Процесс обработки корпуса конического редуктора

Разработка и проектирование агрегатного станка, подрезного расточного блока, специальных приспособлений для обработки корпуса конического редуктора и контроля перпендикулярности базовых отверстий с целью уменьшения погрешности обработки деталей.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 12.05.2010
Размер файла 848,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Суммарное значение пространственных отклонений для заготовки данного типа определяется по формуле:

p3 = vpкор2 +pсм2;

где pкор - удельное коробление отливок

pсм - суммарное смещение отверстия

где p кор = v(?к·d)2 + (?к·l)2 = v(0,7 ·150)2 + (0,7 · 28)2 = 107 мкм

Удельная коробление отливок находим по (11, табл. 4.8.), где d и l - диаметр и длина обрабатываемого отверстия.

При определении см в нашем случае следует принимать во внимание точность расположения базовых поверхностей, используемых при данной схеме установки и полученных на предыдущей операции, относительно обрабатываемой данной установки поверхности.

Допуск на размер 92 для отливки I класса точности (11, табл. 2.4.) составляет 400 мкм. При однократном фрезеровании возможно получение 11 квалитету с допуском 0,16 мм,

Следовательно

=(0,4 +0,16) / 2 = 0,28.

Учитывая, что суммарное смещение отверстия в отливке относительно наружной ее поверхности представляет геометрическую сумму в двух взаимно перпендикулярных плоскостях, получаем

см = v(400/2)2 + (400/2)2 = 284 мкм.

В числителе указаны допуски на размеры двух взаимно перпендикулярных плоскостей. (11, стр. 28, табл. 2.4.)

Суммарное значение пространственного отклонения заготовки

3 = 2842 + 1072 = 303 мкм

Остаточное пространственное отклонение после чернового растачивания:

1 = 0,05 3 = 0,05 303 = 15 мкм.

Погрешность установки при черновом растачивании

Е1 = Еб2 + Е32.

Погрешность закрепления заготовки

(11, стр. 81, табл.4.3.) принимаем равной 140 мкм. Тогда погрешность установки при черновом растачивании:

Е1 = 1402 = 140 мкм.

Остаточная погрешность установки при чистовом растачивании:

Е2 = 0,05 Е1 + Еинд 7 мкм.

Так как черновое и чистовое растачивание производится в одной установке, то Еинд = 0.

На основании записанных в таблице данных производим расчет минимальных значений межоперационных припусков, пользуясь основной формулой:

2 Zmin1 = 2(Rzi-1 + Ti-1 + i-1 2 + Ei2)

Минимальный припуск под растачивание черновое:

2 Zmin1 = 2(600 + 3032 +1402) = 2 934 мкм.

чистовое:

2 Zmin2 = 2(50 + 152 + 72) = 2 66 мкм.

Заполним таблицу.

Имея чертежный размер: 150,063 для остальных переходов получаем:

для чернового растачивания: dp1 = 150,063 - 0,132 = 149,931 мм

Представим таблицу 4.6.1

Для заготовки dp3 = 149,931 - 1,87 = 148,061 мм.

Для чистового растачивания наибольший предельный размер - 150,063 мм; наименьший - 150,063 - 0,063 = 150,000 мм.

Для чернового растачивания наибольший

Табл. 4.1 Расчет припусков и предельных размеров по технологическим переходам на обработку отверстий корпуса O150Н8.

предельный размер - 148,061 мм,

наименьший - 148,061 - 0,4 = 147,661 мм.

Для чистового растачивания:

2Zmin2 пр = 150,063 - 149,931 = 0,132 = 132 мкм

2Zmax2 пр = 150 - 149,771 = 0,229 = 229 мкм

Для чернового растачивания:

2Zmin1 пр = 149,931 - 148,061 = 1,78 мм = 1870 мкм

2Zmax1 пр = 149,771 - 147, 661 = 2,11 мм = 2110 мкм.

Общие припуски:

2Z0min = 132 + 1870 = 2002 мкм

2Z0max = 229 + 2110 = 2339 мкм

Рисунок 4.5 Схема расчётов припусков.

Общий номинальный припуск:

Zоном = 2002 + 200 - 60 = 2142 мкм

d2ном = dДном - Zоном = 150 - 2,14 = 147,86 мм

Проверка:

Zmax2 пр - Zmin2 пр = 229 - 132 = 97 мкм;

б1 - б2 = 160 - 63 = 97 мкм

Zmax1пр - Zmin1пр = 2110 - 1870 = 240 мкм;

б3 - б1 = 400 - 160 = 240 мкм

4.7 Оформление технологической документации

4.7.1 Структура и содержание операций

Разработанный технологический процесс состоит из следующих операций:

005 - фрезерная. На данной операции производится фрезерование поверхности 6.

010 - агрегатная. Производится расточка отверстий 8,12 предварительно, точение фасок 9,13; подрезание торцов 1 и 5 предварительно.

Рабочий стол агрегатного станка поворачивается на 90? и производится расточка отверстия 10 предварительно, точение фаски 11 и подрезания торца 7 предварительно.

015 - фрезерная. Производится обработка поверхностей 2,4,19,20 на вертикально - фрезерном станке набором фрез.

020 - агрегатная. Выполняется на агрегатно - расточном станке. Производится расточка отверстий 8,12 окончательно, подрезание торцов 1 и 5 окончательно, расточка отверстий 10 окончательно, подрезание торца 7 окончательно.

025 - агрегатная. Выполняется на агрегатно - сверлильном станке. Производится сверление отверстий 17 и 16, нарезание в них резьбы; сверление и зенковка отверстий 15 и нарезание в них метрической резьбы.

030 - агрегатная. Выполняется на агрегатно - сверлильном станке. Производится сверление и зенковка отверстий 4 и отверстия 14 и нарезание резьбы в них.

035 - агрегатная. Выполняется на агрегатно - сверлильном станке. Производится сверление отверстий 3 и отверстий 21.

В условиях массового производства применяются агрегатные станки.

Проектируем горизонтальные двухсторонние агрегатные станки с поворотно - делительным столом. Категория ремонтной сложности рассчитывается по формуле (11, стр.56):

Р = US ± m,

где S - ориентировочная стоимость агрегатного станка;

U, m - коэффициенты, зависящие от компоновки станка и количества нормализованных узлов в компоновке. При количестве нормализованных (унифицированных) узлов более 1:

U = 1,2; m = 1,6.

P= 1,2 · 28,6 +1,6 = 35,92.

Компоновка агрегатного станка приведена в графической части дипломного проекта.

4.7.2 Режимы резания

Операция 005 - фрезерная.

Оборудование - продольно - фрезерный станок 6P12. Мощность 7,5 кВт. Глубина резания t = 2,1 мм. Выбираем торцевую фрезу. Ширина фрезерования В=124 мм. Диаметр фрезы: D=(1,25 1,5) D=1,35·124 =160 мм.

Подача: выбираем по (12, стр. 283, табл. 33), S2 = 0,25 мм - подача на один зуб.

На данной операции используется станок 6P12:

nmax= 1000 мин??, nmin= 63 мин??

m = 16 (11, стр. 190, табл. 4.36).

Находим n прип;

m-1 = nmax/nmin;

m-1 = 15; 15 = 1000 / 63 = 15,9

По табл. 13(11) находим 15 = 15,9, что соответствует

= 1,26.

х = n расч. / n min = 400 / 63 = 6,3

В графе таблицы, соответствующей = 1,26 находим ближайшее меньшее значение

х = 10,08.

Тогда n прип = 63 · 10,08 = 635,04 мин??.

Рассчитаем скорость резания:

Окружная скорость фрезы

V=[(CvDg ) / (TmtxS2yBuZp)] Kv

Значения коэффициента Cv в табл. 39 (12)

V=[(445·160 0,2)/(1800,32·2,10,15·0,250,35·1240,2·400)]·0,71=91,8 м/мин.

Kv = KMV · KNV · KUV = (190 / 190)1,25 · 0,85 · 0,83 = 0,71.

Сила резания:

Окружная сила

P2 = [(10 · Cp· tx · Szx · Bn· Z ) / (D? · n w )] · KMp

где, Z - число зубьев фрезы;

n - частота вращения фрезы, мин??.

P2 = (10 · 54,5 · 2,10,9 · 0,250,74 · 1241,1 · 40)/(1601,1 · 6350,1) = 6037,9 Н

010 - агрегатная.

Расчет режимов резания для обработки деталей на агрегатных станках рекомендуется производить по справочнику Бороновского Ю. В.

Определение длины рабочего хода L р.х.

L = Lрез + у + L доп. (19, стр.14, табл. Т-1)

где, Lрез - длина обрабатываемого отверстия.

у - подвод врезание и перебег инструмента,

Lдоп - дополнительная длина хода.

L = 28 + 1 + 5 = 34 мм.

Принимаем длину рабочего хода L р.х. = 36 мм.(20, стр. 76, табл. 12).

Назначаем подачи суппорта на оборот шпинделя So в мм/об (19, стр. 22 - 25, карта Т-2):

So = 0,4 мм / об.

Определим стойкость для предположительно лимитирующих инструментов Тр, мин:

Тр = 100 ·? , (19, стр. 26 - 27, картаТ-3).

где ? - коэффициент времени резания;

? = Lрез / So = 14 / 0,4 = 35

Тр = 100 · 35 = 3500 мин.

Определим скорость резания V, м/мин.

V = Vтабл. · K1 · K2 · K3 (19, стр. 15)

V = 125 · 0,8 · 1,15 · 1 = 117 м/мин.

Определим число оборотов шпинделя станка:

n = 1000 ·V/·d;

где V-cскорость резания, м/мин.

d - диаметр обработки.

n = 1000 ·117/3,14·150 = 186,8 мин??.

Определим силу резания Pz (19, стр. 16).

Pz = Pzтабл. · к1 · к2;

Pz = 250 · 0,6 · 0,9 = 135 кГ.

Определим мощность резания:

Nрез= Pz · V / 61200;

Nрез= 135 · 115 / 61200 = 0,254 кВт

015 - фрезерная.

Оборудование: вертикально - фрезерный станок 6Р10.

Инструмент: дисковая трехсторонняя фреза ГОСТ 3755-88 - 4 шт.

Рассчитаем длину рабочего хода Lp.x. и среднюю ширину фрезерования bcp:

Lp.x= Lрез.+ y + Lдоп.

Где: Lрез - длина обрабатываемого отверстия.

у - подвод врезание и перебег инструмента,

Lдоп - дополнительная длина хода.

Lp.x= 38 + 3 + 5 = 46 мм.

bcp=F / Lрез

Где F - площадь фрезерной поверхности;

bcp=4500 / 38 = 118 мм

Принимаем глубину резания, пользуясь рекомендациями, равной 2,5 мм.

Определим рекомендуемую подачу на зуб фрезы Sz =0,25 мм/зуб (19).

Определим стоимость каждого инструмента в минутах резания

Тр= Кф · (Тм1 + Тм2 + Тм3 + Тм4) · ?;

Где Тм1…Тм4 - стойкость инструментов наладки;

? - коэффициент времени резания каждого инструмента;

?= Lрез / Lp.x ; ?= 38 / 46 = 0,83;

Тр= 0,7 · (300 + 300 + 300 + 300) · 0,83=697,2 мин.

Определим скорость резания V в м/мин

V = 110 м/мин (19).

Рассчитаем число оборотов шпинделя:

n = (1000 ·110) / (3,14 · 150) = 233,5 мин??

Назначим число оборотов шпинделя станка по паспорту, исходя из рассчитанных чисел оборотов.

n = 242 об/мин.

Операция 020 - агрегатная.

Механическая обработка производится на агрегатно - расточном станке.

Назначаем глубину резания t = 0,4 0,5 мм.

Подача S = 0,06 0,07 мм/об (12, стр. 268, табл. 14)

Определим скорость резания, м/мин:

V = [Cv / Tm · tx · Sx]·Kv; (12, стр. 270, табл. 17).

V=[243 / (600,2 · 0,40,15 · 0,060,4)] · 0,85 = 321,9 м / мин.

Kv=(190 / 190)1,25 · 0,85 · 1,0 = 0,85

Принимаем скорость резания V = 150 м/мин, так как на операции производится чистовое растачивание (12, стр. 271, табл. 19).

Определим частоту вращения расточной головки:

n = 1000 ·V/·d = 1000 ·150 /3,14·150 = 318,5 об/мин.

Сила резания:

Pz = 10 ·Cp· tx · Szx · Vn· kp

Pz =10 ·92· 0,41 · 0,060,75 · 1500 · 0,48 = 21,4 Н

где - kp = (190 / 750)0,75 · 1,08 · 1,0 ·1,0 = 0,48.

Pz = 10 ·Cp· tx · Szx · Vn· kp=10 ·54· 0,40,9 · 0,060,75 · 1500 · 0,8 = 22,9 Н

Pz = 10 ·Cp· tx · Szx · Vn· kp=10 ·48· 0,41 · 0,060,4 · 1500 · 0,78 = 46,4 Н

Определим мощность резания:

Nрез= Pz·V/ 1020·60= 21,4·150/ 1020·60=0,05 кВт.

Операция 025 - сверление.

Определим глубину резания:

t = 0,5 ·D

t = 0,5 · 8,4 = 4,2 мм

Подачу принимаем по (12, стр. 277, табл. 25).

S=0,24 0,31

Скорость резания:

V= CV ·Dq / Tm · Sy · kV, (12, стр. 278, табл. 28)

V= 14,7 ·8,40,25 / 350,125 · 0,240,55 · 0,8 = 28,1 м/мин

Стойкость режущего инструмента принимаем равной Т=35 мин (12, стр. 279, табл. 30).

Коэффициент kv определим по следующей формуле:

kv= kMV · kUV · kLV= (190/190)1,3 · 0,8 · 1,0 = 0,8

Чистота вращения n, об/мин.:

n = 1000 ·V/·d = 1000 ·28,1 /3,14·8,4 = 1065,4 мин??

Крутящий момент Н·м и осевая сила, Н:

Мкр=10·СМ·Dд ·Sх·Кр= 10·0,021·8,42,0·0,240,8·0,95 = 4,5 Н·м

(12, стр. 281, табл.32)

Pо = 10 ·Ср ·Dд ·Sх·Кр = 10 · 42,7 · 8,41 · 0,240,8 · 0,83 = 950,5 Н.

При резьбонарезании нормативы принимаем по /19/:

t = 0,75 мм; S = 1,5 мм/об; n = 180; V = 56 м/мин

Определяем мощность резания, Nрез, кВm:

Nрез = Мкр · n / 97400 = 120 · 180 / 97400 = 0,22 кВm:

Нормативы режимов резания принимаем по /12/ и /19/ и уточняем с паспортными данными унифицированных узлов агрегатных станков: силовых головок, силовых столов.

4.7.3 Техническое нормирование

Рассчитаем норму штучного времени для операции 005 - фрезерная. Производится фрезерование плоскости торцевой фрезой на вертикально - фрезерном станке с длиной стола 1250 мм. Масса детали - 15,3 кг. Производство массовое, размер партии 90000 штук. Деталь устанавливается в центрах. Основное время - 1,53 мин.

Определяем состав подготовительно - заключительного времени: установка центров и приспособления - 14 мин, установка фрезы - 2 мин, получение инструмента и приспособлений до начала работы и сдача их после завершения работ.

/11, прил. 5/ - 7 мин.

ТП.З. = 14+ 2 + 7 = 23 мин.

Время на установку и снятие детали, закрепление ее и открепление. /11, прил. 5/

ТУ.С. + ТЗ.О. = 0,136 мин.

Время на приемы управления /11, прил. 5/: включить и выключить станок кнопкой - 0,01 мин, подвести деталь к фрезе в продольном направлении - 0,03 мин, переместить стол в обратном (продольном) направлении на 300 мм - 0,11 мин.

Тогда

ТУ.П. = 0,01 + 0,03 +0,11 = 0,15 мин.

Время, затраченное на измерение /11, прил. 5/ детали, равно 0,15 мин /табл. 4.21, 11/.

Получим

ТИ.З. = (0,15 · 80) / 100 = 0,12 мин

Поправочный коэффициент на вспомогательное время при массовом производстве k = 1,5 /11, стр. 101/:

Вспомогательное время:

ТВ = (0,136 + 0,15 + 0,12) · 1,5 = 0,609 мин.

Оперативное время:

Т оп = 1,53 + 0,609 = 2,14 мин.

Время на обслуживание рабочего места и отдых /11, прил. 5/ составляет 6% оперативного времени, тогда:

Тоб.от. = (2,14 · 6) / 100 = 0,13 мин.

Штучное время:

Тшт = 23/90000+1,53+(0,136+0,15+0,12) · 1,5 + 0,13 = 2,27 мин.

Операция 010 - агрегатная.

Определим машинное время на данной технологической операции:

tм = (Lр.х.) / (Sо · n);

где, Lр.х - длина рабочего хода (берется по максимуму), Sо - подача; n - частота вращения инструмента

tм = 34 / (0,4 · 187,1) = 0,45 мин;

Штучное время:

Тшт = То + Тв + Тоб + Тот = 0,45 + 0,63 + 0,33 + 0,29 = 1,70 мин.

где, Тв = Ту.с. + Тз.о + Ту.п. + Ти.з. /11, прил. 5/.

Т в = 0,13 + 0,024 + 0,01 + 0,13 + 0,024 + 0,13 + 0,18 = 0,63 мин.

Т об. = Т техн. + Т орг. = 0,15 + 0,18 = 0,33 мин.

Т от. = 0,29 мин.

Операция 015 - фрезерная.

Основное технологическое время:

То = Lр.х./Sм;

где Lр.х.- длина рабочего хода;

То = 46/132 = 0,99 мин.

Где Sм - минутная подача, Sм = П·d расчет:

nст = 3,14 · 0,175 · 242 = 132 мин об/мм.

Т шт = То + Тв об + Тот;

Т шт = 0,99 + 0,512 + 0,025 + 0,12 = 1,65 мин;

Тв = Ту.с.+Тз.оу.п.+Т и.з.

Тв=0,168+0,024+0,01+0,04+0,07+0,04+0,07+0,15=0,512 мин

На техническое обслуживание рабочего места (11, прил. 6)

Ттех.= Тоtсм/ Т= (0,99 · 3) / 697,2 = 0,004 мин

Тоб.= Ттех.орг.= 0,004 + 0,021= 0,025 мин

Операция 020- агрегатная.

Основное технологическое время:

То(м)= Lр.х./Sо · n = 34 / (0,09 · 319) = 1,18 мин

Штучное время:

Тштовобот., Тшт = 1,18 +0,63 +0,33 +0,29 =2,43 мин

Операция 025 - агрегатно-сверлильная.

Основное технологическое время:

То(м) = Lр.х./ n Sо = 40 / (1065,4· 0,24) = 0,16 мин.

Штучное время на данной технологической операции:

Тшт = Товоб от;

Тшт = 0,16+0,63+0,33+0,29+0,38 = 1,85 мин.

Операция 030 - резьбонарезная агрегатная

Основное технологическое время:

То =2 Lр.х. /Sn;

То= 2 · 20/1,18 · 180 = 0,18 мин.

Штучное технологическое время, затрачивамое на данной операции.

Тштов обот;

Тшт = 0,18 +0,63 +0,33 +0,29 +0,38 = 1,85 мин.

Операция 035 - агрегатно - резьбонарезная.

Основное технологическое время:

То(м) = (Z·Lр.х) / (S · n ) = (2 · 40) / (1 · 280) = 0,28 мин;

Штучное время, затрачиваемое на данной технологической операции:

Тшто + Тв + Тоб + Тот;

Тшт = 0,28 + 0,63 + 0,33 + 0,29 + 0,54 =2,07 мин.

5. Специальные средства технологического оснащения

5.1 Проектирование агрегатного станка сверлильно - расточной группы

В настоящем дипломном проекте в качестве металлорежущего оборудования на 010 операции технологического процесса обработки корпуса конического редуктора применен агрегатный станок. Агрегатный станок создается из нормализированных узлов (агрегатов), которые скомплектованы соответственно характеру обрабатываемой детали.

Основные особенности принципа агрегатирования и создания на основе станков из нормализированных узлов следующие: исходные положения принципа агрегатирования металлорежущих станков заключается в заблаговременной разработке конструкции, изготовлении и тщательной обработке опытных образцов отдельных агрегатов - нормализированных узлов.

К нормализированным узлам агрегатных станков предъявляются следующие требования:

нормализированные узлы должны являться законченными механизмами;

конструкция узлов должна удовлетворять требованиям разнообразных по назначению станков;

монтаж этих узлов должен быть возможным при компоновке их в различных положениях с минимальным количеством стыков;

независимо от конструктивного оформления и принципа работы нормализированные узлы должны быть регламентированы по типам, размерному ряду и присоединительным размерам.

Основными достоинствами агрегатных станков являются высокая производительность обработки деталей, низкая себестоимость изготовления, сравнительно невысокая квалификация операторов, работающих на этих станках, высокая надежность и ремонтопригодность.

Агрегатирование металлорежущего оборудования обеспечивает:

сокращение сроков, стоимости проектирования и изготовления станков;

гибкость станков - возможность их переналадки применительно к изменению конструкции обрабатываемой детали, увеличению концентрации операций;

расширение границ использования оборудования по сравнению с теми масштабами производства, в которых ранее было целесообразно и рентабельно применять специальные станки;

значительное увеличение надежности работы станков за счет возможности тщательной обработки конструкции элементов.

Требуется спроектировать агрегатный станок для обработки корпусной детали (чертеж корпусной детали представлен в графической части дипломного проекта). Производительность агрегатного станка.

Qn = 1 / (tм +tв) дет/ч (21, стр.257);

Q = 1 / 0,028 = 35,29 дет/ч - производительность принципиальная.

Коэффициент загрузки станка 64,6%.

Заготовкой для детали служит отливка I класса точности с твердостью поверхности НВ=190.

Масса заготовки, поступающей на агрегатный станок, равна 20,3 кг.

По геометрической форме деталь относится к классу коробчатых деталей. В детали необходимо обработать три главных отверстия диаметром соответственно O 149,2Н10(+0,16 ) и O 79,2Н10 (+0,14 ). Необходимо также подрезать торцы трех главных отверстий; отверстия диаметром 13 мм на длине 20 мм в количестве 4 шт. деталь вполне технологична с точки зрения ее обработки на агрегатном станке, имеет удобную для установки и закрепления форму поверхности, расположение обрабатываемых поверхностей.

Требования точности поверхностей и их расположение позволяет обработать их на агрегатном станке нормальной точности.

Исходя из размеров обрабатываемых поверхностей, припусков на обработку и размеров самих заготовок выбираем в качестве силовых агрегатов проектируемого станка электромеханическую силовую головку 1УХ4035 с кулачковым приводом подачи, технические характеристики которой приведены (21, стр. 67)

Характер обрабатываемых поверностей ( их форма, расположение и требование качества) требует многопереходной обработки, поэтому станок должен быть многопозиционным, что может быть обеспечено применением поворотного электромеханического стола 1УХ 2064 (21, стр. 154, табл. 33) с мальтийским приводом поворота.

Исходя из такого набора унифицированных узлов можно сделать вывод, что станок будет среднего размера.

В детали, типа корпуса конического редуктора, необходимо выполнить ряд технологических переходов: черновое растачивание трех главных отверстий диаметром O149,2Н10(+0,16) на длине 14 мм и O79,8Н10(+0,14) на длине 28 мм; подрезание торцов; сверление четырех отверстий O13Н14 на длине 20 мм.

Целесообразна обработка деталей в приспособлении с применением шпиндельной коробки.

Основные положения теории базирования приведены в ГОСТ 21495 - 76, устанавливающих термины и определения в этой области. В соответствии с теорией базирования для обработки поверхностей детали с заданной точностью заготовка ориентируется в системе координат станка, т.е. должны быть определены все шесть ее координат как твердого тела: деталь должна быть лишена шести степеней свободы - трех перемещений вдоль координатных осей и поворота вокруг них. Схема базирования, специальное приспособление, сконструированные в дипломном проекте представлены ниже.

При разработке предварительной схемы обработки детали производим группирование намеченных технологических переходов, т.е. их распределение по инструментальным шпинделям, силовым агрегатам, рабочим позициям, установление очередности их выполнения и тем самым определение предварительного варианта технологической компановки станка. Три различных технологических перехода сгруппированы в 3 группы инструментов и распределены по трем силовым анрегатам. Деталь обрабатывается в двух рабочих позициях. На этих позициях производится одновременная обработка (растачивание) главных отверстий с одновременным сверлением отверстий, после двухпозиционный стол поворачивается на 90? и производится обработка перпедикулярно расположенного отверстия.

Приведем схему компоновки агрегатного станка.

Рисунок 5.1 Схема компоновки агрегатного станка

Окончательный выбор силовой бабки осуществляется по мощности электродвигателя, соответствующему Nру, числу оборотов выходного вала принятому ближайшему nпр инструментальных шпинделей, с учетом минимальной цены комплекта.

Выбор силового стола привода подачи производится по наибольшему усилию подачи стола, соответствующему Рх, диапазону рабочих подач, соответствующему Sм пр, с учетом минимальной цены комплекта.

На станке (представлен в графической части) не имеется специальной загрузочной позиции, т.е. время установки и снятия детали не перекрывается. Силовые головки расположены на одной оси обрабатываемой детали и оснащены по конструкции одинаковым режущим инструментом. Обработка деталей осуществляется в специальном приспособлении, сконструированном для данного станка.

При отводе головок в исходное положение инструмент поддерживается специальной плитой, прикрепленной скалками к шпиндельной коробке. Указанная плита играет роль кондукторной для спиральных сверл, которые обрабатывают технологические отверстия деталей.

Основным базирующим узлом при сборке агрегатного станка является

станина, которая представляет собой отливку. Механической обработке у станины подвергаются опорные плоскости под силовые агрегаты и горловина, на которой устанавливают поворотный делительный стол. Стол располагают прямо на горловине или подкладке, выставляют на станине, и по их отверстиям производят разметку под крепеж к обработке резьбовых отверстий. Затем стол устанавливают окончательно, закрепляют винтами и фиксируют коническими штифтами. На этом же этапе на станке закрепляют узел подготовки воздуха, собираемый из стандартной аппаратуры и переключатель воздуха.

Следующим этапом монтажа является расположение на станине станка силовых агрегатов. Навесные приспособления устанавливают на скалки державки, которую крепят на передний торец силовой головки. Скалки выставляют относительно основания силовой головки, закрепляют винтами и фиксируют штифтами, после чего на скалках производят разметку отверстий под крепеж насадок и обработку их.

При установке силового агрегата на станину для получения необходимого по высоте размера применяют подкладки. Для получения размера с необходимой точностью в размерную цепь вводят компенсатор, который рассчитывается после установки головки на подкладку.

Приспособление устанавливают на планшайбе стола на два установочных пальца и крепят к планшайбе двумя винтами. После чего производят разводку трубок для подвода сжатого воздуха от переключателя к пневмокамере приспособления. Установку на станине унифицированных узлов производят согласно чертежу, затем выполняют разметку отверстий, обработку их и окончательное закрепление узлов. Для поворотного стола в станину устанавливается привод, состоящий из электродвигателя и редуктора. Для компенсации погрешности установки и расширения возможностей расположения редуктора в кинематическую цепь привода поворота планшайбы стола включаются шарнир Гука.

5.2 Расчёт и конструирование специального приспособления

5.2.1 Техническое задание

Операционный эскиз предварительной расточной операции представлен в графической части дипломного проекта. Предшествующая операция 005 - фрезерная.

На операции 010 - агрегатной, применяется агрегатный станок сверлильно - расточной группы. На операции 005 - фрезерная, применяется вертикально - фрезерный станок 6Р12. В качестве инструмента используется торцевая фреза. Сконструированное приспособление применяется для расточки отверстий 150Н10 и 80Н7.

Цель и назначение разработки.

Проектируемое приспособление должно обеспечивать: точную установку и надежное закрепление заготовки корпуса конического редуктора, а также постоянное во времени положение заготовки относительно стола станка и режущего инструмента, с целью необходимой точности размеров отверстий и их положения относительно других поверхностей заготовки; удобство установки, закрепления и снятия заготовки; время установки заготовки не должно превышать 0,05 мин; рост производительности труда (ожидаемый) 10…15 %.

5.2.2 Выбор и обоснование схемы приспособления

Рисунок 5.2 Схема для расчёта сил закрепления

Вводя коэффициент запаса k, получим силу закрепления по условию приложенных моментов.

Q = (k · Pz ·l) / L;

где Pz -сила, возникающая при расточке отверстия, L и l -длины (см. чертёж).

Определим коэффициент k. Этот коэффициент необходим для обеспечения надёжности зажимных устройств, так как вырыв или смещение заготовки при работе недопустимо.

k = k0·k1·k2·k3·k4·k5·k6.

k = 1.7 ·1.2 ·1.0 ·1.2· 1.0 · 1.0 ·1.0= 2.45

k2 (15, стр. 84, таблица 12).

Pz= 10·Сp ·tx ·Sx ·Vn ·Kp (12, стр.271).

Pz= 10·300·1.51.0·0.50.75·90-0.15·0.38=518 Н

Kp= Kmp· Kp·Kp·Krp;

Kp = (190/750)0,75 · 0,94 ·1,1 · 1,0 ·1,04 = 0,38.

Опрделим Q.

Q = (2,45 · 518 · 0,35) / 0,055 = 8076 Н.

Определим силу на штоке пневмокамеры:

Составим уравнение равновесия:

Рисунок 5.3 Действие сил в рычажном механизме

N · L1 = N · F 1 · L1 + Q · L2 + Q · F2 · L2 + S ·;

S = (Q + N) · 1/ cos .

Подставим S в уравнение равновесия:

N=Q · (L2+ F1 · L1 + / cos ) / (L1- F2 · L2 - / cos );

= f ·r;

f = 0,19

По ГОСТ 12475-67 (16, стр. 158) выбираем рычаг угловой двух пазовый.

Н = 62?120;

L= 55?100;

Изготовляется из стали 40х, HRC 35…40.

Также выбираем три вильчатых рычага по ГОСТ 12476-71; А= 40? 160; В= 20 ?50; L=56 ? 200.

Изготовляется из стали 45, HRC 35…40.

L2 = 55 мм;

L2 = 7 мм;

r = 3 мм;

L1 = 28 мм;

L1 = 10 мм;

r = 3 мм.

Определим N:

N=8076·(0,055+0,22·0,007+0,0006/0,96)/(0,028+0,22·0,010-0,0006/0,96) =15036 Н

Так как рычажные зажимы осуществляют одновременное и равномерное закрепление заготовки в двух местах, то на каждом

N = 15036 /2.

Принимаем давление воздуха в пневмосети р = 0,4 МПа и КПД привода =0,85. Определим диаметр пневмокамеры.

Dk = 4· p / · · ;

D= 2 · 15036 · 10-6 / 3,14 · 0,4 · 0,85 = 120 мм.

Принимаем диаметр пневмокамеры 115 мм.

Материал - резина.

Усилие на штоке, в исходном положении - 1730 кГс; при ходе штока, равном 0,220 = 1550 кГс; допустимый ход штока -55 мм; рабочий ход штока-12мм.

5.2.3 Расчёт станочного приспособления на точность

Определим необходимую точность приспособления для обеспечения смещения оси симметрии главного отверстия корпуса, относительно оси её наружной цилиндрической поверхности (см. рис 5.2.3.1) не более 0,2 мм.

Рисунок 5.4

1. Погрешность не совмещения баз поданному параметру н.б.=0;

2. Погрешность закрепления заготовки 3=0, так как сила зажима действует перпендикулярно выдерживаемому параметру.

3. Погрешность установки у.= н.б.+ 3 = 0 + 0 = 0.

4. Суммарная погрешность обработки 2 = К · т.с.;

где К - поправочный коэффициент К = 0,5

т.с. - погрешность технологической системы (13,стр. 20 табл. 9) .

т.с= 0,5 · 0,26 = 0,13 мм.

5. Допустимая погрешность установки:

[у.] = Те2 - К2 · т.с2,

где Те- допуск выдерживаемого параметра.

[у.] = 0,22 - 0,52 · 0,262 = 0,15 мм.

Следовательно у. [у.], предлагаемая схема базирования допустима.

6. Суммарная погрешность изготовления

пр.= Т - у.2 + К·т.с2= 0,2 - 02 + 0,52 + 0,262 = 0,07

7. Допуск на расчётный размер собранного приспособления

Тс = пр.- (Еуп. + Е3 + Еn);

где- Еуп. - погрешность установки приспособления на станке;

Еуп. = L1S1 / L2;

где L1 - длина обрабатываемой заготовки, мм;

S1 - максимальный зазор между направляющей шпонкой приспособления и пазом стола станка;

L2 - расстояние между шпонками, мм;

Е3 - погрешность, возникающая вследствие конструктивных зазоров, необходимых для посадки заготовки на установочные элементы приспособления.

Еn - погрешность смещения инструмента.

Еуп = 14 · 0,02 / 210 = 4,67 · 10-3 мм;

Тс = 0,07 - (4,67 · 10-3 + 0 + 0,03) = 0,035 мм.

При растачивании отверстия в заготовке обеспечить отклонение от параллельности оси заготовки относительно установки не более 0,15 / 300 мм/мм.

1. Погрешность несовмещения баз

н.б. = ТН (13, стр. 45, табл. 8)

н.б. = 0,15 мм.

2. Погрешность закрепления заготовки /11, стр. 82/

3 = 0,060 мм

3. Погрешность установки заготовки:

у = н.б. + 3 = 0,15 + 0,060 = 0,075 мм

4. Суммарная погрешность обработки.

s = К т.с. = 0,5 · 0,06 = 0,03 мм

5. Допустимая погрешность установки

[у] = Т2 - К2т.с. = 0,152 - 0,52 · 0,062 = 0,15 мм;

у < [у];

6. Суммарная погрешность приспособления:

пр = Т - у2 + К22т.с. = 0,152 - 0,752 + 0,032 = 0,069 мм;

7. Допуск на расчетный размер собранного приспособления:

Тс = пр - (у + 3 + п) = 0,069 - (0 + 0 + 0) = 0,069 мм.

5.3 Расчет и проектирование специального режущего инструмента

Проектирование специального режущего инструмента начинаем после тщательного анализа стандартных конструкций инструмента, на основе которого выявили его несоответствие заданным производительности и качеству обработанной поверхности.

Задание на проектирование специального режущего инструмента; блочная инструментальная оснастка с использованием резцов с напаянными и механическим креплением многогранных неперетачиваемых пластин.

На основе задания на проектирование разрабатываем подрезной расточной блок для обработки отверстия O 150Н8 корпуса конического редуктора. Сборочный чертёж специального режущего инструмента представлены в графической части дипломного проекта.

Блочная конструкция состоит из регулируемой фасонной оправки, оснащённой резцом - вставкой с микро метрическим регулированием вылета. Оправка состоит из корпуса 1, шпонки 2, которая предназначена для крепления резцедержателя 13. Штифт 8, посредством пружины 1 крепит и фиксирует резцедержатель. В резцедержатель устанавливается расточной резец 10 с напаянной твёрдосплавной пластиной. Резец выбираем стандартный - 2142-05-86 ВК8 ГОСТ 9795-84. Фиксирование резца в радиальном направлении происходит при помощи винта крепления 11 и винта 12.

Блок крепится в цанговом зажиме агрегатного станка. Хвостовик резца - цилиндрический со шпоночным соединением. Для точного подрезания торцов главного отверстия корпуса применяется регулировочная шайба 5, которая фиксируется после установки винтом 4. Вылет расточного резца регулируется при помощи гайки микрометрического регулирования 9. Для подрезания торцов применяется сборная твердосплавная фреза, выполненная однотелой с расточной оправкой.

Фреза отличается высокой эффективностью, так как обладает высокими прочностью и надежностью, не требует переточек.

Применяем точные пластины классов допусков А и F с целью минимального биения режущих кромок. В корпусе фрезы имеются пары с установленными державками 19, имеющими винты 21, которые предназначены для крепления резцов (многогранных неперетачиваемых пластин) 20. На кольце 15 со ступенчатыми отверстиями для зажимных винтов устанавливаем пружины 16, которые через шайбу 17 и винт 18 прижимают пластины 20 к опорным фаскам на кольцевой выточке корпуса. Форма кольцевой выточке соответствует форме трехгранных МНП. Окончательно пластины крепим винтом 18. Для замены и поворота пластин ослабляем винт 18 и, нажимая его, сдвигаем державку 19, обеспечивая свободный съем пластины.

Произведем расчет точности позиционирования и податливости инструментального блока. Точность обработки отверстия в значительной степени зависит от точности позиционирования и проявляется в биении вершины лезвия расточного инструмента и податливости инструментального блока. Допустимые величины биения и податливости инструментального блока принимаем (28, стр.305, табл. 4.3): Допустимое биение - 0,03 мм; допустимая податливость - 0,11 мкм/Н. Источником погрешностей позиционирования является относительное биение присоединительных поверхностей блока и переносы в соединениях из-за допусков на точность изготовления присоединительных поверхностей.

Угловые ошибки звеньев (переносы осей) и векторные ошибки (параллельное смещение осей, равное половине биения) элементов инструментального блока можно суммировать путем приведения переносов осей к векторному виду в плоскости замыкающего звена (биение режущей части) через передаточное отношение, которое учитывает фактическую длину элемента блока. Так, биение контрольной оправки длиной 100 мм в цилиндрическом соединении, выполненном по 5-му квалитету точности, составляет 3,2 мкм, значит биение инструмента с вылетом 245 мм, будет в 2,45 раза больше: 3,2 · 2б45 = 7,84 мм. Для блока передаточное отношение А = 245 / 100 = 2,45.

Погрешность позиционирования вершины лезвия инструмента (половину биения) при установке блока по формуле: (28, стр.307)

L? = 1 / K? v?1n (li · ki · Ai)?; где

L? - половина допуска биения режущей части как замыкающего звена;

K? - коэффициент относительного рассеяния замыкающего звена;

li, Ai - принятое за скалярную величину произведение векторной величины li на свое передаточное отношение;

ki - коэффициент относительного рассеяния размеров.

Рассчитаем величину K?:

K? = 1 + (0,55 / ?1 n · [v?1n · (li · ki)? - v?1n · li?];

Где ki и li определяем из (28, табл. 44 - 4.6)

Значение ki = 1,09. Способ получения поверхности - наружное шлифование в центрах. Поверхность цилиндрическая. Значение биения 2е инструмента по

IT5 - 2е = 3,2 мкм

K? = 1 + (0,55 / 4,96 · [v(4,96 ·1,09)?- v4,96?] = 0,4959

L? = 1 / 4959 v(4,96 · 1,09)?= 10,9022 мкм.

Угол поворота в цанговом зажиме Q/М=0,001 (кНм)-1. (28, стр.309, табл. 4.10)

5.4 Проектирование специальных средств технического контроля

В настоящем дипломном проекте разрабатываются приспособления для контролирования перпендикулярности осей двух главных отверстий корпуса конического редуктора, диаметрами O 150Н8.

Методы и средства контроля выбираем на стадии анализа и разработки технологических требований готовой детали по ГОСТ 14.306 - 73, которые приводились ниже.

Отклонения от перпендикулярности двух отверстий равно 50 мкм (см. графическую часть дипломного проекта). Для измерения данного отклонения выбираем индикатор рычажно-зубчатый с ценой деления 0,01 мм. (22, стр. 121) ГОСТ 5584-85, группа П11. Настоящий стандарт распространяется рычажно-зубчатые индикаторы с ценой деления 0,01 мм, у которых может, меняется положение измерительного рычага относительно корпуса.

Погрешность показаний индикатора при любом положении индикатора и измерительного рычага не превышает: (22, стр. 123).

0,005 мм - на любом участке шкалы в пределах 0,1 мм;

0,010 мм - на любом участке шкалы более 0,1 мм.

Под погрешностью показаний индикатора понимается сумма абсолютных величин наибольших (положительных и отрицательных) погрешностей, накопленных на участке при прямом и обратном ходе измерительного рычага.

Направление линии перпендикулярно к оси измерительного рычага в его среднем положении на участке измерения. Вариация показаний индикатора не превышает 0,003 мм.

В качестве основания, на которое устанавливается контролируемая деталь применили плиту по ГОСТ 20149 - 85, группы Г28. Размеры поверочной плиты 300х300 мм. Материал плиты - чугун серый, НВ=150?210.

В отверстиях контролируемой детали устанавливаем втулки 2, 5, 8 и оправку 1. На специальном поворотном маховике жестко устанавливаем измерительный прибор (индикатор рычажно - зубчатый). Маховик 4 устанавливаем таким образом, чтобы измерительный наконечник прибора касался поверхности оправки 1. Маховик 4 при помощи рукоятки 10 поворачиваем на 180?.Отклонение от перпендикулярности двух отверстий определяем как наибольшую алгебраическую разность показаний прибора на длине l =110мм.

6. Расчет, компоновка и планировка механического цеха

6.1 Расчет годовой трудоемкости и станкоемкости изготовления деталей

Годовую проектную трудоемкость изготовления рассчитываем по формуле:

Ст = 2,27 · 90.000 + 1,7 · 90.000 + 1,65 · 90.000 + 2,43 · 90.000 + 1,85 · 90.000 + 1,65 · 90.000 + 2,07 · 90.000 = 501.300 мин / шт.

Годовые затраты станко - г, на выполнение работ (фрезерных, агрегатных) при изготовлении деталей рассчитываем по формуле

Т ст. k = Т шт. h · Nг; где

Т шт. h - штучное время обработки детали на h-той операции;

Nг - годовая программа выпуска деталей.

Т ст.1 = 0,038 · 90000 = 3405 станко - г;

Т ст.2 = 0,028 · 90000 = 2550 станко - г;

Т ст.3 = 0,028 · 90000 = 2475 станко - г;

Т ст.4 = 0,041 · 90000 = 3645 станко - г;

Т ст.5 = 0,031 · 90000 = 2775 станко - г;

Т ст.6 = 0,035 · 90000 = 3105 станко - г;

Т ст.7 = 0,028 · 90000 = 2475 станко - г.

6.2 Определение состава и расчет площадей.ъ

Определяем предварительно состав производственных участков и отделений, вспомогательных служб, санитарно - бытовых помещений, помещений культурного обслуживания работающих и административно - конторских помещений.

6.3 Выбор типа зданий и компоновки механического цеха

Механический цех располагаем в одноэтажном промышленном здании. Промышленное здание компонуем из основных и дополнительных унифицированных типовых секций (УТС).

Пролет мостового крана Lк (м) и расстояние l от оси колонны до вертикальной оси кранового рельса, м:

L = Lк + 2·l; (1, стр. 395, формула 291).

9 = 8 + 2·l;

l = ? м;.

Размеры пролетов кранов в соответствии с шириной пролетов зданий выбираем (1, стр. 395, табл. 44).

Выбираем S = 100 мм; b = 700 мм;

9 ± 8 + 2(t + S + b) - для кранов до 15 т.

t = 500 - 700 - 100

t = 300 мм = 0,3 м.

При выборе ширины пролета здания и установления необходимых размеров между осями подкрановых путей надо иметь в виду, что при крайнем положении тележки крюк крана не доходит до оси подкранового рельса на некоторое расстояние l1 и l2 (1, стр. 394, рис. 136).

l1= 1300 мм - для кранов, грузоподъемностью до 15 т.

l2 = 1950 мм.

Общая высота здания Н от пола до нижней выступающей части верхнего перекрытия.

Н = Н1 + h, (1, стр. 397, формула 293).

где Н1 - расстояние от пола до головки подкранового рельса;

h - расстояние от головки рельса до нижней выступающей части верхнего перекрытия.

Н1 = k+z+e+f+c; (1, стр. 397, формула 294).

где k - высота наиболее высокого станка; размер принимаем 2,3 м.

z- промежуток между транспортируемым изделием. z = 0,5 1,0 м.

e - высота наибольшего по размеру изделия в положении транспортирования, м;

f- расстояние от верхней кромки наибольшего транспортируемого изделия до центра крюка крана, м, f = 0,5 1,6 м.

Н1 = 2,3 + 1 + 2,3 + 1 + 1,6 = 8,2 м.

h = А + m; (1, стр. 397, формула 295),

где А - высота электрического мостового крана.

А = 2,150 мм.

m - расстояние между верхней точкой крана и нижней точкой перекрытия;

m = 100 мм.

Н = 2150 + 100 = 2250 мм = 2,25 м.

Н = 8,2 + 2,25 = 10,45 м (1, стр. 399, табл. 45)

Принимаем высоту здания

Н = 10,8 м.

a = 9 / 5 = 1,8 м.

Административно - конторские и санитарно - бытовые помещения размещены в пристройках или во вставках производственных зданий, располагаемых в местах поперечных и продольных температурных швов.

Основные УТС (для продольных пролетов) принимаем 72х72 м?, дополнительные секции (для поперечных пролетов) - 24х72 м?.

Вспомогательные здания компонуем из УТС длиной 48 м и шириной 12м.

Компоновочный план промышленного здания определяем взаимным расположением пролетов, типом производства и видом технологического процесса. Склады заготовок и материалов и сборочный цех располагаем в продольных пролетах, механический цех - в поперечных.

Планировка механического цеха приведена в графической части дипломного проекта.

6.4 Технологическая планировка цеха

Технологическую планировку разрабатываем в соответствии с компоновочным планом. Исходя из принятой формы организации производства - поточный, производим соответственно расстановку технологического оборудования по ходу технологического процесса механической обработки корпуса конического редуктора. Основной принцип планировки - прямо точность движения заготовок. Транспортирующие устройства выбираем в зависимости от конфигурации, размеров и массы заготовки, что отвечает этим требованиям примечание транспортера с хромовыми собачками. (24, стр. 328).

При непосредственной передаче деталей с одной рабочей позиции на другую шаг транспортирования определяется по формуле:

Тmin = А + Б1 + Б2 + В; где (24, стр 328).

А - продольный размер детали;

Б1 и Б2 - расстояние от торцов деталей до наружных контуров шпиндельных коробок.

В - минимальное расстояние между соседними шпиндельными коробками;

Тmin = 152 + 50 + 50 + 600 = 952 мм;

Расстояние между механизмами принимаем (24, стр. 326, табл. 17.3).

Вычерчиваем темплеты станков, планируем оборудование и вычерчиваем технологическую планировку цеха (см. графическую часть)

7. Безопасность жизнедеятельности

Работа современного машиностроительного предприятия, его основного и вспомогательного оборудования, коммуникаций, очистных сооружений во многом зависит от правильности и своевременности действия персонала. При этом наша искусственная среда обитания - техносфера, включающая обычно, объекты, составляющие единую техническую систему и сильно влияющие друг на друга, сама нередко становится источником аварий, пожаров, взрывов и других опасностей.

Задачей охраны труда является - свести к минимальной вероятности поражение и заболевание работающего, с одновременным обеспечением наилучших условий труда, при максимальной его производительности.

Успешное решение задач по созданию безопасных и безвредных условий труда работающих на предприятиях машиностроения, зависит от широкого применения безопасных технологий, оборудования, а также средств защиты.

Улучшение условий труда, повышение его безопасности, влияют на результаты производства, производительность труда, качество и стоимость выпускаемой продукции.

При улучшении условий труда сокращаются случаи производственного травматизма, профессиональных заболеваний, уменьшаются затраты на оплату компенсации за работу в неблагоприятных условиях труда. Улучшение условий труда позволяет снизить текучесть персонала из-за воздействия вредных факторов, что дает экономию на переподготовке новых рабочих.

7.1 Общая характеристика проектируемого объекта с точки зрения безопасных и безвредных условий труда

Базовый (заводской) вариант технологического процесса обработки корпуса конического редуктора для зерноуборочных комбайнов имеет ряд недостатков, по сравнению с проектируемым технологическим процессом. Это, в первую очередь, большое число операций, выполняемых в заводском технологическом процессе.

Вследствие этого увеличивается объем производственных помещений, что приводит к увеличению мощности освещения, резко возрастают производственные вибрации, повышается общий уровень шума. Последнее приводит к утомляемости работников на основных видах оборудования в механическом цехе. Из-за большого числа металлообрабатывающего оборудования увеличивается общая опасная зона оборудования и производственного цеха. Это приводит к увеличению вероятности травматизма. Наличие большого числа органов управления и приборов (шкал, кнопок, рукояток, световых и звуковых сигналов) вызывает повышение утомляемости рабочих.

Во-вторых, в проектируемом технологическом процессе применена механизация работ и технологического процесса.

Механизация способствует ликвидации тяжелого физического труда, снижению травматизма. Особое значение с точки зрения охраны труда и безопасности жизнедеятельности имеет механизация подачи заготовок в рабочую зону при обработке.

В-третьих, проектируемый технологический процесс экономичней базового (заводского) технологического процесса. В связи с этим уменьшается количество загрязнений воздуха, воды и технологических отходов.

7.2 Объемно - планировочное решение здания проектируемого цеха

На основе выше приведенных расчетов размеры механического цеха:

высота помещения - 10400 мм;

длина помещения - 30.000 мм;

ширина помещения - 9.000 мм;

- площадь помещения - Sn= 270 м?

- объем помещения - Vn= 2808 м?.

Сопоставим с санитарными нормами СН 245-71, где указывается, что площадь производственного помещения, приходящаяся на одного работающего, должна быть не менее 4,5 м?, а объем 175,5 м?

Предприятие относится к V классу вида производства по СН 245-71.

7.3 Производственная санитария

7.3.1 Анализ и устранение потенциальных опасностей и вредностей технологического процесса

Пооперационно проанализируем технологический процесс и установим потенциальные опасности и вредности, которые могут возникнуть при его ведении.

005 - вертикально - фрезерная;

010 - агрегатная;

015 - горизонтально - фрезерная;

020 - агрегатная;

025 - агрегатная;

030 - агрегатная;

035 - агрегатная.

7.3.2 Микроклимат производственных помещений

Обоснуем категорию работ, выполняемых в цехе по тяжести, и приведем нормированные параметры микроклимата рабочей зоны и помещения в соответствии с СанПиН 2.2.4548-96.


Подобные документы

  • Технологичность корпуса конического одноступенчатого редуктора. Определение типа производства и разработка конструкции приспособления. Теоретическая схема базирования и вычисление погрешностей. Силовой расчет привода механизма и режущего инструмента.

    дипломная работа [829,3 K], добавлен 25.11.2011

  • Порядок проектирования конического редуктора, кинематический и силовой расчет привода. Проектный расчет конической зубчатой передачи, валов, колеса, корпуса и крышки редуктора, его эскизная компоновка. Выбор деталей и узлов, их проверочный расчет.

    курсовая работа [1,1 M], добавлен 15.05.2009

  • Кинематический и силовой расчет привода, выбор материала и определение допускаемых напряжений. Проектировочный расчет зубчатой передачи конического редуктора. Расчет и подбор корпуса редуктора, валов, подшипников, зубчатых колес, муфты, цепной передачи.

    курсовая работа [379,1 K], добавлен 04.06.2019

  • Энергетический и кинематический расчёты привода конического редуктора. Выбор электродвигателя и определение придаточного числа привода и разбивка его по отдельным передачам. Конструктивные моменты зубчатых колес, корпуса и крышки, компоновка редуктора.

    курсовая работа [262,8 K], добавлен 02.11.2014

  • Разработка конического редуктора электромеханизма подъемника створок колеса шасси. Проектирование и рассчет: конических зубчатых пар; математической модели редуктора, а также выходной вал редуктора. Проверка подшипников выходного вала на долговечность.

    курсовая работа [559,5 K], добавлен 29.07.2008

  • Произведение расчета мощности электродвигателя, кинематических параметров вала (частота вращения, угловая скорость), определение конусного расстояния, ширины венца, модуля передачи, внешнего диаметра колес с целью проектирования конического редуктора.

    курсовая работа [1,0 M], добавлен 28.05.2010

  • Выбор электродвигателя, его кинематический расчет. Конструирование элементов зубчатой передачи, выбор корпуса редуктора. Первый этап компоновки редуктора, выбор подшипников и расчет их долговечности. Технология сборки редуктора, расчеты и выбор посадок.

    курсовая работа [3,0 M], добавлен 03.03.2010

  • Определение порядка обработки и технологических переходов, назначение режимов резания для каждого перехода. Подбор стандартного технологического оборудования и унифицированных узлов станка. Выбор типа агрегатного приспособления, его рабочий цикл.

    курсовая работа [4,1 M], добавлен 08.12.2010

  • Изучение назначения корпуса редуктора. Правила установки приливов подшипниковых гнезд, отверстий для регулирования зацепления, заливки, слива и контроля уровня масла. Крепление проушин, крюков для транспортирования, ребер для охлаждения редуктора.

    методичка [2,1 M], добавлен 17.01.2012

  • Подбор электродвигателя. Расчет общего передаточного числа. Кинематический расчет валов, клиноременной и конической передачи. Подбор подшипников для конического редуктора. Ориентировочный расчет и конструирование быстроходного вала конического редуктора.

    курсовая работа [2,2 M], добавлен 06.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.