Внутритрубная ультразвуковая диагностика газонефтепроводов
Оценка технического состояния газотрубопровода. Использование ультразвукового внутритрубного дефектоскопа для прямого высокоточного измерения толщины стенки трубы и обнаружения трещин на ранней стадии. Способы получения и ввода ультразвуковых колебаний.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 02.01.2015 |
Размер файла | 2,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Интерфейс связи с оператором на основе носимого персонального компьютера (ноутбука) и канала связи обеспечивает возможность управления режимами работы дефектоскопа, программирования основных параметров прогона, получения оперативной информации, накопленной системой управления в течение всего прогона [9].
4.3 Технические характеристики ультразвукового дефектоскопа CD
Среда перекачки:нефть, нефтепродукты, вода
Диапазон температуры среды эксплуатации:0 - 50 °C
Допустимая скорость перекачиваемой среды без потери продольного разрешения:0.1 - 2.0 м/сек
Рекомендуемый диапазон рабочего давления:0.5 - 8.0 МПа
Минимальный радиус поворота:3D x 90°
Диапазон толщин стенки:4 - 30 мм
5. Ультразвуковой внутритрубный дефектоскоп для прямого высокоточного измерения толщины стенки трубы
Рисунок 12. Ультразвуковой Дефектоскоп WM
Ультразвуковой дефектоскоп предназначен для внутритрубного ультразвукового обследования магистральных трубопроводов с целью выявления дефектов толщины стенки типа потери металла металлургического, механического и коррозионного происхождения, а также расслоений и включений.
В дефектоскопах используется принцип ультразвуковой толщинометрии, основанном на акустическом эхо-импульсном зондировании стенки трубопровода с использованием ультразвуковых иммерсионных преобразователей совмещенного типа.
5.1 Принцип действия
Рисунок 12.1. принцип работы дефектоскопа
Принцип работы дефектоскопа в варианте ультразвукового толщиномера состоит в измерении временных интервалов между зондирующим импульсом и импульсами, отраженными от внутренней и внешней поверхностей стенки трубопровода. Временной интервал между зондирующим импульсом и первым отраженным импульсом соответствует расстоянию (отступу) между датчиком и внутренней поверхностью стенки трубы. Временной интервал между первым и вторым отраженными импульсами соответствует толщине стенки.
Кроме обнаружения внутренней и внешней потерь металла, данный метод позволяет обнаружить и измерить другие типы дефектов, такие как расслоения, включения, царапины, надрезы, задиры и вмятины, а также их комбинации.
5.2 Системы дефектоскопа
Система управления и контроля обеспечивает: управление сбором и накоплением диагностической информации; регистрацию данных от ультразвуковых датчиков; регистрацию пройденного пути; регистрацию времени работы; передачу информации на внешние накопители после извлечения дефектоскопа из трубопровода для дальнейшей обработки и интерпретации полученных данных; автоматическую настройку и калибровку систем дефектоскопа.
Измерение пройденного дефектоскопом расстояния и привязка аномалий трубопровода к дистанции основывается на одометрической системе, состоящей из нескольких одометрических колес, полный оборот которых сопровождается выработкой определенного количества импульсов. Расстояние автоматически определяется дефектоскопом при известном диаметре одометрического колеса.
Для коррекции дистанции с целью более точного определения места расположения аномалий, а также для обнаружения местоположения дефектоскопа в трубопроводе дефектоскоп оснащен временнoй маркерной системой приема-передачи низкочастотных электромагнитных сигналов.
Для привязки к угловому положению относительно продольной оси трубопровода дефектоскоп имеет в своем составе маятниковую систему, позволяющую учесть вращение дефектоскопа при движении.
Система регистрации параметров внутренней и внешней среды измеряет давление внешней среды, температуру внутри секций дефектоскопа, контролирует состояние напряжений питания дефектоскопа [9].
Рисунок 13. Система дефектоскопа
Система записи данных выполнена на основе Flash-памяти. Накопители на её основе не имеют механического привода, что позволяет обеспечить надёжную работу, устойчивость к вибрациям и ударам.
Интерфейс связи с оператором на основе носимого персонального компьютера (ноутбука) и канала связи обеспечивает возможность управления режимами работы дефектоскопа, программирования основных параметров прогона, получения оперативной информации, накопленной системой управления в течение всего прогона [10].
5.3 Подтверждение полученных данных
Рисунок 14. Потеря металла
Рисунок 15. Потеря металла(продолжение)
5.4 Технические характеристики ультразвукового дефектоскопа (WM)
Среда перекачки: нефть, нефтепродукты, вода
Диапазон температуры среды эксплуатации:0 - 50 °C
Допустимая скорость перекачиваемой среды без потери продольного разрешения:0.1 - 2.0 м/сек
Рекомендуемый диапазон рабочего давления:0.5 - 8.0 МПа
Минимальный радиус поворота:1.5D x 90°
Диапазон толщин стенки:3.5 - 30 мм
6. Ультразвуковой внутритрубный комбинированный (WM&CD) дефектоскоп для прямого высокоточного измерения толщины стенки трубы и обнаружения трещин на ранней стадии
Рисунок 16. Ультразвуковой комбинированный дефектоскоп
Ультразвуковой комбинированный дефектоскоп предназначен для внутритрубного ультразвукового обследования магистральных трубопроводов с целью измерения остаточной толщины стенки и обнаружения продольных или поперечных трещин, в том числе в поперечных и продольных сварных швах.
Дефектоскоп позволяет осуществлять, как комбинированное (одновременное), так и раздельное обследование трубопроводов, при котором проводится только измерение остаточной толщины стенки (вариант толщиномера) или только выявление трещин, продольных или поперечных (вариант детектора трещин).
В дефектоскопах используется метод, основанный на акустическом эхо-импульсном зондировании стенки трубопровода с использованием ультразвуковых иммерсионных преобразователей совмещенного типа с перпендикулярным (толщиномер) и наклонным (детектор трещин) вводом луча в стенку трубопровода.
6.1 Принцип действия
Принцип работы дефектоскопа в варианте ультразвукового толщиномера состоит в измерении временных интервалов между зондирующим импульсом и импульсами, отраженными от внутренней и внешней поверхностей стенки трубопровода. Временной интервал между зондирующим импульсом и первым отраженным импульсом соответствует расстоянию (отступу) между датчиком и внутренней поверхностью стенки трубы.
Временной интервал между первым и вторым отраженными импульсами соответствует толщине стенки. Отличительной чертой дефектоскопов этого типа является многократное измерение толщины стенки в каждой точке поверхности трубопровода, что повышает качество получаемых измерений.
Рисунок 17. Принцип действия дефектоскопа
Принцип работы дефектоскопа в варианте детектора трещин состоит в регистрации и измерении амплитуды отраженных от трещин сигналов и временных интервалов между зондирующим импульсом, импульсом, отраженным от внутренней стенки трубопровода и импульсом от трещины. Излученная датчиком ультразвуковая волна входит в металл под углом 17° к перпендикуляру к поверхности и распространяется в металле под углом 45°, при этом обеспечивается наилучшее отражение сигнала от трещины. Отраженные сигналы от трещины принимаются этим же датчиком. Для повышения вероятности обнаружения дефектов, облучение производится с двух сторон. В связи с тем, что преобразователи расположены по окружности с шагом ~ 11 мм, сигнал от дефекта может быть принят 2-мя или 3-мя датчиками с каждой стороны. В процессе интерпретации такие сигналы от разных датчиков совмещаются, а по характеристикам принятых сигналов, вырабатывается заключение о свойствах дефекта.
6.2 Системы дефектоскопа
Система управления и контроля дефектоскопа обеспечивает: управление сбором и накоплением диагностической информации; регистрацию данных от ультразвуковых датчиков, расположенных с шагом в 11 мм по окружности трубы, через каждые 3 мм дистанции; регистрацию пройденного пути; регистрацию времени работы; передачу информации на внешние накопители после извлечения дефектоскопа из трубопровода для дальнейшей обработки и интерпретации полученных данных; автоматическую настройку и калибровку систем дефектоскопа.
Измерение пройденного дефектоскопом расстояния и привязка аномалий трубопровода к дистанции основывается на одометрической системе, состоящей из нескольких одометрических колес, полный оборот которых сопровождается выработкой определенного количества импульсов. Расстояние автоматически определяется дефектоскопом при известном диаметре одометрического колеса.
Для коррекции дистанции с целью более точного определения места расположения аномалий, а также для обнаружения местоположения дефектоскопа в трубопроводе дефектоскоп оснащен временной маркерной системой приема-передачи низкочастотных электромагнитных сигналов.
Для привязки к угловому положению относительно продольной оси трубопровода дефектоскоп имеет в своем составе маятниковую систему, позволяющую учесть вращение дефектоскопа при движении [9].
Система регистрации параметров внутренней и внешней среды измеряет давление внешней среды, температуру внутри секций дефектоскопа, контролирует состояние напряжений питания дефектоскопа.
Рисунок 18. Система дефектоскопа
Система записи данных выполнена на основе Flash-памяти. Накопители на её основе не имеют механического привода, что позволяет обеспечить надёжную работу, устойчивость к вибрациям и ударам.
Интерфейс связи с оператором на основе носимого персонального компьютера (ноутбука) и канала связи обеспечивает возможность управления режимами работы дефектоскопа, программирования основных параметров прогона, получения оперативной информации, накопленной системой управления в течение всего прогона.
6.3 Подтверждение полученных данных
Рисунок 19. Продольная трещина
6.4 Технические характеристики ультразвукового комбинированного дефектоскопа (WM &CD)
Среда перекачки: нефть, нефтепродукты, вода
Диапазон температуры среды эксплуатации:0 - 50°C
Допустимая скорость перекачиваемой среды без потери продольного разрешения:0.1 - 2.0 м/сек
Рекомендуемый диапазон рабочего давления: 0.5 - 8.0 МПа
Минимальный радиус поворота:1,5D x 90є
Диапазон толщин стенки:3,5 - 30 мм
6.5 Анализ данных
Специалисты Аналитического Центра НГКС по интерпретации данных обрабатывают данные, полученные во время ультразвуковой диагностики, и создают Финальный Отчет, который обычно включает:
- Раскладку трубопровода, включая раскладку секций трубопровода.
- Список особенностей трубопровода.
- Расчет дефектов на статическую прочность, с использованием различных методик (по усмотрению Заказчика).
- Классификацию обнаруженных дефектов по степени опасности на основе API 1104, CAN Z 184-M86, 49 CFR, ASME B31.4 (8), BS 7910 и т.д.
- Рекомендации по объемам капитального (заменой участка) и выборочного ремонта (установкой различных муфт), а также по очередности ремонта дефектов.
- Анализ качества изготовления труб различными трубными заводами с целью выбора поставщика труб.
- Оценки качества проведения капитального и выборочного ремонта.
- Расчета скорости коррозии на трубопроводе.
Сервисная программа позволяет:
- Работать с комплексной базой данных.
- Редактировать их, автоматически выбирать необходимую информацию с помощью механизма фильтров и индексов.
- Позиционироваться на дефекты и особенности.
- Осуществлять привязку дефектов и особенностей к точкам ориентиров (выпускать сертификаты и листы детализации).
- Генерировать отчеты в форме, задаваемой пользователем.
- Систематизировать информацию о проведенном ремонте [11].
Заключение
ультразвуковой дефектоскоп труба трещина
Диагностика линейной части магистральных трубопроводов может осуществляться различными способами, индивидуальная программа диагностирования может включать в себя тепловизионный контроль, акустико-эмиссионный контроль наиболее опасных участков трубопровода, приборный контроль с поверхности и т.д., но для магистральных газонефтепроводов, имеющих большую протяженность наиболее технологичным является проведение диагностики с помощью внутритрубных инспекционных приборов.
Работы по внутритрубной диагностике в общем случае включают в себя: пропуск скребка-калибра, пропуск шаблона-профилемера, пропуск профилемера, пропуск очистных скребков, пропуск дефектоскопа.
Необходимо отметить, что отрасль внутритрубной диагностики чрезвычайно востребована в настоящее время, поэтому темпы ее развития достаточно высоки. Современные внутритрубные дефектоскопы сочетают в себе передовые разработки и новейшие технологии.
Внутритрубная диагностика позволяет обнаружить дефекты геометрии и особенности трубопровода (вмятины, гофры, овальности поперечного сечения, выступающие внутрь трубы элементы арматуры трубопровода), дефектов типа потери металла, уменьшающих толщину стенки трубопровода (коррозионных язв, царапин, вырывов металла и т.п.), а также расслоений, поперечных трещин и дефектов в кольцевых сварных швах; продольных трещин в теле трубы, продольных трещин и дефектов в продольных сварных швах.
Таким образом, внутритрубная диагностика - это универсальный метод обследования магистральных трубопроводов, который предотвращает внезапные отказы в их работе, повышает их надежность, эффективность и безопасность при эксплуатации.
Список литературы
1. Богданов Е.А. «Основы технической диагностики нефтегазового оборудования». - М.: Высшая школа 2006 г.
2. В.П. Калявин «Основы теории надежности и диагностики». Санкт - Петербург: Элмор, 1998.
3. Трубопроводный транспорт нефти и газа: Учебник для вузов / Р.А. Алиев, В.Д. Белоусов, А.Г. Немудров и др. - М.: Недра, 1988.
4. СНиП 2.05.06-85*. Магистральные трубопроводы / Минстрой России. - М.: ГУПЦ ПП, 1997.
5. Харионовский В.В. Надежность и ресурс конструкций газопроводов. М.: Недра 2000 г.
6. Кретов Е.Ф. Ультразвуковая дефектоскопия в энергомашиностроении / Е.Ф. Кретов. - СПб.: Радиоавионика, 1995. - 327 с.
7. Выборнов Б.И. Ультразвуковая дефектоскопия / Б.И. Выборнов - М.: Метал-я, 1985. - 257 с.
8. Алешин Н.П. Радиационная, ультразвуковая и магнитная дефектоскопия / Н.П. Алешин, В.Г. Щербинский. - М.: Высшая школа, 1991. - 272 с.
9. Неразрушающий контроль и диагностика: справочник / В.В. Клюев [и др.]; под ред. В.В. Клюева. - М.: Машиностроение, 2005. - 656 с.
Размещено на Allbest.ru
Подобные документы
Классификация внутритрубных дефектоскопов. Ультразвуковые внутритрубные дефектоскопы для прямого высокоточного измерения толщины стенки трубы и для обнаружения трещин на ранней стадии. Принцип действия ультразвуковых дефектоскопов и их применение.
курсовая работа [2,9 M], добавлен 21.03.2013Описание принципа работы и характеристик ультразвуковых дефектоскопов, используемых предприятиями для обнаружения в деталях и узлах подвижного состава и механизмах усталостных трещин, угрожающих безопасности движения. Автоматизация при дефектоскопии.
курсовая работа [96,0 K], добавлен 26.02.2011Этапы проектирования устройства ультразвукового дефектоскопа. Вычисление параметра, определяющего длительность сигнала. Определение структуры согласованного и параметров квазиоптимального фильтра. Анализирование характеристик обнаружителя сигнала.
курсовая работа [156,2 K], добавлен 27.10.2011Основы ультразвукового контроля, акустические колебания и волны. Прохождение и отражение ультразвуковых волн. Параметры контроля. Условные размеры дефекта. Приборы УЗК. Типы дефектоскопов. Организация ультразвукового контроля, оформление результатов.
курсовая работа [2,3 M], добавлен 21.02.2016Основные причины возникновения паразитных колебаний в ротационных машинах, методы их измерения и отслеживания, применяемое при этом оборудование. Механизм диагностики и устранения паразитных колебаний. Анализ оценка точности измерительных процессов.
дипломная работа [2,0 M], добавлен 30.04.2011Диагностика магистральных газопроводов. Подготовительный этап проведения ремонта. Расчет толщины стенки трубопровода. Основные этапы ремонтных работ: земляные, очистные и изоляционно-укладочные, огневые работы. Контроль качества выполненных работ.
курсовая работа [1,4 M], добавлен 09.05.2014Построение профиля трассы. Определение плотности и вязкости. Выбор конкурирующих диаметров труб. Вычисление толщины стенки трубы по каждому из диаметров. Порядок проверки на осевые сжимающие напряжения. Проверка работы трубопровода в летних условиях.
курсовая работа [1,1 M], добавлен 09.06.2011Характеристики заготовки после литья. Сравнительный анализ методик ультразвукового контроля отливок. Расчёт наклонного преобразователя. Выбор типа УЗ-волн и направление их распространения в изделии. Способ регистрации дефектов поковки в виде пор и трещин.
курсовая работа [3,8 M], добавлен 30.10.2014Сведения о частотных характеристиках деталей. Расчет форм и частот собственных колебаний рабочих лопаток ГТД, методы и средства их измерения. Конструкция и принцип работы устройств для их зажима при контроле ЧСК. Способы снижения вибрационных напряжений.
курсовая работа [1,5 M], добавлен 31.01.2011Промышленные методы получения винилхлорида. Принципиальная схема прямого хлорирования этилена и ректификация дихлорэтана. Блок-схема получения винилхлорида из этана. Годовая производительность винилхлорида. Расчет на прочность корпуса, стенки обечайки.
курсовая работа [287,3 K], добавлен 11.05.2012