Разработка технологического процесса изготовления матрицы

Совершенствование технологического процесса изготовления матрицы для среднесерийного производства. Изучение способа получения заготовки методом литья в песчано-глинистые формы по результатам экономического анализа. Проект участка обработки детали.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 16.10.2010
Размер файла 4,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Аналогичным образом анализируем признаки группы б) «форма элементов» и в) «взаимное расположение». Видим, что в ИТР не использованы совокупности признаков на патенты России пат № 3917957, пат № 3625848, пат № 3852461. Следовательно, усовершенствованная фреза обладает патентной чистотой в отношении РФ.

Вывод

Для организации производства усовершенствованных фрез в РФ нужно приобрести лицензию у владельцев пат США № 1948057. Продавать такие фрезы в России можно беспрепятственно.

8. Научные исследования

Активное внедрение технологий высокоскоростного фрезерования в производство формообразующей технологической оснастки в значительной мере связано с современным ростом производительности механической обработки. Одновременно с повышением точности формы и чистоты поверхности, эта технология обеспечивает существенное снижение трудозатрат.

Как известно, основным конструкционным материалом для изделий технологической оснастки является высоколегированная сталь, а большая часть съема металла обеспечивается за счет фрезерования на станках (обрабатывающих центрах) с ЧПУ. Сложность формы поверхности деталей оснастки, высокая прочность материала, из которого они изготовлены, а также необходимость увеличения производительности труда и следовательно, скорости резания и подач, мощности двигателя станка--сочетание всех этих факторов приводит к появлению ряда технических проблем. Рассмотрим некоторые пути их решения.

Чрезвычайно высокие характеристики станков с ЧПУ последнего поколения (обороты шпинделя, подачи рабочих и свободных перемещений, точности позиционирования инструмента) позволяют, наряду со скоростным резанием, использовать и другие качества современного инструмента -- обеспечение предельно малого съема материала и, соответственно, обработки фасонных поверхностей с чистотой, практически исключающей финишную ручную слесарную операцию.

Однако приобретение современного станочного оборудования и режущего инструмента для предприятий стран СНГ представляет серьезную технико-экономическую проблему из-за их сравнительно высокой цены.

Производство технологической оснастки отличается, как правило, предельно малой серийностью и простотой формы заготовок (и вызванной последним фактором необходимостью съема большого количества материала). В связи с этим имеющиеся на участке станки должны выполнять две принципиально отличающиеся друг от друга операции: черновую обработку с основным съемом материала и чистовую обработку, обеспечивающую точность формы и размеров изделия и чистоту поверхности. На рис. 8.1 представлен график оценки технических возможностей различных моделей станков. Он показывает зависимость требуемой мощности привода шпинделя от оборотов при черновом, получистовом и чистовом фрезеровании, а также -- для сравнения -- величины мощности станков, находящихся в распоряжении авторов.

Необходимая мощность фрезерования

Рис. 8.1

На схеме отражены характеристики таких станков: ФП-27 производства завода «САВМА» (1987 г.), с подачами и оборотами, характерными для станков середины 80-х, а также современные высокоскоростные станки DMU-125Р и QUAZAR, выпущенные в 2000-2003 г., с повышенными оборотами, подачами и точностями, оснащенные мотор-шпинделем с характерным снижением мощности на малых оборотах. На диаграмме отражено то обстоятельство, что для станков с редуктором мощность, близкая к максимальной, сохраняется до числа оборотов около 300 об/мин. На кривых мощности также расставлены точки, соответствующие режимам работы фрез SANDVIK серий R200 (черновая обработка), R300 (получистовая) и со сферической режущей частью для чистовой обработки.

Сопоставление требуемых и располагаемых мощностей показывает, что для станков, оснащенных мотор-шпинделем, из-за снижения мощности при уменьшении оборотов ограничиваются величины диаметров фрез и/или глубина и ширина фрезерования. Для станков с редуктором сохранение располагаемой мощности вплоть до малых оборотов позволяет выполнять производительную черновую обработку фрезами достаточно большого диаметра. Низкие обороты шпинделя станка ФП-27 существенно уменьшают эффективность использования на нем фрез малых диаметров (до 40 мм) даже при черновой обработке. Видно также, что станки, имеющие объединенный мотор-шпиндель, уступают станкам с редуктором на режимах черновой обработки. При чистовой обработке преимущество переходит к современным 5-ко-ординатным станкам, позволяющим вести обработку периферией режущей части фрезы при обеспечении высокой чистоты обработанной поверхности.

При использовании инструмента для высокоскоростного фрезерования необходимо учитывать имеющиеся для него ограничения по глубине резания: она, как правило, не превышает 2-5 мм. При распределении припусков по видам обработки (рис. 8.2) выборка материала осуществляется по слоям, причем этот алгоритм распределения должен учитываться в управляющих программах, формируемых в технологических системах программирования (САМ-система или САПР ТП).

САМ-системы становятся необходимым третьим элементом комплекса «станок -- инструмент -- средство программирования», влияющим на эффективность и окончательную стоимость этого комплекса.

Диапазоны припусков по виду обработки

Рис. 8.2

Характерные величины рабочих подач при чистовой обработке весьма велики. Они могут составлять -3-4 м/мин и более. Для криволинейных поверхностей траектория движения фрезы в известных системах программирования для станков с ЧПУ формируется в виде кусочков ломаной линии, с заданной точностью аппроксимирующей обрабатываемую поверхность. При обработке в точках излома траектории движение станка нарушается (рис. 8.3).

В частности, при выходе в точку излома (пунктирная кривая) возникает удар, интенсивность которого определяется соотношением жесткости станка и величиной подачи. С целью его исключения в системе программирования возможно введение торможения (снижения подачи) в точке излома или специальные скругления траектории. Длина участков торможения-разгона и криволинейных скруглений для данных подач определяются располагаемыми тангенциальным и нормальным ускорениями станка.

Варианты обхода угловой точки траектории

Рис. 8.3

Когда речь идёт о высокоскоростной обработке, наиболее неправильно понимаемые области - рабочая подача и скорость быстрых перемещений. Более высокие скорости лучше только в одном. Например, у созданного для быстрых перемещений станка узлы могут двигаться от одной точки к другой со скоростью, например 60 м/мин, т.е. значительно быстрее, чем на медленном станке. Но когда на быстром станке необходимо переместить узел на короткое расстояние, на нем нельзя переместить узел с такой же скоростью, как перемещается узел менее скоростного станка. Причиной является ускорение. С теми же самыми двигателями узлы «медленного» станка разгоняются до максимальной скорости быстрее, чем более скоростной станок сможет «доползти» до высшей скорости (рис 8.4).

Законы физики диктуют, что тот же двигатель может разогнаться гораздо быстрее, если он соединён с редуктором, рассчитанным на более низкую скорость. Если при движении любого транспортного средства Вы когда-либо пользовались рычагом переключения передач, то Вам это будет понятно. В езде по городу более низкие передачи обеспечивают лучшее ускорение, тогда как четвертая или пятая передача обеспечивают самую высокую скорость при движении по шоссе, но эти скорости бесполезны при движении в пробках. Однако для станка с компьютерным устройством ЧПУ (УЧПУ) двигатель по каждой оси координат имеет только одно передаточное отношение. Все конструкторы выбирают скорости и диапазон ускорений станка, думая, что они являются оптимальными. Трудно сказать, что они имели в виду, выбирая такой рабочий диапазон? Вероятно, пытались угодить своим отделам сбыта и маркетинга, которые просили поднять предельные скорости и подачи.

Влияние предельной скорости станка на разгон/ускорение.

Рис. 8.4

Экспоненциальная зависимость ускорения от мощности означает, что для того, чтобы вдвое увеличить ускорение, требуется в четыре раза поднять мощность (рис. 8.4). И наоборот, при той же самой мощности увеличение максимальной скорости вдвое требует четырехкратного увеличения периода разгона/замедления. Поэтому, более «медленный» станок может в реальности быть более производительным (скоростным), чем станок с более высоким скоростным диапазоном.

При фрезеровании с использованием компьютерного УЧПУ можно плавно координировать движение по трем линейным осям для обработки сложных контуров. Например, фрезерование окружности реализуется как постоянный процесс, т.е. как «следящее» резание, но внутри программы УЧПУ оно дробится на сложную последовательность команд и коррекций. Для программиста и оператора ясно, что трехкоординатное УЧПУ рассчитывает перемещения по семейству точек, которые расположены приблизительно по кругу. Качество такой интерполяции (степень приближения) зависит от точности работы УЧПУ, которая постоянно изменяется.

Чем выше быстродействие УЧПУ, тем плавнее интерполяция. Когда станок с УЧПУ фрезерует дугу в 8" при 200 импульсах в минуту, Вы видите плавное движение, но УЧПУ фактически выполняет серию коротких линейных шагов. Быстродействие УЧПУ определяет длину шага. Старые и более медленные УЧПУ часто на круглом контуре дают огранку или серию лысок. Другие УЧПУ, более новые, но относительно медленные по сравнению с имеющимися на рынке наиболее быстродействующими, либо замедляются, либо частично компенсируют погрешность посредством выхаживания, хотя некоторая погрешность при этом все-таки остаётся.

Длину сегментов интерполяции можно рассчитать, если известно быстродействие станка. При использовании диапазона подачи 200 импульсов в минуту и временной дискретности 3 мкс линейный сегмент или хорда составляют 0,25 мм (0,010"). Этот показатель - наиболее высокое быстродействие, характерное для самых популярных европейских высокоскоростных систем управления.

Самые же скоростные промышленные системы управления демонстрируют быстродействие порядка 400 мкс (0,0004 с). Повышение быстродействия в 7,5 раз обеспечивает в результате длину хорды сегмента в 35 мкм (рис. 8.5).

Очевидным преимуществом такого повышения является более точный контур обработанной поверхности вне зависимости от её размера. Менее очевидным преимуществом при сокращении времени цикла является повышение точности.

Величина хорды сегмента обработки

Рис. 8.5

Удвоение скорости даёт в результате четырехкратное повышение точности. Почти 10-кратный скачок быстродействия с 3 мкс до 0,4 мкс, теоретически повышает ее приблизительно в 56 раз. При комплексной обработке контура наиболее жесткое требование к УЧПУ - это плавное движение от точки к точке с того момента, когда программа CAD-CAM генерирует большую массу индивидуальных траекторий инструмента с очень короткими линейными шаги между ними. Чем выше быстродействие УЧПУ, тем быстрее движется инструмент и тем, соответственно, выше скорость обработки.

Работа с более редкими остановками при продолжении резания не только позволяет сделать деталь быстрее, но также продлевает срок службы инструмента и повышает его производительность, потому что этот инструмент меньше затупляется. Хотя большинство производителей не хотят, чтобы поверхности деталей были излишне гладкими, что ухудшает их качество, тем не менее в результате более плавных перемещений повышается точность обработки и продлевается срок службы станка. "Прогнозирование" является ключом к реализации этой важной функции.

Прогнозирование становится основой для высокоскоростной обработки из-за высокой плотности массива данных. При использовании старых, более медленных моделей УЧПУ узлы станка движутся довольно медленно, отчего перемещения вдоль осей могут быть остановлены в пределах любого единичного блока. На новых станках при скорости перемещения узлов в несколько десятков метров в минуту им требуется большее расстояние, чтобы остановиться. И при плотных, последовательных перемещениях, требуемых для достижения высокой точности при обработке сложных контуров, порой трудно рассчитать время или расстояние до остановки вдоль оси, чтобы получить необходимую точность. Это может звучать так, как если бы прогноз снизил производительность, пожертвовав подачей, для того чтобы обеспечить точность. Или наоборот, это - оптимизация производительности. Тот же самый прогноз, который «замедлил» программу УЧПУ для обработки острых углов, в то же время сохраняет самые высокие скорости перемещений по координатам при менее радикальных изменениях направления движения.

Там, где раньше, была необходимость выбирать более медленные подачи при программировании, чтобы фрезеровать сложный контур, эффективный прогноз поможет оптимизировать программируемую подачу для конкретной фрезы и в соответствии с обрабатываемым материалом и позволит УЧПУ принимать решения о том, где её нужно замедлить. Идея состоит в том, что прогноз пытается улучшить ситуацию, задавая величину программируемой подачи и не ставя при этом под угрозу точность перемещения. Результатом является увеличение непрерывной или эффективной подачи до среднего уровня, поддерживаемого в течение всего процесса обработки.

9. Выбор и проектирование станочного приспособления

Принцип работы ускорительной головки

Необходимость ускорительной головки предопределяется тем, что станки с ЧПУ для обработки корпусных деталей имеют ограниченную частоту вращения шпинделя, недостаточную для достижения нужной скорости резания мелкоразмерным инструментом.

Конструкция ускорительной головки представлена на чертеже

06.М15.6 .50.000.СБ

Конструкция ускорительной головки состоит из корпуса 2, выполняющего роль водила, в котором на осях 5, закреплены сателлиты 7.

Корпус 2 неподвижно соединен с хвостовиком 1, который имеет конус 7:24, устанавливаемый в шпиндель станка. Сателлиты 7 находятся в зацеплении с корончатым колесом 6, которое должно быть остановлено путем соединения с позиционирующим блоком, размещенным на станке.

Через солнечное колесо 4 вращение передается на выходной вал 3, который движется с частотой в пять раз больше частоты вращения шпинделя. На открытом конце выходного вала помещен цанговый патрон 8 с цангой 9, которая с помощью гайки 10 зажимает цилиндрический хвостовик инструмента. На другом конце выходного вала 3 с помощью шайбы 36 закреплен маховик 16, предназначенный для повышения равномерности вращения инструмента.

Останов корончатого колеса 6 осуществляется упором 19, входящего в паз позиционирующего блока. Во время входа хвостовика 1 в коническое отверстие шпинделя станка ползун 20 после контакта с позиционирующим блоком перемещается по упору 19, сжимая пружину 25. При этом поводок 24, размещенный в кольце 22, выходит из зацепления с ползуном 20 и одновременно из зацепления с кольцом 23 выходит уголок 21, корончатое колесо 6 останавливается в заданном положении, а хвостовик 1, вращаясь, передает крутящий момент на вал 3 и инструмент.

По окончании работы шпиндель станка останавливается в определенном положении. Пружина 25 выталкивает ползун 20, и в результате головка оказывается в исходном положении.

Поддержка упора 19 в заданном вертикальном положении осуществляется с помощью кольца 17, подвижно закрепленного на вращающемся хвостовике 1 через подшипник 35.

Увеличение скорости резания до оптимальных значений позволяет значительно повысить надежность работы инструмента.

Применение на станках с ЧПУ позволит повысить производительность и сократить основное время обработки.

Расчет усилия зажима инструмента

Рассчитаем усилие зажима концевой фрезы с посадочным местом O8 для процесса контурного фрезерования образующей матрицы.

Схема раскладки сил показана на рисунке 9.1

Схема сил, действующих на заготовку

Рис.9.1

Осевую сила Q, необходимую для затягивания цанги найдем по формуле:

, Н

(9.1)

где Р1 - сила, сжимающая лепестки цанги до их соприкосновения с поверхностью заготовки, Н;

Р2 - сила зажима заготовки всеми лепестками цанги, Н;

- половина угла конуса цанги = 15;

- угол трения=arctg f1 = 11.

f1 - коэффициент трения конусной поверхности, f1 =0,2 .

, Н

(9.2)

где Е = 2,1?105 МПа - модуль упругости стали, идущей на изготовление цанги;

J - момент инерции в сечении заделанной части лепестка, мм4;

- стрела прогиба лепестка, =, - зазор между цангой и заготовкой (до начала зажима) =0.2;

z - число лепестков цанги, z=4;

l - расстояние от плоскости задела лепестка цанги до середины зажимающего конуса цанги, l=20 мм;

, см4

(9.3)

где D - наружный диаметр лепестков цанги, D=28 мм;

S - толщина лепестка цанги, S =10мм;

- угол сегмента лепестка цанги=88.

Найдем силу Р1:

= 7134,4см4=0,41мм4

=44,73Н

Найдем силу Р2:

, Н

(9.4)

где - момент резания, Н·м;

r1 - расстояние от оси до точки приложения силы резания, мм;

r - радиус заготовки на участке зажима, мм;

РZ - сила резания, стремящаяся повернуть заготовку относительно оси цанги, Н;

q - cоставляющая часть усилия, приложенного при резании, сдвигающая заготовку вдоль оси, Н;

К = 1,5…2,0 - коэффициент запаса.

Рассчитаем силу резания по формуле [10]:

, Н

(9.5)

где , , , , , - коэффициенты;

- глубина резания, =5мм;

- подача на зуб фрезы, =0,08мм/зуб;

В - ширина фрезерования, В=5мм;

z - число зубьев фрезы, z=3;

D - диаметр фрезы, D=3мм;

То есть, 662,34Н

q =0.23 PZ = 0.23?662.34=152.33Н

Таким образом, =1643,93Н

Теперь можно найти осевую силу Q:

=823Н

То есть для зажима инструмента для стабильного вращения без проворотов необходимо приложить осевую силу равную 823Н.

10. Выбор и проектирование инструмента

Произведем расчет концевой конической фрезы с цилиндрическим хвостовиком для обработки ручьев ковочных штампов.

Материал фрезы - твердый сплав ВК10М

Геометрические параметры фрезы

Правильное назначение геометрических параметров фрезы позволяет обеспечить высокую стойкость фрезы и необходимую шероховатость обработанной поверхности.

Главный задний угол

[17, стр.110, табл.4.2]

Нормальный задний угол фрезы

(10.1)

где - угол наклона винтовых канавок фрезы.

=25? [13, стр.211, табл.3.10]

Тогда

Откуда

Передний угол (влияет на обеспечение необходимой прочности режущей кромки, минимальные силы и мощность фрезерования)

[17, стр.111, табл.4.3]

Главный угол в плане (определяет стойкость и производительность фрезы и соотношения между составляющими силами резания)

[17, стр.111, табл.4.4]

Переходная кромка в плане (для упрочнения режущей кромки)

(10.2)

То есть

[17, стр.111, табл.4.4]

Угол наклона режущей кромки (служит для направления отвода стружки, упрочнения режущей кромки и обеспечения равномерного фрезерования)

Угол подъема витков фрезы

[13, стр.211, табл.3.10]

Радиус торцевой части фрезы - 1,5мм [13, стр.211, табл.3.10]

Диаметр фрезы

Минимальный диаметр фрезы перед переходом на радиус 1,5 - d=3мм [13, стр.211, табл.3.10]

Длина режущей части фрезы

[13, стр.211, табл.3.10]

Число зубьев фрезы

[13, стр.211, табл.3.10]

Форма и размеры зубьев и стружечных канавок

При выборе формы зуба необходимо обеспечить его необходимую прочность, свободное размещение срезаемой стружки в канавке, большое число переточек, простоту изготовления.

Высота зуба

, мм

(10.3)

где =0,9…1,2 - коэффициент

Таким образом, мм - высота у минимального диаметра;

мм - высота у максимального диаметра.

Радиус закругления дна стружечной канавки

, мм

(10.4)

То есть мм

мм

Угол спинки зуба

[17, стр.116]

Радиус спинки зуба

, мм

(10.5)

То есть мм

мм

Ширина ленточки по задней поверхности

мм [17, стр.116]

Ширина ленточки по передней поверхности

мм [17, стр.116]

Чертеж концевой фрезы для нарезания шлицев представлен на чертеже 06.М15.6 .51.000.

11. Проектирование производственного участка

Матрица в паре с пуансоном предназначена для изготовления штамповок фланца. Матрица изготовлена из инструментальной стали 4Х5МФС. Годовая программа выпуска - 1000шт, что при массе 1,4кг соответствует среднесерийному производству. Работа ведется в 2-х сменном режиме.

Расчёт количества основного технологического оборудования на участке и коэффициента его загрузки

Цель раздела - определение количества основного технологического оборудования при среднесерийном производстве на стадии технологического проекта и подготовки исходных данных для составления планировки участка механической обработки детали.

Исходные данные для проведения этого расчёта являются годовая программа и технологический процесс с нормами времени. Нормы времени приведены в таблице 11.1.

Таблица 11.1

Нормы времени по операциям

№ оп.

Код и наименование

операции

Тшт ,

мин

Модель

оборудования

010

Фрезерно-расточная

11,58

6М610Ф3

015

Многоцелевая черновая

26,28

2204ВМФ2

020

Сверлильно-фрезерная

5,61

243ВМФ2

025

Сверлильная

3,07

2Н118

030

Многоцелевая получистовая

12,13

2204ВМФ2

035

Сверлильно-фрезерная

2,76

243ВМФ2

040

Контрольная

-

Контр. приспособ

045

ТО

-

Печь

050

Шлифовальная

8,6

3Е710А

055

Многоцелевая чистовая

16,02

2204ВМФ2

060

Сверлильно-фрезерная

2,43

243ВМФ2

065

Многоцелевая полировальная

3,77

2204ВМФ2

070

Контрольная

-

Контр. приспособ.

075

Маркирование

-

Кант. площадка

080

Консервация

-

Кант. площадка

При определении количества оборудования необходимо определить действительный фонд времени оборудования Fд.
Действительный фонд времени работы оборудования, принимаемый при расчетах для соответствующего режима работы определим по формуле:
, (11.1)
где Вр - коэффициент потерь времени на ремонт оборудования, Вр=7%;
Fн - номинальный фонд времени работы оборудования, определяемый по формуле:
, (11.2)
где Дк - число календарных дней в году, Дк=365;
Пр - число праздничных дней в году, Пр=11;
Вс - число воскресных дней в году, Вс=52;
Сб - число субботних дней в году, Сб=52;
Тсм - длительность рабочей смены, Тсм=8ч;
Дпр - количество предпраздничных дней, Дпр=9;
Тпр - время, на которое сокращается предпраздничный день, Тпр=1ч;
С - количество смен в сутки, С=2.
Таким образом, Fн=((365-11-52-26)·8 - 9•1)•2=4398 ч
Fд=4398• (1-0,07)=4090 ч.
Годовая программа запуска равна:
, (11.3)
где Nг - годовая программа выпуска, Nг=1000шт;
Зч - процент деталей, уходящих в запчасти, Зч=15%;
Бр - процент потерь деталей в брак, Бр=2%.
Nг.зап=1000• (1+0,15) • (1+0,02)=1173шт.
Расчётное число станков каждой группы будет находиться по формуле:
(11.4)
где Квн - коэффициент выполнения норм, Квн =1,1.
Расчёт необходимого количества станков сведём в таблицу 11.2
где Sпр - принимаемое нами количество станков.
Таблица 11.2
Расчетное число станков

№ оп.

Наименование операции

Расчётное количество станков, Sр

Принятое количество станков, Sпр

010

Фрезерно-расточная

0,043

1

015

Многоцелевая черновая

0,097

1

020

Сверлильно-фрезерная

0,021

1

025

Сверлильная

0,011

1

030

Многоцелевая получистовая

0,045

1

035

Сверлильно-фрезерная

0,01

1

040

Контрольная

-

-

045

ТО

-

-

050

Шлифовальная

0,032

1

055

Многоцелевая чистовая

0,059

1

060

Сверлильно-фрезерная

0,01

1

065

Многоцелевая полировальная

0,014

1

070

Контрольная

-

-

075

Маркирование

-

-

080

Консервация

-

-

Полученные расчетные значения количества станков, округляем в большую сторону до целого числа и определяем необходимую величину догрузки подобными видами продукции.

Догрузка оборудования находится по формуле:

(11.5)

где Ку =1,05- коэффициент увеличения штучного времени.

Результаты расчётов сведём в таблицу 11.3.

Таблица 11.3

Догрузка оборудования по операциям

№ оп.

Наименование операции

Догрузка оборудования,

Nдог, шт/год

010

Фрезерно-расточная

18306

015

Многоцелевая черновая

7585

020

Сверлильно-фрезерная

38702

025

Сверлильная

71484

030

Многоцелевая получистовая

17437

035

Сверлильно-фрезерная

79598

040

Контрольная

-

045

ТО

-

050

Шлифовальная

24947

055

Многоцелевая чистовая

12998

060

Сверлильно-фрезерная

90407

065

Многоцелевая полировальная

58025

070

Контрольная

-

075

Маркирование

-

080

Консервация

-

Проводим заново расчёт необходимого количества оборудования по формуле:

(11.4)

Результаты расчётов сводим в таблицу 11.4.

Таблица 11.4

Расчетное число станков с учетом догрузки

№ оп.

Наименование операции

Расчётное количество станков, Sр

Принятое количество станков, Sпр

010

Фрезерно-расточная

0,83

1

015

Многоцелевая черновая

0,85

1

020

Сверлильно-фрезерная

0,83

1

025

Сверлильная

0,83

1

030

Многоцелевая получистовая

0,83

1

035

Сверлильно-фрезерная

0,82

1

040

Контрольная

-

-

045

ТО

-

-

050

Шлифовальная

0,82

1

055

Многоцелевая чистовая

0,83

1

060

Сверлильно-фрезерная

0,82

1

065

Многоцелевая полировальная

0,82

1

070

Контрольная

-

-

075

Маркирование

-

-

080

Консервация

-

-

Коэффициент загрузки оборудование определяется как отношение расчётного числа к проектируемому:

К = Sp / Sпр (11.5)

Коэффициент загрузки оборудования сведем в таблицу 11.5.

Таблица 11.5

Коэффициент загрузки оборудования

№ оп.

Наименование операции

Коэффициент загрузки оборудования

010

Фрезерно-расточная

0,83

015

Многоцелевая черновая

0,85

020

Сверлильно-фрезерная

0,83

025

Сверлильная

0,83

030

Многоцелевая получистовая

0,83

035

Сверлильно-фрезерная

0,82

040

Контрольная

-

045

ТО

-

050

Шлифовальная

0,82

055

Многоцелевая чистовая

0,83

060

Сверлильно-фрезерная

0,82

065

Многоцелевая полировальная

0,82

070

Контрольная

-

075

Маркирование

-

080

Консервация

-

Среднее значение коэффициента загрузки

0,828

По полученным коэффициентам загрузки оборудования построим график загрузки оборудования (рис.11.1)

График загрузки оборудования

Рис. 11.1

Расчет числа рабочих

Промышленно - производственный персонал цеха (участка) состоит из производственных и вспомогательных рабочих, инженерно - технических работников (ИТР), служащих и младшего обслуживающего персонала (МОП).

Число рабочих на каждую операцию определяем по формуле:

(11.6)

где 1731ч - действительный годовой фонд времени работы рабочего.

Расчёт числа рабочих по операциям техпроцесса сведём в таблицу 11.6

Таблица 11.6

Количество рабочих по операциям технологического процесса

№ оп.

Наименование операции

Расчётное количество станков, Sр

Принятое количество станков, Sпр

010

Фрезерно-расточная

1,95

2

015

Многоцелевая черновая

1,96

2

020

Сверлильно-фрезерная

1,94

2

025

Сверлильная

1,95

2

030

Многоцелевая получистовая

1,95

2

035

Сверлильно-фрезерная

1,95

2

040

Контрольная

-

-

045

ТО

-

-

050

Шлифовальная

1,97

2

055

Многоцелевая чистовая

1,96

2

060

Сверлильно-фрезерная

1,96

2

065

Многоцелевая полировальная

1,95

2

070

Контрольная

-

-

075

Маркирование

-

-

080

Консервация

-

-

Итого общее число рабочих

20

После расчёта числа основных производственных рабочих, необходимо рассчитать число вспомогательных рабочих, число контролёров, число ИТР, Численность младшего обслуживающего персонала (МОП).

Вспомогательные рабочие:

3 принимаем 3 человека.

Число контролёров:

5 принимаем 5 человек.

Численность ИТР:

0,69 принимаем 1 человека.

Младший обслуживающий персонал:

0,46 принимаем 1 человека.

Организация снабжения материалами и заготовками

Для хранения запаса заготовок предусматривается склад, расположенный в начале участка механической обработки детали. На рабочее место заготовки, уложенные в контейнер открытого типа, доставляются при помощи погрузчиков. В процессе обработки проводится межоперационный контроль, наиболее важными являются контрольные операции перед ТО, каковой являются 045 операция - закалка и после изготовления детали. После каждой из перечисленных операций деталь возвращают на участок на дальнейшую обработку. После проверяют качество изготовленной детали на контрольном столе. Работники планово распределительного бюро обеспечивают подачу деталей и заготовок к станкам.

На основе технической документации, инструментально-раздаточная кладовая (ИРК) заблаговременно комплектует специальный инструмент и приспособления, обеспечивает его заточку, восстановление и списание. Доставку инструмента и приспособлений к рабочему месту осуществляется вспомогательными рабочими.

Сжатый воздух, масло, смазочно-охлаждающая жидкость подаётся к станкам по централизованным трубопроводам. При обнаружении рабочим нехватки масла в станке он обязан сообщить об этом мастеру, а тот в свою очередь даёт заявку вспомогательным рабочим соответствующей службы, которые обеспечивают снабжение основного производства (оборудования участка) маслом, специально оборудованным транспортом с тарой для масла.

Организация транспортного хозяйства

Главной целью организации транспортного хозяйства является снижение трудоёмкости работ и сокращение времени производственного цикла. Выбор транспортных средств зависит от характера обрабатываемых на участке заготовок, их габаритов и массы, типа производства, конструкции здания.

Доставка заготовок в механический цех осуществляется автотранспортом. Подача контейнеров на склады и к месту обработки выполняется при помощи автопогрузчиков.

Передача деталей от станка к станку осуществляется при помощи вспомогательных рабочих. Такой вид передачи деталей является оптимальным в условиях среднесерийного производства, деталей простой геометрической формы.

Для удаления стружки из рабочей зоны в большинстве станков имеются шнековые устройства, которые перемещают стружку к люку, расположенному с тыльной стороны станка. Дальнейшее транспортирование стружки от станка к общецеховому месту сбора производится при помощи системы скребковых транспортёров (конвейеров), расположенных под полом цеха вдоль станков.

Организация работы участка и рабочих мест

Организация рабочего места является первичным звеном организации труда. Его правильная организация снижает утомляемость рабочего, повышает работоспособность и в итоге увеличивает производительность труда. Для правильной организации рабочего место важное значение имеет специализация, оснащение, планировка и обслуживание рабочего места. При размещении предметов и средств труда необходимо руководствоваться следующими условиями:

на рабочем месте не должно быть нечего лишнего, каждая деталь должна иметь своё место

все часто используемые предметы должны находится ближе к зоне их использования

расположение предметов на рабочем месте должно быть продуманно с таким расчётом, чтобы рабочий двигался с минимальными затратами сил

станки должны быть обеспечены местным освещением и пр.

Планировка механического участка

Планировка участка на заданную программу 400шт.

Оборудование расставлено по ходу технологического процесса. Стружка удаляется скребковым конвейером, расположенным под полом.

Для инструмента предусмотрены инструментальные ящики. Для улучшения условий труда на участке предусмотрено место для отдыха, место для питьевого аппарата (ситуратора). Для доставки контейнеров с заготовками и деталями по периметру участка расположена дорога (проезд) для автопогрузчиков с односторонним движением. В соответствии с нормами ширина проезда составляет 2000 см. Подвод сжатого воздуха осуществляется от общезаводской централизованной системы. В качестве средств пожарной безопасности предусмотрен пожарный щит, ящик с песком. Имеется верстак, контрольный стол, и др.

При укрупненном проектировании производственную площадь участка определяем по удельной площади, необходимой для размещения станков в зависимости от их массы. Величину удельной площади, приходящейся на один станок берем из [19].

Sпр. = Sуд. Sобщ. (11.7)

Sпр. = 25 10= 250м2

Размеры вспомогательной площади участка определим, исходя из норм для расчета площадей вспомогательных служб.

- склад вспомогательных материалов (0.2 м2 на один станок) - 1,6 м2

- площадь для хранения стружки - 5 м2

- площадь под проходы принимаем 30% от площади станков - 85 м2

- резервное место под дополнительное оборудование - 150 м2

- площадь для места мастера - 9 м2

- площадь под контрольные столы - 20 м2

- место для отдыха -9 м2

- место под контейнеры для материала - 88 м2

- место под кант. площадку - 12 м2

Общая площадь: 630 м2

Нормативы расстояний между станками, от стен и колонн здания, а также нормы ширины магистральных проездов приведены в [18].

Компоновка механического участка по обработке данной детали представлена на чертеже 06.М15.6 .76.000.

Раздел №12. «БЕЗОПАСНОСТЬ и ЭКОЛОГИЧНОСТЬ ОБЪЕКТА»

Задание для выполнения раздела: Разработать мероприятия по обеспечению промышленной, экологической безопасности и безопасности в экстремальных ситуациях на предприятии (участке, при выполнении работ и т.д.).

12. Безопасность и экологичность проекта

Описание рабочих мест, оборудования и выполняемых операций

Рассматривается производство детали - матрица достигает в проектируемом варианте 1000 деталей в год при двусменном режиме работы. Поэтому механическая обработка матрицы ведется при невысокой автоматизации труда: основные трудоемкие операции выполняются на станках с ЧПУ - фрезерных и сверлильных. Помимо металлорежущего оборудования в комплекс входят: контрольная установка, моечная машина, сушильная установка. В процессе предусмотрены быстросменное крепление инструмента, наладка его вне станков и хранение в инструментальных шкафах, устройства для сигнализации о поломке инструмента и автоматический контроль деталей.

Загрузка и транспортировка деталей между станками осуществляется с помощью загрузочно-разгрузочных устройств и транспортных потоков.

Проектируемое производство носит характер среднесерийного производства. Поэтому максимальной автоматизации в разрабатываемом варианте не требуется. Поскольку возрастающие запросы рынка на изменения, как самой продукции, так и ее стоимости поставили перед производителем новые задачи, такие как увеличение производительности, улучшение условий труда за счет внедрения более прогрессивных методов обработки (увеличение стойкости инструмента, увеличение режимов обработки, скорости, подачи), которые трудновыполнимы при жесткой автоматизации. На используемом в проекте оборудовании, станках с числовым программным управлением и на широкоуниверсальных станках будет вестись обработка и других деталей, значит, оборудование может располагаться не в строгом соответствии ходу технологического процесса. Расстояние между станками соответствует санитарно - гигиеническим нормам: ширина переходов равна одному метру, для движения погрузчиков предусмотрены проезды шириной два метра.

Эскиз рабочего участка представлен на рисунке 12.1

Эскиз рабочего участка по изготовлению матрицы

Рис.12.1

55

Идентификация опасных и вредных производственных факторов

Проанализируем все опасные и вредные производственные факторы, которые могут возникнуть при выполнении технологических операций на участке изготовления матрицы нижней черновой и внесем их в таблицу 12.1

Таблица 12.1

Опасные и вредные производственные факторы

№ п/п

Наименование опасного и вредного производственного фактора

Виды работ, оборудование, технологические операции при которых встречается данный производственный

фактор

1

Повышенное значение напряжения в электрической цепи, замыкание которой может произойти через тело человека.

На всем оборудовании, во всех операциях, где производится механическая обработка

2

Повышенный уровень статического электричества

На всем оборудовании, во всех операциях, где производится механическая обработка

3

Движущиеся машины и механизмы; подвижные части производственного оборудования; передвигающиеся изделия, заготовки, материалы.

На всем оборудовании, во всех операциях, где производится механическая обработка

4

Фиброгенное воздействие (пыль и абразивная стружка, металлическая пыль)

Операция №050 - Шлифовальная

Операция №025 - Сверлильно-фрезерная; Операции №015, 030,055 - Многоцелевая.

5

Недостаточное естественное и искусственное освещение

На всех операциях технологического процесса

6

Повышенный уровень вибрации

На всей территории механического участка

7

Повышенный уровень шума

На всей территории механического участка

8

Неблагоприятные параметры микроклимата рабочих мест и производственных помещений

На всей территории механического участка

9

Физические и нервно-психические перегрузки

Все работающие на участке

Воздействие производственного фактора на организм работающего

Опасность поражения людей электрическим током может возникнуть в случае прикосновения к частям электроустановки или оборудования, нормально не находящимся под напряжением, но с возможностью оказаться под ним при замыкании на корпус электрооборудования.

Вращающийся инструмент может привести к наматыванию одежды, волос на инструмент, механическому повреждению живых тканей организма.

Обработка резанием матрицы нижней происходит с применением смазочно-охлаждающие жидкости, отчего воздух загрязняется аэрозолями (туманами) этих веществ, а так же металлической пылью при обработке на фрезерных станках безсожевым методом.

Вредные вещества из воздуха проникают в организм человека главным образом через дыхательные пути, а также через кожу и оказывают токсическое действие на организм человека, вызывая раздражение слизистых оболочек дыхательных путей. В процессе обработки образуется железная пыль, которая, попав в лёгкие, оседает там. В результате воздействия вредных веществ могут возникнуть профессиональные заболевания.

Правильно спроектированное и выполненное освещение на машиностроительных предприятиях обеспечивает возможность нормальной производственной деятельности. Недостаточное освещение отрицательно влияет на работников. Оно ухудшает зрение и состояние нервной системы человека. Кроме того, от освещения зависит производительность труда и качество продукции. Следовательно, его недостаток может привести к ухудшению производственного процесса.

Причиной возбуждения вибраций являются возникающие при работе машин и агрегатов неуравновешенные силовые воздействия. Источником их могут быть кривошипно-шатунные механизмы, гидравлические удары при разрыве и т.д. различают общую и локальную вибрации. Общая вызывает сотрясение всего организма, местная вовлекает в колебательное движение отдельные части тела.

Основные источники шума на участке - гидроприводы, шум от удара при разрыве, электродвигатели, зубчатые и ременные передачи, подшипники, особенно при наличии износа, перекосов и дисбаланса движущихся частей, а также сам процесс резания и вибрации технологической системы ЗИПС.

Неблагоприятные параметры микроклимата рабочих мест и производственных помещений: в соответствии с ГОСТ 12.1.005 - 88 устанавливаем оптимальные и допустимые метеорологические условия для рабочей зоны помещения. Оптимальная температура воздуха 1822С; оптимальные величины относительной влажности составляют 4060 %; скорость движения воздуха в зимнее время не должна превышать 0.20.5 м/с, летом - 0.21.0 м/с.

Рабочие постоянно подвергаются физическим перегрузки и нервно-психическим перегрузкам. Нервно-психические перегрузки подразделяются на: умственное перенапряжение; перенапряжение анализаторов; монотонность труда; эмоциональные перегрузки.

Мероприятия по разработке безопасных условий труда на производственном участке

Для обеспечения безопасности электроустановки оборудуются защитой, которая может быть выполнена в виде защитного заземления, сопротивление которого не должно превышать нормированной величины Rm = 4 Ом.

Вращающийся инструмент должен быть огражден защитными кожухами и отдален от человека на безопасное расстояние. Спецодежда работника должна быть застегнута на все пуговицы, не должно быть свисающих частей, на голове - косынка или кепка.

В цехе и, особенно у шлифовального и фрезерного оборудования, необходимо улавливание аэрозолей и пыли с помощью вентилятора, отсасывающего загрязнённый воздух по трубопроводам к пылегазоочистной установке.

На проектируемом участке присутствует как естественное освещение, так и искусственное, осуществляемое электрическими лампами. Освещение в целях создания наилучших условий видения, должно отвечать следующим требованиям.

а) освещённость на рабочем месте должна соответствовать характеру зрительной работы, который определяется объектом различения, фоном, контрастом;

б) необходимо обеспечить достаточно равномерное распределение яркости на рабочей поверхности, а также в пределах окружающего пространства.

Эффективным средством защиты от вибрации является виброизоляция. Она является наиболее эффективным методом снижения общей вибрации на рабочих местах, а также виброзащиты оборудования и приборов. Между источником вибрации (машиной) и защищаемым объектом (человеком, фундаментом) помещают упругие элементы - амортизаторы, препятствующие передаче колебаний. Это могут быть простейшие резиновые амортизаторы в форме цилиндров, колец или призм. Данный способ защиты должен учитываться при монтаже разрывной установки.

Для снижения шума можно применить следующие методы: уменьшение шума в источнике; рациональная планировка предприятий и цехов; акустическая обработка помещений; уменьшение шума на пути его распространения и, самое главное, регулярная проверка и наладка оборудования для устранения шумов, возникающих в процессе износа оборудования.

Необходимо поддерживать постоянство нормированных параметров микроклимата, т.к. их колебания могут привести к возникновению простудных заболеваний, заболеваний дыхательных путей и сердечно-сосудистой системы работника.

Рабочее место и взаимное расположение его элементов должны обеспечивать безопасное и удобное техническое обслуживание и чистку.

Для сведения к минимуму физических и нервно-психический перегрузок при организации рабочего места должны выполнятся следующие условия: конструкция рабочего места должна обеспечивать удобную рабочую позу человека, что достигается регулированием высоты и угла наклона подставки для ног при ее применении и (или) высоты и размеров рабочей поверхности; конструкцией рабочего места должно быть обеспечено выполнение трудовых операций в зонах моторного поля (оптимальной, легкой досягаемости и досягаемости) в зависимости от требуемой точности и частоты действий.

При проектировании рабочего места в зависимости от характера работы следует работу в положении сидя предпочитать работе в положении стоя или обеспечить возможность чередования обоих положений (например, с применением вспомогательного кресла).

Организация рабочего места должна обеспечивать возможность изменения рабочей позы. Организация рабочего места должна обеспечивать устойчивое положение и свободу движений работающего, сенсорный контроль деятельности и безопасность выполнения трудовых операций. Организация рабочего места должна исключать или допускать редко и кратковременно работу в неудобных позах (характеризующихся, например, необходимостью сильно наклоняться вперед или в стороны, приседать, работать с вытянутыми или высоко поднятыми руками и т.п.), вызывающих повышенную утомляемость. Организация рабочего места должна обеспечивать необходимый обзор зоны наблюдения с рабочего места. Средства отображения информации должны быть размещены в зонах информационного поля рабочего места с учетом частоты и значимости поступающей информации, типа средства отображения информации, точности и скорости слежения и считывания. Органы управления должны быть размещены на рабочем месте с учетом рабочей позы, функционального назначения органа управления, частоты применения, последовательности использования, функциональной связи с соответствующими средствами отображения информации. Расстояние между органами управления должно исключать возможность изменения положения органа управления при манипуляции со смежным органом управления. Рабочее место при необходимости должно быть оснащено вспомогательным оборудованием (подъемно-транспортными средствами и т.д.). Его компоновка должна обеспечивать оптимизацию труда и его безопасность.

При планировании участка изготовления матриц учитывались данные вредные факторы, поэтому на момент монтажа они были сведены к минимуму, отклонения от нормы происходят в процессе износа оборудования и устраняются путем систематической подналадки

Обеспечение электробезопасности на производственном участке

По степени опасности поражения током механические цеха относят к особо опасным помещениям. Для защиты от поражения током обязательно предусматривают: защитное заземление оборудования, изоляция и ограждение токоведущих частей, защитное отключение оборудования.

Все металлические части станков, а также отдельно стоящие электри-ческие устройства, которые могут оказаться под напряжением вследствие нарушения изоляции и замыкания на корпус, должны быть заземлены.

Назначение защитного заземления - устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т.е. при “замыкании на корпус”.

Принцип действия защитного заземления - снижение опасного значения напряжений прикосновения и шага, обусловленных “замыканием на корпус”. Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциала за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по величине к потенциалу заземленного оборудования.

Область применения защитного заземления - трехфазные сети напряжением до 1000 В с изолированной нейтралью и выше 1000 В с любым режимом нейтрали.

Различают заземления искусственные, предназначенные исключительно для целей заземления и естественные - находящиеся в земле металлические предметы другого назначения.

Обеспечение пожарной безопасности на производственном участке

Пожарная защита и взрывозащита производственных объектов обеспечиваются: правильным выбором степени огнестойкости объекта и пределов огнестойкости отдельных элементов и конструкций; ограничением распространения огня в случае возникновения очага пожара; обвалкой и бункеровкой взрывоопасных участков производства или размещением их в защитных кабинах; применением систем активного подавления взрыва; применением легкосбрасываемых конструкций в зданиях и сооружениях; применением систем противодымной защиты; обеспечением безопасной эвакуации людей; применением средств пожарной сигнализации, освещения и пожаротушения; организацией пожарной охраны объекта.

В нашем случае производство относится к категории В (пожароопас-ные производства), так как на участке применяются горючие жидкости и твердые вещества (тара, ветошь и т.д.), способные гореть, но не взрываться при контакте с воздухом, водой и друг с другом.

Средства предупреждение пожара и эвакуации.

При планировке предприятий требуется обеспечить удобный подъезд пожарных автомобилей к зданиям. Применять при строительстве противопожарные преграды, противопожарные перекрытия, зоны, пожарные стены. Местные противопожарные преграды предназначаются для ограничения распространения пламени в начальной стадии развития пожара.

При пожаре большую опасность представляют собой продукты горения (дым), содержащие отравляющие, а иногда и взрывоопасные вещества. Для их удаления создаются дымовые люки, которые обеспечивают направленное удаление дыма, не задымленность смежных помещений, облегчают обнаружение очага пожара.

Для того чтобы предотвратить воздействие на людей опасных факторов пожара, необходимо при проектировании зданий обеспечить людям возможность быстро покинуть здание. Эту возможность дают эвакуационные выходы. Требования к устройству путей эвакуации и эвакуационных выходов из производственных зданий и помещений определены в СниП 11-2-80 и 11-90-81. Количество эвакуационных выходов принимается по расчету, но обычно должно быть не менее двух.

Способы и средства борьбы с пожарами

В соответствии с условиями, необходимыми для возникновения и распространения горения, прекращение горения может быть достигнуто следующими методами: прекращением доступа в зону горения окислителя (кислорода воздуха) или горючего вещества, а также снижением их поступления до величин, при которых горение невозможно; охлаждением зоны горения ниже температуры самовоспламенения или понижением температуры горящего вещества ниже температуры воспламенения; разбавления горючих веществ негорючими; интенсивным торможением скорости химических реакций в пламени (ингибированием горения) механическим срывом (отрывом) пламени сильной струей газа или воды. На этих принципиальных методах и основаны известные способы и приемы прекращения горения в условиях пожара.

Для ликвидации небольших возгораний на предприятии используют первичные средства пожаротушения: пожарные стволы (водяные и воз-душнопенные), действующие от внутреннего противопожарного водопрово-да (внутренних пожарных кранов), огнетушители, сухой песок, асбестовые одеяла и другой пожарный инвентарь.

Для тушения загораний на начальной стадии и пожаров в начальной стадии их развития применяются огнетушители. По виду огнегасительных веществ их подразделяют на воздушно-пенные, химические пенные, жид-костные, углекислотные, аэрозольные и порошковые.

Наиболее распространены химические пенные огнетушители ОХП-10, ОП-М и ОП-9ММ. Также имеются воздушно - пенные огнетушители: ручные - ОПВ-5, ОПВ-10, стационарные - ОПВ-100 и ОВПУ-250.

Инженерные расчеты

Расчет допустимого уровня шума.

Расчетная формула для определения уровня шума, если источник шума находится в помещении, будет иметь вид:

, (12.1)

где В - так называемая постоянная помещения, м2

, (12.2)

где А - эквивалентная площадь помещения

, (12.3)

где LСР - средний коэффициент звукопоглощения внутренних поверхностей помещения площадью SПОВ, LСР = 0,12, тогда

55,2

м2

LР - уровень звуковой мощности шума, определяется согласно формулы:

, (12.4)

где - исходная мощность, равная мощности переносимой звуковой волной интенсивности I0 через единичную площадку S0=1м2,

Вт

где I0 - интенсивность звука, что соответствует порогу слышимости

Р - мощность источника. Мощность электродвигателей всех станков

Р = 51 кВт = 51103 Вт.

Подставляя числовые значения, получим:

Ф - фактор направленности, характеризующий неравномерность излучения звука источником по направлениям. В нашем случае Ф = 1, SПОВ - площадь участка. В нашем случае SПОВ = 460 м2.

Расчет заземления.

Напряжение электрооборудования 380В, мощность электрооборудования 51 кВт, нормированная величина сопротивления - Rм = 4 Ом.

Определим сопротивление одиночного заземлителя R1 по формуле в зависимости от формы и расположения заземлителей в грунте:

, Ом

(12.5)

где, l - длина стержня, l = 0,2 м (рис. 12.2);

d - диаметр стержня, d = 0,012 м;

t0 - расстояние от поверхности грунта до стержня, t0 = 0,5 м;

t - общая длина, t = 0,6 м.

р - удельное сопротивление грунта, р = 30 Ом м.

Схема стержневого заземления

Рис. 12.2

Ом.

Ориентировочно определим количество заземлений:

n = R1/Rм = 85,75 / 4 = 22 шт.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.