметр шарика Dw = 15,08 мм;

Частота вращения вала 253,86 об/мин;

Требуемый ресурс наработки 16704 часа;

Осевая сила - Fa1 = 1160H;

Rr1 = 1937 Н Rr2 = 1244,9 Н

R1t = 3758,62 Н R2t = 4552,62 Н

Суммарные реакции опор:

Осевая сила Fa нагружающая подшипник, равна внешней силе, действующей на вал. Осевую силу воспринимают оба подшипника на консольных концах вала, так как они ограничивают перемещение вала под действием этой силы.

Радиальная реакции подшипника приложена к оси вала в точке пересечения с ней нормали, проведенной через середины контактных площадок. Для радиальных подшипников эта точка расположена по середине ширины подшипника. Подшипник 2 наиболее нагружен так как он воспринимает большую нагрузку.

/дунаев/

Коэффициент осевого нагружения для радиального подшипника:

,

отношение Fa/VFr = 1160/4720 = 0,246 < e. Окончательно принимаем:

Х = 1, У = 0.

Принимаем коэффициент динамичночти нагрузки Кб для редуктора равным 1,4, Температурный коэффициент Кт = 1 (tраб < 100°С). Тогда эквивалентная динамическая радиальная нагрузка:

Pr = (VXFr + YFa)· Кб· Кт = (1·1·4720 + 0·1160)·1,4·1 = 6608 Н.

Расчетный скорректированный ресурс подшипника при а1 = 1( вероятность безотказной работы 90%), а23 = 0,7 (обычные условия применения), к=3 (шариковый подшипник):

,

условие не выполняется, принимаем подшипник более тяжелой серии № 408

Динамическая грузоподъемность С - 50,3 кН;

Статическая грузоподъемность С0 - 37,0 кН;

V = 1, при вращении внутреннего кольца;

Диаметр шарика Dw = 22,23 мм;

/дунаев/

Коэффициент осевого нагружения для радиального подшипника:

, отношение Fa/VFr = 1160/4720 = 0,246 > e. Окончательно принимаем:

Х = 0,56, У = 0,44/е = 1,982.

Принимаем коэффициент динамичночти нагрузки Кб для редуктора равным 1,4, Температурный коэффициент Кт = 1 (tраб < 100°С). Тогда эквивалентная динамическая радиальная нагрузка:

Pr = (VXFr + YFa)· Кб· Кт = (1·0,56·4720 + 1,982·1160)·1,4·1 = 6919,25 Н.

Расчетный скорректированный ресурс подшипника при а1 = 1( вероятность безотказной работы 90%), а23 = 0,7 (обычные условия применения), к=3 (шариковый подшипник):

, условие выполняется.

Для выходного вала выбираем подшипники радиальные «Подшипник 411 ГОСТ 8338 - 75»:

Динамическая грузоподъемность С - 78,7 кН;

Статическая грузоподъемность С0 - 63,7 кН;

V = 1, при вращении внутреннего кольца;

Частота вращения вала 150 об/мин;

Требуемый ресурс наработки 16704 часа;

Rr1 = 965,4 Н Rr2 = 923 Н

Rt1 = 2904,6 Н Rt2 = 12 712 Н

Суммарные реакции опор:

Радиальная реакции подшипника приложена к оси вала в точке пересечения с ней нормали, проведенной через середины контактных площадок. Для радиальных подшипников эта точка расположена по середине ширины подшипника. Подшипник 2 наиболее нагружен так как он воспринимает большую нагрузку.

Окончательно принимаем:

Х = 1, У = 0.

Принимаем коэффициент динамичночти нагрузки Кб для редуктора равным 1,4, Температурный коэффициент Кт = 1 (tраб < 100°С). Тогда эквивалентная динамическая радиальная нагрузка:

Pr = (VXFr + YFa)· Кб· Кт = 1·1·12745·1,4·1 = 17 844 Н.

Расчетный скорректированный ресурс подшипника при а1 = 1( вероятность безотказной работы 90%), а23 = 0,7 (обычные условия применения), к=3 (шариковый подшипник):

, условие не выполняется, назначем подшипник с большим диаметром №412:

Динамическая грузоподъемность С - 85,6 кН;

Статическая грузоподъемность С0 - 71,4 кН;

, за требуемое время эксплуатации подшипник придется поменять один раз.

7 Расчет муфты

По диаметру выходного вала выбираем фланцевые муфты.

Таблица 7.1 - Основные параметры габаритные и присоединительные размеры:

Полу- муфта

d, мм

MP, Нм

l, мм

L, мм

D0, мм

dСТ, мм

Болты

Обозначение

Кол-во

I

45

509,3

105

220

125

80

M12

4

II

45

509,3

105

220

125

80

M12

4

Расчет муфты ведут не по номинальному моменту М, а по расчетному моменту МР.

где kР - коэффициент режима работы (kР = 1,4 при спокойной работе и небольших разгоняемых при пуске массах);

М = 509,3 Н•м,

Мр = 509,3 • 1,4 = 713,02 Н•м.

Условие прочности на срез болтов, установленных без зазора:

где: D0 - диаметр окружности, проходящей через центры болтовых отверстий;

z - число болтов;

dб - диаметр стержня болта, мм (для болтов не более М24 диаметр dб на 1 мм больше диаметра резьбы);

где ?ср- допускаемое напряжение на срез для болтов, МПа;

?Т - предел текучести материала болта. Для выбранной стали Ст3 ?Т =220 МПа

?ср = 29,1 МПа

Условие прочности выполняется.

Окончательно принимаем: муфта фланцевая 63-45-11-УЗ ГОСТ 20761-96.

Список использованной литературы:

1. Анурьев В. И Справочник конструктора-машиностроителя. В 3-х т. Т. 1. -- 5-е изд., перераб. и доп. -- М.: Машиностроение, 1980. -- 728 с, ил

2. Анурьев В. И Справочник конструктора-машиностроителя. В 3-х т. Т. 2. -- 5-е изд., перераб. и доп. -- М.: Машиностроение, 1980. -- 559 с, ил

3. Анурьев В. И Справочник конструктора-машиностроителя. В 3-х т. Т. 3. -- 5-е изд., перераб. и доп. -- М.: Машиностроение, 1980. -- 557 с, ил

4. Варианты заданий для проектирования приводов в курсе «Детали машин»: Методические указания/Сост. А.С. Сулейманов, Д.Ф. Хитин. - Уфа,: Изд-во УГНТУ, 1998. -29с..

5. Дунаев П.Ф., Леликов О.П., «Детали машин» Курсовое проектирование. - М.: Высш. Школа, 2004год.

6. Дунаев П.Ф., Леликов О.П., «Конструирование узлов и деталей машин»: Учеб. пособие для студентов технических специальностей - 8-е изд., перераб.. и доп. - М.: издательский цент «Академия», 2003. - 496 с.

7. Курмаз, Л.В. Детали машин. Проектирование: Справочное учебно-методическое пособие/Л.В. Курмаз, А.Т. Скойбеда. -- 2-е изд., испр.: М.: Высш. шк., 2005. -- 309 с: ил.

8. Расчет зубчатых передач на прочность: Методические указания/ Сост. А.С. Сулейманов, Д.Ф. Хитин, Э.А. Щеглов. - Уфа,: Изд-во УГНТУ, 1995.-30с

9. Чернилевский Д.В. Курсовое проектирование деталей машин и механизмов: Учебное пособие. - М.: Высшая школа, 1980. - 238 с.


Подобные документы

  • Определение передаточного числа привода, основных параметров валов. Расчет зубчатой передачи. Предварительный выбор угла наклона зубьев. Проектировочный расчет на контактную выносливость. Эскизная компоновка редуктора. Расчет валов на прочность.

    курсовая работа [641,7 K], добавлен 27.01.2015

  • Определение требуемой мощности электродвигателя. Анализ габаритных и присоединительных размеров редуктора. Расчет частот вращения, мощностей, моментов на валах привода и открытой клиноременной передачи. Анализ эскиза упругой втулочно-пальцевой муфты.

    курсовая работа [2,0 M], добавлен 16.09.2017

  • Выбор электродвигателя и кинематический расчет привода. Определение параметров зубчатой и ременной передачи. Ориентировочный расчет валов редуктора. Вычисление размеров шестерен и колес, корпуса и крышки. Подбор шпонок. Подбор и проверка подшипников.

    курсовая работа [1,6 M], добавлен 08.04.2019

  • Расчёт общего и частных передаточных отношений редуктора. Расчёт частот вращения, мощностей и вращающих моментов на валах. Проектирование червячной передачи. Расчет цилиндрических передач. Конструирование зубчатых колес и эскизная компоновка редуктора.

    курсовая работа [264,2 K], добавлен 03.04.2010

  • Выбор материала и определение допускаемых напряжений. Расчет тихоходной передачи. Эскизная компоновка редуктора и определение компоновочных размеров. Расчет и подбор шпоночных соединений. Ведомости посадок сопряженных размеров. Система смазки редуктора.

    курсовая работа [925,1 K], добавлен 30.08.2010

  • Определение вращающих моментов на валах привода двухступенчатого цилиндрического редуктора, передаточных чисел ступеней редуктора. Расчет тихоходной и быстроходной цилиндрических передач. Определение реакций в опорах валов и изгибающих моментов.

    курсовая работа [369,8 K], добавлен 14.02.2013

  • Основные геометрические параметры и размеры конической передачи. Усилия, действующие в зацеплении цилиндрической передачи. Расчет и проектирование корпуса редуктора. Определение вращающих моментов на валах привода. Выбор и проверка подшипников и шпонок.

    курсовая работа [318,4 K], добавлен 23.05.2013

  • Кинетический расчет привода. Расчет прямозубой цилиндрической передачи. Проверка передачи на контактную выносливость. Определение геометрических размеров колеса и шестерни. Выбор способа установки подшипников. Компоновка и разработка чертежа редуктора.

    курсовая работа [1,1 M], добавлен 22.09.2010

  • Назначение, характеристики, область применения червячного редуктора: кинематический расчет привода; проектный расчёт валов, корпуса, подшипников, шпоночных соединений; эскизная компоновка; определение эквивалентного момента, выбор типоразмера редуктора.

    курсовая работа [726,5 K], добавлен 05.07.2011

  • Определение исходных данных для расчета привода. Расчет цилиндрических и цепных передач. Эскизная компоновка редуктора. Проектный расчет вала и шпоночного соединения. Выбор подшипников качения и расчет их долговечности. Конструирование корпуса редуктора.

    курсовая работа [605,3 K], добавлен 17.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.