Разработка конического редуктора
Порядок проектирования конического редуктора, кинематический и силовой расчет привода. Проектный расчет конической зубчатой передачи, валов, колеса, корпуса и крышки редуктора, его эскизная компоновка. Выбор деталей и узлов, их проверочный расчет.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 15.05.2009 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Содержание
Введение
1. Специальная часть
1.1 Краткое описание редуктора
1.2 Выбор электродвигателя, кинематический и силовой расчет
1.3 Расчет зубчатой передачи
1.4 Проектный расчет ведущего вала
1.5 Проектный расчет ведомого вала
1.6 Конструктивные размеры колеса
1.7 Конструктивные размеры корпуса и крышки редуктора
1.8 Эскизная компоновка редуктора
1.9 Подбор шпонок и их проверочный расчёт
1.10 Проверочный расчет ведомого вала
1.11 Выбор и проверочный расчет подшипников ведомого вала
1.12 Выбор посадок
1.13 Смазка редуктора
1.14 Сборка редуктора
1.15 Краткие требования по охране труда и технике безопасности
Заключение
Введение
Настоящий курсовой проект выполнен на основе технического задания, которое включает кинематическую схему привода ковшового элеватора, а также необходимые технологические параметры:
тяговая сила цепи F = 2,5 кН,
скорость ленты х = 2 м/с;
диаметр барабана D = 310 мм.
Новизна проекта заключается в том, что это первая самостоятельная конструкторская робота, закрепляющая навыки, полученные по дисциплине: «Детали машин», а также черчению, материаловедению, метрологии.
Объектом исследования является конический редуктор. Глубина проработки заключается в том, что расчет и проектирование основных деталей и узлов доводится до графического воплощения.
Актуализация проекта состоит в том, что умение расчета и проектирования деталей и узлов общего машиностроения востребованы в курсовых проектах по специальности, дипломном проекте, на производстве.
Основные этапы работы над проектом:
1. Кинематический и силовой расчет привода.
2. Проектные расчеты конической зубчатой передачи, волов, колеса, корпуса и крышки редуктора
3. Эскизная компоновка редуктора.
4. Выбор стандартных деталей и узлов.
5. Проверочный расчет деталей и узлов.
6. Выполнение сборочного чертежа редуктора и рабочих чертежей ведомого вала и конического колеса.
Теоретическая часть работы заключается в составлении краткого описания редуктора, разработке процесса его сборки по сборочному чертежу и назначения требований по технике безопасности и охране труда.
1. Специальная часть
1.1 Краткое описание редуктора
В настоящей курсовой работе спроектирован конический одноступенчатый редуктор. Он состоит из конической зубчатой передачи, заключенной в герметичный корпус. Шестерня изготовлена заодно с валом. Валы установлены в подшипники:
ведущий - роликовые конические однорядные подшипники 7209 - установлены врастяжку;
ведомый - роликовые конические однорядные подшипники 7210 - установлены враспор.
Температурный зазор регулируется с помощью набора металлических прокладок.
Подшипники смазываем пластичным смазочным материалом - пресс-солидолом марки С ГОСТ 4366-76, закладываемым в подшипниковые камеры при монтаже.
Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до погружения колесо на всю длину зуба.
Контроль за уровнем мосла производим с помощью жезлового маслоуказателя. Для слива отработанного масла предусмотрено отверстие в нижней части корпуса.
1.2 Выбор электродвигателя, кинематический и силовой расчет
1) Определяем общий КПД передачи.
Из таблицы 2.2 [1] выписываем
зкон = 0,95 - 0,97 зм = 0,98 зцеп = 0,90 - 0,93
КПД подшипников учтено в КПД передач, общий КПД равен
з = зкон · зм · зцеп = 0,97 · 0,98 · 0,92 = 0,874
2) Определяем требуемую мощность электродвигателя.
Определяем мощность рабочей машины:
Ррм = F · V = 2,5 · 2 = 5 кВт
Требуемая мощность элеватора:
Рэл.дв.тр = кВт
3) Из таблицы К9 [1] выбираем двигатель, т. к. быстроходные двигатели имеют низкий ресурс и тихоходные имеют большие габариты, выбираем средне скоростной двигатель, имеющий ближайшую большую мощность:
Эл. двигатель 4АМ132М6УЗ
Рдв. = 7,5 кВт здв = 870 об/мин
4) Определяем общее передаточное число передачи и передаточные числа ступеней, воспользуемся рекомендацией табл. 2.3 [1].
Uзуба = 2…7,1 Uцепи = 2…4
Определяем частоту вращения вала рабочей машины:
зр.м = об/мин
Uобщ =
Назначаем Uзуб = 3,15, тогда
Uцеп = передаточное число ступеней удовлетворяет рекомендациям [1].
5) Определяем угловые скорости валов
(р/с);
(р/с);
Uзуб = => (р/с);
Uцеп = => (р/с);
6) Определяем мощности по валам передач:
Рдв.тр = 5,72 (кВт);
Р2 = Рдв.тр · зм = 5,72 · 0,98 = 5,6 (кВт);
Р3 = Р2 · зкон = 5,6 · 0,96 = 5,43 (кВт);
Р4 = 5 (кВт);
7) Определяем моменты на валах передач:
М1 = (Н·м);
М2 = (Н·м);
М3 = (Н·м);
М4 = (Н·м);
1.3 Расчет зубчатой передачи
Из предыдущих расчетов вращающий момент на ведомом валу М3 = 187,9 (Н ·м);
Передаточное число редуктора
Uзуб = 3,15;
Угловая скорость ведомого вала
(р/с);
Нагрузка близка к постоянной, передача нереверсивная.
1. Так как нагрузка на ведомо валу достаточно велика, для получения компактного редуктора принимаем марку стали 35ХМ для шестерни и колеса, с одинаковой термообработкой улучшения с закалкой ТВЧ до твёрдости поверхностей зубьев 49…65 HRC, уТ = 750 МПа при предлагаемом диаметре заготовки шестерни D < 200 мм и ширине заготовки колеса S < 125 мм.
Принимаем примерно средне значение твердости зубьев 51HRC.
2. Допускаемое контактное напряжение по формуле (9.37 [6])
[ун] = (уио /[Sн]) КHL
Для материала зубьев шестерни и колеса принимаем закалку при нагреве ТВЧ по всему контуру зубьев унo = 17 HRC + 200 (см. табл. 9.3 [6])
[SH] = 1,2; KHL = 1 (см. § 9.11 [6])
[ун]= (МПа);
3. Допустимое напряжение изгиба по формуле (9.42)
[уF]= (уFO/[SF] KFC · KFL.
Для материала зубьев шестерни и колеса: см. по табл. 9.3 [6].
уFO = 650 МПа; [SF] = 175; KFC = 1 (см. § 9.1 [6])
[уF] = (650/1,57) ·1 ·1 = 370 (МПа);
4. Коэффициент ширины зубчатого венца по формуле (9.77)
Шd = 0,166
5. По табл. 9.5 [6] принимаем коэффициент неравномерности распределения нагрузки по ширине зубчатого венца КНВ = 1,4
Интерполирование
Шd КНВ
0,4 - 1,25
0,15
0,2 0,55 - Д 0,2
0,6 1,45
0,2 - 0,2 Д =
0,15 - Д КНВ = 1,25+0,15 = 1,4
6. Внешний делительный диаметр колеса по формуле
de2 = 165 мм
Принимаем стандартное значение
de2 = 180 мм и ширину зубчатого венца b = 26 мм (см. табл. 9.7 [6])
7. Расчетные коэффициенты
Vp = 0,85 при Шd = 0,68
КFB = 1,64 (см. табл. 9.5 [6])
Шd КFB
0,4 - 1,44
0,15
0,2 0,55 - Д 0,27
0,6 1,71,
0,2 - 0,27 Д =
0,15 - Д КНВ = 1,44 - 0,2025 = 1,64
8. Внешний окружной модуль по формуле (9.79 [6])
me ? мм
9. Число зубьев колеса и шестерни
z2 = de2 /me = 180/2,72 = 66,2
z1 = z2 /u = 66,2/3,15 = 21
Принимаем: z1 = 21; z2 = 66.
10. Фактическое передаточное число
Uф = z2| z1 = 66|21 = 3,14
Отклонение от заданного
ДU = %<4%
11. Углы делительных конусов по формуле (9.49 [6])
tgд2 = Uф = 3,14; д2 = 72°
д1 = 90 - д2 = 90 - 72° = 18°
12. Основные геометрические размеры (см. формулы 9.50 … (9.56) [6]):
de1 = me · z1 = 2,72 ·21 = 57,12 (мм);
Re = 0,5 me (мм);
R = Re - 0,5в = 94,2 - 0,5 ·26 = 81,2 (мм);
Пригодность размера ширины зубчатого венца
в = 28 < 0,285 Rе = 0,285 · 94,2 = 26,8 (мм);
Условие соблюдается
m = me R/Re = 2,72 ·81,2/94,2 = 2,34 (мм);
d1 = m z1 = 2,34 ·21 = 49,14 (мм);
d12= m z2 = 2,34 ·66 = 154,44 (мм);
dае1 = de1 +2me cos д1 = 57,12 + 2 ·2,72 · cos 18° = 62,3 (мм);
dае2 = de2 +2me cos д2= 180 + 2 ·2,72 · cos 72° = 181,7 (мм);
13. Средняя скорость колес и степень точности
х = (м/с)
по табл. 9.1 принимаем 8 степень точности передачи.
14. Силы в зацеплении по формулам (9.57)… (9.59); окружная на колесе и шестерне:
Ft = 2М3/d2 = 2 · 187,9 ·103/154,44 = 2433,3 (Н);
радиальная на шестерни и осевая на колесе:
Fr1 = Fa2 = Ft · tg б щ·cos д1 = 2433,3·tg20°·cos 18° = 832,2 (Н);
осевая на шестерни и радиальная на колесе:
Fа1 = Fr2 = Ft · tg б щ·sin д1 = 2433,3·tg20°·sin 18° = 262,8 (Н);
15. Коэффициент динамической нагрузки
Кнх = 1,1 (см. табл. 9.6 [6])
КНВ = 1,4
16. Расчетное контактное напряжение по формуле (9.74 [6])
ун = МПа
уН = 899 МПа = [уН] = 899 МПа
R
17. Эквивалентное число зубьев шестерни и колесо по формуле (9.46 [6])
zх1 = z1/cos у1 = 21 / cos 18° = 22,1 (Н);
zх2 = z2/cos у2 = 66 / cos 72° = 220 (Н);
Коэффициент формы зуба (см. § 9.10 [6])
YF1 = 3,977; YF2 = 3,6
Интерполируем:
zх1 YF2
22 - 3,98
0,1
2 22,1 - Д 0,06
24 3,92
2 - 0,06 Д =
0,1 - Д КНВ = 3,98 - 0,003 = 3,977
18. Принимаем коэффициенты
КFх = 1,2 (см. табл. 9.6 [6])
КFВ = 1,64 (см. пункт 7) - остается без изменения
19. Расчетное напряжение изгиба в основании зубьев шестерни по формуле (9.78 [6])
уF1 = YF1 (МПа);
уF1 = 316,8 МПа < [уF] = 370 МПа.
Расчетное напряжение изгиба в основании зубьев колеса
уF2 = YF1 YF2/ YF1 = 316,8 · 3,6/3,9 = 286,76 (МПа);
уF2 = 286,76 МПа < [уF] = 370 МПа.
Прочность зубьев на изгиб обеспечена.
1.4 Проектный расчет ведущего вала
Ведущий вал выполняем заодно с шестерней.
Из предыдущих расчетов известно:
М2 = 61,5 (Н ·м); Re = 94,2 (мм)
в = 26 мм; me = 2,72 (мм)
д1° = 18°
1. Т.к. вал выполняем заодно с шестерней, то его материал сталь 35ХМ, тогда допустимое напряжение на кручение можно принять [ф] = 20 МПа.
Диаметр выходного участка:
dв1 = (мм);
Принимаем dв1 = 30 мм.
В кинематической схеме предусмотрено соединение ведущего вала редуктора и электродвигателя, выписываем из таблицы К10 [1] диаметр вала выбранного двигателя dэ = 38 мм и проверяем соотношение.
dв1 = 0,8 · dэ = 0,8 · 38 = 30,4 (мм);
т. к. данное соотношение выполняется, принимаем dв1 = 30 мм
2. Диаметр по монтажу: dм1 = dв1 + 5 мм = 30 + 5 = 35 (мм)
3. Диаметр цапфы: d1 = dм1 + 5 мм = 35 + 5 = 40 (мм)
4. Начинаем построение вала с прорисовки шестерни.
4.1 Под углом у1 = 18° откладываем расстояние:
Re = 94,2 (мм);
4.2 Откладываем ширину зубчатого венца:
в = 26 (мм);
4.3 Откладываем высоту головки зуба:
ha = me = 2,72 (мм) и высоту ножки зуба
hf = 1,28 me = 1,28 · 2,72 = 3,48 (мм);
4.4 Соединяем полученные точки с вершиной делительного конуса.
4.5 Строим буртик (dд) для упора подшипника:
dд1 = dn1 +10 = 40 + 10 = 50 (мм);
4.6 Определяем диаметр резьбы для гайки, крепящей подшипник:
dр1 = dм1 + 5 мм = 35 + 5 = 40 (мм);
Принимаем стандартное значение резьбы для гайки М36.
Рис. 1. Эскиз ведущего вала
1.5 Проектный расчет ведомого вала
Из предыдущих расчетов известно
М3 = 187,9 (Н · м) - вращающий момент на ведомом валу редуктора.
1. Диаметр выходного участка определяем из условия прочности на кручение:
dв1 = (мм)
Принимаем dв2 = 40 мм.
2. Диаметр на манжету:
dм2 = dв2 + 5 = 40 + 5 = 45 (мм);
3. Диаметр цапфы:
dn2 = dм2 + 5 = 45 + 5 = 50 (мм);
4. Диаметр посадочной поверхности:
dк2 = dn2 + 5 = 50 + 5 = 55 (мм);
5. Диаметр буртика:
d д2 = dк2 + 10 = 55 + 10 = 65 (мм);
Рис. 2. Эскиз ведомого вала
1.6 Конструктивные размеры колеса
Из предыдущих расчетов известно:
в = 26 мм; Re = 94,2 мм; dк = 55 мм; m = 2,34 мм;
dае2 = 181,7 мм; dе2 = 180 мм; d2 = 154,44 мм;
1. Находим диаметр ступицы стальных колес:
dст = 1,45 dв2 = 1,45 · 55 = 80 (мм);
2. Длина ступицы:
Lст = 1,1 · dк = 1,1 · 55 = 60 (мм);
3. Толщина обода конических колес:
до = 4 ·m = 4 · 2,34 = 9,36 (мм);
Принимаем до =10 (мм);
4. Толщина диска:
с = 0,1 Re = 0,1 · 94,2 = 9,42 (мм);
Принимаем с = 10 (мм);
5. Фаска:
n = 0,5 mn = 0,5 · 2,34 = 1,17 (мм);
Принимаем n = 1,6 (мм);
Рис. 3. Эскиз конического зубчатого колеса
1.7 Конструктивные размеры корпуса и крышки редуктора
Из предыдущих расчетов известно:
Re = 94,2 (мм) - внешнее конусное расстояние.
1. Толщина стенки конуса и крышки редуктора:
д = 0,05 Re + 1 = 0,05 · 94,2 + 1 = 5,71 (мм); д = 8 (мм);
д = 0,04 Re + 1 = 0,04 · 94,2 + 1 = 4,77 (мм); д1 = 8 (мм);
2. Толщина верхнего пояса (фланца) корпуса:
в = 1,5 д = 1,5 · 8 = 12 (мм);
3. Толщина нижнего пояса (фланца) крышки корпуса:
в1 = 1,5 д1 = 1,5 · 8 = 12 (мм);
4. Толщина нижнего пояса корпуса без бобышки:
р = 2,35 д = 2,35 · 8 = 18,8 (мм) ?20 (мм);
5. Толщина ребер основания корпуса:
m = (0,85ч1) д = 1 · 8 = 8 (мм);
6. Толщина ребер крышки:
m1 = (0,85ч1) д1 = 1 · 8 = 8 (мм);
7. Диаметр фундаментных болтов:
d1 = 0,072 Re +12 = 0,072 · 94,2 + 12 = 18,78 (мм);
Принимаем диаметр болтов М20.
8. Диаметр болтов:
8.1 У подшипников
d2 = (0,7ч0,75) d1 = 0,75 · 20 = 15 (мм);
Принимаем диаметр болтов М16.
8.2 Соединяющие основание корпуса с крышкой
d3 = (0,5ч0,6) d1 = 0,6 · 20 = 12 (мм);
Принимаем диаметр болтов М12.
9. Размеры, определяющие положение болтов d2:
е ? (1ч1,2) d2 = 1 · 15 = 15 (мм);
q = 0,5 d2 + d4 = 0,5 · 15 + 6 = 13,5 (мм);
Крепление крышки подшипника:
d4 = 6 (мм) (по таблице 10.3 [2]);
Рис. 4. Эскиз корпуса и крышки редуктора
1.8 Эскизная компоновка редуктора
Эскизная компоновка редуктора служит для приближенного определения положения зубчатых колес относительно опор для последовательного определения опорных реакций и проверочного расчета вала, а также проверочного расчета подшипников.
С учетом типа редуктора предварительно назначаем роликовые конические однорядные подшипники. По диаметру цапфы (dn2 = 50 мм). Выбираем по каталогу подшипники ведомого вала 7210.
Назначаем способ смазки: зацепление зубчатой пары - окунанием зубчатого венца в масло, подшипники смазываются автономно, пластичным смазочным материалом, камеры подшипников отделяем от внутренней полости корпуса мазеудерживающими кольцами.
Определяем размеры, необходимые для построения и определения положения реакций опор:
а =
аб = (мм);
аr = (мм);
f1 = 35 (мм) - определяем конструктивно
l1 = 2 · f1 = 2 · 35 = 70 (мм);
Принимаем l1 = 70 мм = 0,07 (м);
Расстояние между опорами ведомого вала:
l2 = 0,19 (м).
1.9 Подбор шпонок и их проверочный расчёт
Шпоночные соединения в редукторе предусмотрены для передачи вращающего момента от полумуфты на ведущий вал, от колеса на ведомый вал и от ведомого вала на звездочку.
Все соединения осуществляем шпонками с исполнением 1.
Из предыдущих расчетов известно:
М2 = 61,5 (Н ·м);
М3 = 187,9 (Н ·м);
dв1 = 30 (мм)
dв2 = 40 (мм)
Принимаем [у]см = 110 МПа.
1. Соединение полумуфта - ведущий вал:
усм =
Здесь h = 7 мм; в = 8 мм; t1 = 4 мм.
(табл. К 42 [1])
1.1 Вычисляем длину ступицы:
lст = 1,5 dв1 = 1,5 · 30 = 45 (мм).
1.2 Вычисляем длину шпонки:
lш = lст - 5 мм = 45 - 5 = 40 (мм).
1.3 Принимаем стандартное значение:
lш = 40 мм.
1.4 Вычисляем рабочую длину шпонки:
lр = lш - в = 40 - 8 = 32 (мм).
1.5 Вычисляем расчетное напряжение сжатия и сравниваем его с допускаемым:
усм = МПа
усм = 49,7 МПа < [у]см = 110 МПа
Прочность соединения обеспечена.
2. Соединение звездочки с ведомым валом:
усм =
Здесь h = 8 мм; в = 12 мм; t1 = 5 мм. (табл. К 42 [1])
2.1 Вычисляем длину ступицы:
lст = 1,5 dв2 = 1,5 · 40 = 60 (мм).
2.2 Вычисляем длину шпонки:
lш = lст - 5 мм = 60 - 5 = 55 (мм).
2.3 Принимаем стандартное значение:
lш = 56 мм.
2.4 Вычисляем рабочую длину шпонки:
lр = lш - в = 56 - 12 = 44 (мм).
2.5 Вычисляем расчетное напряжение сжатия и сравниваем его с допускаемым:
усм = МПа
усм = 84,7 МПа < [у]см = 110 МПа.
1.10 Проверочный расчет ведомого вала
Из предыдущих расчетов известно:
М3 = 187,9 (Н ·м) - момент на ведомом валу
Ft = 2433,3 (Н) - окружная сила
Fa = 832,2 (Н) - осевая сила
Fr = 262,8 (Н) - радиальная сила
d2 = 154,44 (мм) - диаметр делительной окружности.
На эскизной компоновке редуктора замеряем размеры
l1 = 0,07 м; l2 = 0,12 м.
Вычисляем консольную длину участка:
lк = 0,7 · dв2 + (50 мм) = 0,7 ·40 + 50 = 0,078 м
Принимаем lк = 0,7 м.
Вычисляем консольную силу для зубчатого редуктора:
Fк = 125 (Н)
Материал Сталь 45 из табл. 3.2 [1], ТО - улучшение с закалкой ТВЧ 45 HRC.
уb = 780 МПа; у-1 = 335 МПа; ф0 = 370 МПа.
Способ обработки рабочих поверхностей - чистовая обточка, цапфы шлифуются.
Чертеж ведомого вала
1. Консольная сила прикладывается параллельно окружной и имеет противоположное ей направление.
Определяем осевой изгибающий момент:
Ма = Fa (Н ·м)
2. Определяем реакции опор в вертикальной плоскости:
УМ(А) i = 0 1) - УВ ·0,19 + Fr · 0,07 - Ma = 0
УМ(B) i = 0 2) УA ·0,19 - Fr · 0,12 - Ma = 0
=> 1) УВ = (Н);
=> 2) УА = (Н);
Проверка:
УFyi = 0
УА + УВ - Fr = 0
503,8 - 262,8 - 241 = 0
0 = 0
Реакции найдены верно.
3. Строим эпюру изгибающих моментов Мх:
;
(Н·м);
(Н·м);
;
4. Определяем реакции опор в горизонтальной плоскости
УМ(А) i = 0 1) Fк ·0,07 + Ft · 0,07 - XB · 0,19 = 0
УМ(B) i = 0 2) Fk ·0,26 + XA · 0,19 - Ft · 0,12 = 0
=> 1) XВ = (Н);
=> 2) XА = (Н);
Проверка:
УFxi = 0
Fk + XA - Ft + XB = 0
1713,5 - 808 - 2433,3+ 1527,8 = 0
0 = 0
Реакции найдены верно.
5. Строим эпюру изгибающих моментов Му:
;
(Н·м);
(Н·м);
;
6. Строим эпюру суммарных изгибающих моментов:
Мис = 0;
МиА = (Н·м);
МиД = (Н·м);
Ми'Д = (Н·м);
МиВ = 0;
7. Строим эпюру крутящих моментов:
Мz = M3 = 187,9 (Н·м);
8. Опасным является сечение Д, т. к. МиД = Мmax,концентратор напряжений - шпоночный паз.
dк2 = 55 (мм); в = 16 (мм); t2 = 4,3 (мм) (табл. К 42 [1]);
Рис. 5. Эскиз шпоночного паза
9. Определяем геометрические характеристики сечения:
Wx = 0,1 dк23 - (мм3)
Wр = 0,2 dк23 - (мм3)
10. Определяем максимальное напряжение в опасном сечении:
уmax = (МПа);
фmax = (МПа).
11. Полагаем, что нормальные напряжения изменяются по симметричному циклу, а касательные по отнулевому циклу;
уа = уmax =12,4 (МПа);
фа = (МПа).
12. Из табл. 2.1-2.5 [3] выбираем коэффициенты влияния на предел выносливости.
Коэффициенты влияния абсолютных размеров поперечного сечения Кd:
dк2 Кdу
50 - 0,81
5
20 55 - Д 0,05
70 0,76
20 - 0,05 Д =
5 - Д Кdу = 0,81 - 0,0125 = 0,797
dк2 Кdф
50 - 0,7
5
20 55 - Д 0,03
70 0,67
20 - 0,03 Д =
5 - Д Кdф = 0,7 - 0,0075 = 0,693
Эффективный коэффициент концентрации напряжений Кд(Кф):
Кд = 2,5; Кф = 2,3.
Коэффициенты влияния качества обработки КF:
КF = 0,83.
Коэффициент влияния поверхности упрочнения Кх:
Кх = 2.
13. Вычисляем коэффициенты снижения предела выносливости:
(Кд)Д =
(Кф)Д =
14. Определяем пределы выносливости в данном сечении:
(д-1) Д = (МПа);
(ф0) Д = (МПа);
15. Определяем запас усталостной прочности по нормальным и касательным напряжениям
Sу =
Sф =
16. Определяем общий запас усталостной прочности и сравниваем его с допускаемым:
Принимаем [S] = 2
S = S =
S = 16,9 > [S] = 2.
Запас усталостной прочности обеспечен.
1.11 Выбор и проверочный расчет подшипников ведомого вала
Тип подшипника назначается в зависимости от условий работы подшипникового узла, в частности, о наличия осевой силы. Подшипник выбирается по соответствующей таблице в зависимости от диаметра цапфы.
Расчет заключается в определении расчетной динамической грузоподъемности и сравнении ее с грузоподъемностью подшипника, взятой из таблицы Сr расч ? Сr - условия работоспособности подшипника.
Из предыдущих расчетов известно:
dn2 = 50 мм - диаметр цапфы
Fa = 832,2 (Н) - осевая сила
t = 80 °C в подшипниковом узле
щ3 = 28,9 (р/с) - угловая скорость вала
LH - 12000 (час) - ресурс подшипника
Характер нагрузки - умеренные толчки.
УА = 503,8 (Н) - реакция опоры в вертикальной плоскости
УВ = - 241 (Н) - реакция опоры в вертикальной плоскости
ХА = -808 (Н) - реакция опоры в горизонтальной плоскости
ХВ = 1527,8 (Н) - реакция опоры в горизонтальной плоскости
Выбираем подшипник 7210 по табл. К 29 [1] (начиная с легкой серии)
1. Определяем суммарные реакции опор:
RA = (Н);
RВ = (Н);
2. Выписываем из таблицы К 29 [1] характеристику подшипника.
Сr = 52,9 (кН); Сor = 40,6 (кН); e = 0,37; у = 1,6.
3. В соответствии с условиями работы принимаем расчетные коэффициенты.
V = 1 - коэффициент вращения, т. к. вращается внутреннее кольцо подшипника.
Кб = 1,3 - коэффициент безопасности, учитывающий влияние характеристики нагрузки на долговечность подшипника.
КТ = 1 - коэффициент, учитывающий влияние температуры на долговечность подшипника.
3.1 Определим осевые составляющие от радиальных сил
RS1 = 0,83 e RA = 0,83 · 0,37 · 952,2 = 294,4 (Н);
RS2 = 0,83 e RВ = 0,83 · 0,37 · 1546,7 = 475 (Н);
3.2 Определяем расчетные осевые силы.
RS1 = 294,4 (Н) < RS2 = 475 (Н)
FA = 832,2 (Н) > RS2 - RS1 = 475 - 294,4 = 180,6 (H);
RА1 = RS1 = 294,4 (Н);
RA2 = RA1 + FA = 294,4 + 832,2 = 1126,6 (Н).
3.3 Определяем соотношение RA/V·R
< e = 0,37, то х = 1; у = 0
> e = 0,37, то х = 0,4; у = 1,6.
4. Определяем эквивалентную динамическую нагрузку:
RE1 = (XVRA + УRa1) KTKб = (1·1·952,2+0·294,4) ·1·1,3 = 1237,9 (Н);
RE2 = (XVRВ + УRa2) KTKб = (0,4·1·1546,7+1,6·1126,6) ·1·1,3 = 3147,6 (Н);
Дальнейший расчет ведем по наиболее нагруженной опоре.
5. Определяем расчетную динамическую грузоподъемность:
Сr расч = Re2 (кН)
Р = 3,33 - для роликовых подшипников
Сr расч = 3147,6 (кН).
6. Сравниваем расчетную динамическую грузоподъемность Сr расч и базовую динамическую грузоподъемность Сr:
Сr расч = 15,42 (кН) < Сr = 52,9 (кН).
Подшипник 7210 удовлетворяет заданному режиму работы.
1.12 Выбор посадок
Посадки назначаем в соответствии с указаниями, данными в табл. 10.13 [2].
Посадка зубчатого конического колеса на вал по ГОСТ 25347-82.
Посадка звездочки цепной передачи на вал редуктора .
Шейки валов под подшипники выполняем с отклонением вала К6. Отклонения отверстий в корпусе под наружное кольцо по H7. Посадка распорных колец, сальников на вал .
Посадка стаканов под подшипники качения в корпусе, распорные втулки на вал .
1.13 Смазка редуктора
Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до погружения колеса на всю длину зуба.
По табл. 10.8 [2] устанавливаем вязкость масла. При контактных напряжениях ун = 899 МПа и средней скорости V = 2 м/с вязкость масла должна быть приблизительно равна 60· 10-6 м2/с. По табл. 10.10 [2] принимаем масло индустриальное И_70А (по ГОСТ 20799-75). Подшипники смазывают пластичным материалом, закладываем в подшипниковые камеры, при монтаже. Сорт смазки выбираем по табл. 9.14 [2] - пресс-солидол марки С (по ГОСТ 43-66-76).
1.15 Краткие требования по охране труда и технике безопасности
Требования по технике безопасности:
а) Все вращающиеся детали должны быть закрыты защитными кожухами;
б) Корпус редуктора не должен иметь острых углов, кромок и должен быть оборудован монтажным устройством;
в) На ограждение необходимо поставить блокировку и предупредительный знак.
Требования по экологии:
а) Отработанное масло сливать в предназначенные для этого емкости;
б) Вышедшие из строя детали складировать в специальных помещениях.
Заключение
В курсовом проекте продумана конструкция конического редуктора, выполнены расчеты цепной передачи, валов, колеса, корпуса и крышки редуктора. По каталогам выбраны размеры шпоночных соединений ГОСТ 23360-78 для диаметров 30 и 40 и выбраны подшипники роликовые конические однорядные 7209 и 7210 ГОСТ 27365-87. Для деталей и узлов проведены необходимые проверочные расчеты.
Графическая часть (сборочный чертеж конического редуктора, чертеж колеса конического, чертеж ведомого вала) выполнена согласно требованиям ЕСКД. Продуманы требования по технике безопасности и охране труда; по сборочному чертежу описан процесс сборки редуктора.
Подобные документы
Кинематический и силовой расчет привода, выбор материала и определение допускаемых напряжений. Проектировочный расчет зубчатой передачи конического редуктора. Расчет и подбор корпуса редуктора, валов, подшипников, зубчатых колес, муфты, цепной передачи.
курсовая работа [379,1 K], добавлен 04.06.2019Выбор электродвигателя, кинематический и силовой расчет привода. Расчет зубчатой и цепной передачи редуктора. Конструктивные размеры корпуса и крышки редуктора. Подбор подшипников для валов редуктора и шпонок, проверочный расчет шпоночных соединений.
курсовая работа [255,4 K], добавлен 25.02.2011Энергетический и кинематический расчёты привода конического редуктора. Выбор электродвигателя и определение придаточного числа привода и разбивка его по отдельным передачам. Конструктивные моменты зубчатых колес, корпуса и крышки, компоновка редуктора.
курсовая работа [262,8 K], добавлен 02.11.2014Расчёт срока службы привода. Кинематический расчет двигателя. Выбор материала зубчатой передачи. Определение допускаемых напряжений. Расчёт нагрузок валов редуктора. Проектный расчёт валов. Эскизная компоновка редуктора. Конструирование зубчатого колеса.
курсовая работа [950,8 K], добавлен 12.01.2011Выбор электродвигателя и кинематический расчет. Расчет зубчатых колес редуктора. Предварительный расчет валов редуктора. Конструктивные размеры шестерни и колеса, корпуса редуктора. Расчет цепной передачи. Эскизная компоновка редуктора. Выбор масла.
курсовая работа [144,3 K], добавлен 21.07.2008Кинематический и силовой расчет привода. Определение клиноременной передачи. Расчет прямозубой и косозубой цилиндрической передачи редуктора. Эскизная компоновка редуктора. Конструирование валов редуктора и зубчатых колес. Смазывание узлов привода.
курсовая работа [2,6 M], добавлен 22.10.2011Выбор электродвигателя и кинематический расчет привода. Параметры клиноремённой передачи. Этапы расчета зубчатой передачи. Предварительное проектирование валов редуктора. Конструктивные размеры шестерни и колеса, корпуса редуктора. Компоновка деталей.
курсовая работа [433,5 K], добавлен 19.11.2014Выбор электродвигателя и кинематический расчет. Расчет клиноременной передачи привода, зубчатых колес редуктора, валов редуктора. Конструктивные размеры шестерни и колеса, корпуса редуктора. Компоновка редуктора. Проверка долговечности подшипников.
курсовая работа [505,0 K], добавлен 11.11.2008Выбор электродвигателя и силовой расчет привода. Расчет закрытой цилиндрической зубчатой передачи. Уточненный расчет валов на статическую прочность. Определение размеров корпуса редуктора. Выбор смазки зубчатого зацепления. Проверочный расчет шпонок.
курсовая работа [2,2 M], добавлен 12.12.2009Подбор электродвигателя. Расчет общего передаточного числа. Кинематический расчет валов, клиноременной и конической передачи. Подбор подшипников для конического редуктора. Ориентировочный расчет и конструирование быстроходного вала конического редуктора.
курсовая работа [2,2 M], добавлен 06.01.2016