Определение критических сил стержней при продольном изгибе

Расчетное и экспериментальное определение критических сил стержней большой и средней гибкости. Сравнительный анализ результатов расчета и эксперимента. Построение диаграммы критических напряжений, определение расчетных значений критической силы стержня.

Рубрика Производство и технологии
Вид лабораторная работа
Язык русский
Дата добавления 06.10.2010
Размер файла 341,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Отчет по лабораторной работе «Определение критических сил стержней при продольном изгибе»

Цель работы: расчетное и экспериментальное определение критических сил стержней большой и средней гибкости; сравнение результатов расчета и эксперимента.

Формы равновесия элементов конструкций (сжатых стержней, высоких винтовых пружин при сжатии, цилиндрических тонкостенных оболочек при растяжении и кручении, балок-стенок при изгибе, оболочек при внешнем давлении и др.) могут быть устойчивыми и неустойчивыми. Если нагруженная упругая система (элемент конструкции), выведенная из первоначального положения равновесия небольшой дополнительной силой, возвращается в исходное положение после удаления дополнительной силы, то такая форма равновесия упругой системы называется устойчивой, а если не возвращается в исходное положение, - неустойчивой формой равновесия. Нагрузки и напряжения, которые характеризуют переход упругой системы из устойчивой к неустойчивой форме равновесия, называются критическими. Потеря устойчивости применительно к центрально сжатому стержню называется продольным изгибом.

Определение критической силы стержня большой гибкости

Постановка опыта. Стержень (l = 144 мм; b х h = 2,5 х 34 мм2; µ = 1) из углеродистой стали (Е = 2 105 МПа; дпц = 158 МПа; дт = 197 МПа) подвергается продольному изгибу на лабораторной установке. При критическом значении силы Pэкр показания динамометра пкр, = 121 дел. Цена деления динамометра к = 34 Н/дел.

Требуется: определить Ркр, дкр; Pэкркр э, отклонение результатов расчета от эксперимента

1. Вычисляем гибкость, соответствующую пределу пропорциональности дпц= 158 МПа;

=112

2. Находим гибкость испытуемого стержня прямоугольного сечения:

=0,722мм;

Схема лабораторной установки для испытаний на устойчивость стержня большой гибкости

3. Определяем расчетные значения критической силы и критического напряжения. Поскольку гибкость стержня X = 199 > Хпи = 112, то используем формулы Л. Эйлера:

= 3,142 *2*105/1992 =49,8МПа

4.Вычесляем критические напряжения для ряда гибкостей:

5. Экспериментальные значения критической силы и критического напряжения равны:

6. Отклонение результатов расчета от эксперимента

Определение критической силы стержня средней гибкости

Постановка опыта. Стержень (l = 220 мм; d = 10 мм; µ = 1) из той же (п. 13.3.1) углеродистой стали (а = 264 МПа; b = 0,951 МПа) подвергается продольному изгибу в специальном приспособлении (рис.) на машине УГ-20. По показаниям силоизмерителя экспериментальное значение критической силы. = 13,9 кН.

Требуется: определить Ркр , укр , ;

Построить диаграмму критических напряжений укр-л для 0 < л < пц; нанести на нее результаты опытов (п. 13.3.1 и 13.3.2); сделать выводы о соответствии результатов расчета и эксперимента.

Схема приспособления для испытаний на устойчивость стержня средней гибкости

1. Вычисляем гибкость, соответствующую пределу текучести ут= 197 МПа:

= (264 - 197)/0,951 = 70,5.

2. Находим гибкость испытываемого стержня круглого сечения d= 10 мм:

= 2,50 мм; л = 1 * 220/2,50 = 88,0.

3. Определяем расчетные значения критической силы и критического напряжения. Поскольку гибкость стержня лt = 70,5 < л = 88 < лпц = 112, то применяем формулы Ф. С. Ясинского:

Ркр = -bl)F = (264 -0,951*88)-3,14*102 * 10-6/4 = 14 100 Н = 14,1 кН;

укр= (a-bл)F = 264-0,951*88 = 180 МПа >упц= 158 МПа.

4. Вычисляем экспериментальное значение критического напряжения при =13,9кН:

= = 13900/(3,14 * 102 * 10-6/4)= 177 МПа.

С учетом ут = 197 МПа и лt = 70,5, упц = 158 МПа и л.пц = 112 и полученных в п. 4 значений укр строим диаграмму критических напряжений укр - л (рис. 13.6). Наносим на нее результаты опытов (экспериментальные значения

Диаграмма критических напряжений для заданной углеродистой стали

5. Отклонение результатов расчета от эксперимента

= 100(14,1 -13,9)/13,9 = 1,4 % .

Выводы:

Отклонение результатов расчетов от экспериментов составляет в данных опытах 2,4 и 1,4 %, что подтверждает приемлемость для практики формул Л. Эйлера и Ф. С. Ясинского для расчетов на устойчивость элементов конструкций.

Расхождения между расчетными и экспериментальными значениями критических сил обусловлены принятыми гипотезами при выводе формул, а также погрешностями опытов при определении критических сил.


Подобные документы

  • Изучение методики и экспериментальное определение напряжений в элементах конструкций электротензометрированием; сравнение расчетных и экспериментальных значений напряжений и отклонений от них. Определение напряжений при изгибе элемента конструкции.

    лабораторная работа [1,0 M], добавлен 06.10.2010

  • Основные аспекты создания стержней. Растяжение в центре и по бокам. Расчет статических стержневых систем и основных переменных. Оценка параметров закручивания. Создание стальной балки и стержня определенной жесткости. Определение опорных реакций.

    курсовая работа [155,4 K], добавлен 27.07.2010

  • Влияние граничных условий на величину критической силы при потере устойчивости. Пределы применимости формулы Эйлера. Расчет продольно-сжатых стержней с использованием коэффициента снижения допускаемых напряжений. Использование коэффициента в расчетах.

    контрольная работа [309,0 K], добавлен 11.10.2013

  • Построение эпюр нормальных и поперечных сил, изгибающих и крутящих моментов. Напряжения при кручении. Расчет напряжений и определение размеров поперечных стержней. Выбор трубчатого профиля стержня, как наиболее экономичного с точки зрения металлоёмкости.

    контрольная работа [116,5 K], добавлен 07.11.2012

  • Анализ конструктивных особенностей стального стержня переменного поперечного сечения, способы постройки эпюры распределения нормальных и касательных напряжений в сечении балки. Определение напряжений при кручении стержней с круглым поперечным сечением.

    контрольная работа [719,5 K], добавлен 16.04.2013

  • Определение геометрических характеристик сечения тонкостенного подкрепленного стержня. Расчет нормальных напряжений в подкрепляющих элементах. Распределение напряжений по контуру. Определение потока касательных сил от перерезывающей силы, по контуру.

    курсовая работа [2,2 M], добавлен 22.04.2012

  • Методика и основные этапы расчета стержня. Построение эпюры нормальных напряжений. Определение параметров статически неопределимого стержня. Вычисление вала при кручении. Расчет консольной и двухопорной балки. Сравнение площадей поперечных сечений.

    контрольная работа [477,1 K], добавлен 02.04.2014

  • Предварительное определение проектной массы фермы крана и массы грузовой крановой тележки. Определение экстремальных значений полных расчетных усилий в стержнях фермы моста крана. Подбор сечений стержней фермы. Расчет стыка элементов пояса в узле.

    курсовая работа [375,0 K], добавлен 24.12.2015

  • Расчетные формулы для кручения стержня в форме тонкостенного профиля, с круговым и не круглым поперечным сечением. Определение величин полярного момента инерции сечения и сопротивления. Эпюра касательных напряжений для бруса прямоугольного сечения.

    презентация [515,8 K], добавлен 21.02.2014

  • Изгиб вызывается внешними силами, направленными перпендикулярно продольной оси стержня, а также парами внешних сил, плоскость действия которых проходит через эту ось. Внутренние силы в поперечных сечениях изгибаемых стержней определяются методом сечений.

    реферат [1,1 M], добавлен 13.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.