Основы метрологии

История развития метрологии. Правовые основы метрологической деятельности в Российской Федерации. Юридическая ответственность за нарушение нормативных требований. Объекты, методы измерений, виды контроля. Международная система единиц физических величин.

Рубрика Производство и технологии
Вид шпаргалка
Язык русский
Дата добавления 13.11.2008
Размер файла 394,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Испытания средств измерений для целей утверждения их типа проводятся государственными научными метрологическими центрами Госстандарта России, аккредитованными им в качестве государственных центров испытаний средств измерений.

Система испытаний и утверждения типа средств измерений включает:

испытания средств измерений с целью утверждения типа;

принятие решения об утверждении типа;

его государственную регистрацию (внесение в реестр) и выдачу сертификата об утверждении типа;

испытания средств измерений на соответствие утвержденному типу;

признание утверждения типа или результатов испытаний типа, проведенных компетентными организациями зарубежных стран;

информационное обслуживание потребителей измерительной техники, контрольно-надзорных органов и органов государственного управления.

Программа испытаний средств измерений может предусматривать только определение метрологических характеристик конкретных образцов средств измерений и экспериментальную апробацию методики поверки, что по объему работ равносильно метрологической аттестации.

На средство измерений утвержденного типа и на эксплуатационные документы, сопровождающие каждый экземпляр, наносится знак утверждения типа средств измерений установленной формы.

В соответствии с международными соглашениями России Госстандарт РФ может принять решение о признании результатов испытаний и утверждения типа, проведенных в зарубежной стране. Это обязательное условие для внесения типа импортируемого средства измерения в Государственный реестр и его применения в России.

Периодические контрольные испытания изделия на соответствие утвержденному типу проводят в следующих ситуациях:

при наличии информации от потребителей об ухудшении качества выпускаемых или импортируемых средств измерений;

при внесении в конструкцию или технологию изготовления средств измерений изменений, влияющих на их нормированные метрологические характеристики;

при истечении срока действия сертификата об утверждении типа;

по решению Госстандарта России при постановке на производство средства измерений изготовителем;

в случае выдачи лицензии на право производства средств измерений предприятию, не являющемуся изготовителем образцов средств измерений, по результатам испытаний которых утвержден их тип.

Поверка средств измерений. Средства измерений (СИ), подлежащие государственному метрологическому контролю и надзору, подвергаются поверке органами Государственной метрологической службы при выпуске из производства или ремонта, при ввозе по импорту и эксплуатации. Допускаются продажа и выдача напрокат только поверенных средств измерений.

В отличие от процедуры утверждения типа, в которой участвует типовой представитель (СИ), поверке подлежит каждый экземпляр СИ.

Перечни групп средств измерений, подлежащих поверке, утверждаются Госстандартом России.

По решению Госстандарта России право поверки средств измерений может быть предоставлено аккредитованным метрологическим службам юридических лиц. Поверочная деятельность, осуществляемая аккредитованными метрологическими службами юридических лиц, контролируется органами Государственной метрологической службы по месту расположения этих юридических лиц.

Все выпускаемые средства измерения из производства или ремонта, ввозимые средства измерений и используемые в целях эксплуатации, проката или продажи, должны быть своевременно представлены на поверку. Положительные результаты поверки средств измерений удостоверяются поверительным клеймом или свидетельством о поверке.

Подробнее содержание поверки изложено в п. 3.7.4.

Лицензирование деятельности юридических и физических лиц по изготовлению и ремонту средств измерений производится после проверки органами Государственной метрологической службы наличия необходимых для этой деятельности условий, а также соблюдения лицами, осуществляющими эту деятельность, установленных метрологических правил и норм. В случаях нарушения установленных условий лицензия аннулируется.

Лицензия выдается на срок не более пяти лет. Орган, выдавший лицензию, обязан проводить периодический контроль за соблюдением условий осуществления лицензируемой деятельности в порядке устанавливаемом им самим.

С целью развития межгосударственных экономических и торговых связей странами СНГ подписано "Соглашение о взаимном признании результатов государственных испытаний и утверждения типа, метрологической аттестации, поверки и калибровки средств измерений, а также результатов аккредитации лабораторий, осуществляющих испытания, поверку или калибровку средств измерений". В развитие этого Соглашения принят еще один документ "Порядок взаимного признания аккредитации лабораторий, осуществляющих испытания, поверку или калибровку средств измерений".

Государственный метрологический надзор осуществляется за:

1) выпуском, состоянием и применением средств измерений, аттестованными методиками выполнения измерений, эталонами единиц величин, соблюдением метрологических правил и норм;

2) количеством товаров, отчуждаемых при совершении торговых операций;

3) количеством фасованных товаров в упаковках любого вида при их расфасовке и продаже.

Государственный метрологический надзор осуществляется в объединениях, на предприятиях, в организациях и учреждениях независимо от их подчиненности и форм собственности в виде проверок выпуска, состояния и применения средств измерений, эталонов и соблюдения иных метрологических правил и норм. Это распространяется только на средства измерений, относящиеся к сфере распространения государственного метрологического контроля и надзора. Поэтому первоочередная задача каждого предприятия - составить перечень средств измерений, относящихся к этой классификационной группе, т.е. подлежащих поверке.

Нормативными актами субъектов РФ метрологический надзор может быть распространен и на другие сферы деятельности.

По первову вопросу основным документом, регламентирующим Государственный надзор, являются правила ПР 50.2.002-94 "ГСИ. Порядок осуществления государственного метрологического надзора за выпуском, состоянием и применением средств измерений, аттестованными методиками выполнения измерений, эталонами и соблюдением метрологических правил и норм".

Основными задачами проверок являются:

определение соответствия выпускаемых средств измерений утвержденному типу;

определение состояния и правильности применения средств измерений, в том числе эталонов, применяемых для проверки средств измерений;

определение наличия и применения аттестованных методик выполнения измерений;

контроль соблюдения метрологических правил и норм в соответствии с Законом РФ "Об обеспечении единства измерений" и действующими нормативными документами по обеспечению единства измерений.

По второму вопросу основной документ - правила ПР 50.2.003-94 "ГСИ. Порядок осуществления государственного метрологического надзора за количеством товаров, отчуждаемых при совершении торговых операций".

Объектами государственного метрологического надзора за количеством товаров, отчуждаемых при совершении торговых операций, являются торговые операции, при которых товары переходят из собственности одного юридического лица или физического лица в собственность другого юридического или физического лица, при этом количество товара определяется в результате измерений.

Нарушениями метрологических правил и норм при определении количества товаров, отчуждаемых при совершении торговых операций, считаются:

а) отчуждение меньшего количества товара по сравнению с заявленным для продажи;

б) отчуждение меньшего количества товара, чем то, которое соответствует заплаченной цене;

в) использование средств измерений, не соответствующих типу, неповеренных, с нарушенным клеймом, дающих неправильные показания.

По третьему вопросу основным документом являются правила ПР 50.2.004-94 "ГСИ. Порядок осуществления Государственного метрологического надзора за количеством фасованных товаров в упаковках любого вида при их расфасовке и продаже". Метрологические требования к упаковке делятся на две группы: требования к индивидуальной упаковке и требования к партии товаров в упаковках. Требования к индивидуальной упаковке сводятся к тому, что недовложение товара в упаковку не должно превышать допускаемого предела, указанного в нормативной документации на продукцию. Если такая норма не указана, то следует руководствоваться требованиями, содержащимися в международном документе МР № 87 МОЗМ "Содержимое нетто в упаковках". Данное требование легко контролируется традиционными способами. Правила ПР 50.2.004-94 вводят единственное дополнение - погрешность определения содержимого нетто фасованного товара в каждой упаковке при осуществлении Государственного метрологического надзора не должна превышать 1/5 предела допускаемого отклонения (недовложения).

3.8.3. Права и обязанности государственных инспекторов по обеспечению единства измерений

Государственный метрологический контроль и надзор осуществляют должностные лица Госстандарта России - главные государственные инспекторы и государственные инспекторы по обеспечению единства измерений Российской Федерации, республик в составе Российской Федерации, автономной области, автономных округов, краев, областей, городов Москвы и Санкт - Петербурга.

Осуществление государственного метрологического контроля и надзора может быть возложено на государственных инспекторов по надзору за государственными стандартами, действующих в соответствии с законодательством Российской Федерации и прошедших аттестацию в качестве государственных инспекторов по обеспечению единства измерений.

Государственные инспекторы, осуществляющие поверку средств измерений, подлежат аттестации в качестве поверителей.

При выявлении нарушений метрологических правил и норм государственный инспектор имеет право:

запрещать применение и выпуск средств измерений неутвержденных типов или не соответствующих утвержденному типу, а также неповеренных;

гасить поверительные клейма и аннулировать свидетельства о поверке в случаях, когда средства измерений дают неправильные показания или просрочены межповерочные интервалы;

при необходимости изымать средства измерений из эксплуатации;

представлять предложения по аннулированию лицензий на изготовление, ремонт, продажу и прокат средств измерений в случаях нарушения требований к этим видам деятельности;

давать обязательные предписания и устанавливать сроки устранения нарушений метрологических правил и норм;

составлять протоколы о нарушении метрологических правил и норм.

Государственные инспекторы, осуществляющие государственный метрологический контроль и надзор, обязаны строго соблюдать законодательство Российской Федерации, а также положения нормативных документов по обеспечению единства измерений и государственного метрологического контроля и надзора.

За невыполнение или ненадлежащее выполнение должностных обязанностей, превышение полномочий и за иные нарушения, включая разглашение государственной или коммерческой тайны, государственные инспекторы могут быть привлечены к ответственности в соответствии с законодательством Российской Федерации.

3.9. Основы квалиметрии [47]

Квалиметрия -- раздел метрологии, изучающий вопросы измерения качества. Здесь используются те же законы и правила, что и в области измерения физических величин, но есть и некоторые особенности, которые наглядно проявляются в сравнении.

Если мерами физических свойств являются физические величины (масса, время, давление, скорость и др.), то мерами свойств, определяющих качество, служат показатели качества.

Установлено 12 областей измерений физических величин: измерения геометрических величин; измерения механических величин; измерения давления и вакуума; теплофизические и температурные измерения; измерения времени и частоты; измерения электрических и магнитных величин; измерения акустических величин и др.

Показатели качества в квалиметрии группируются в областях, установленных РД 50-64-84. К ним относятся такие показатели, как назначения; надежности (безотказности, долговечности, ремонтопригодности, сохраняемости); экономного использования сырья, материалов, топлива, энергии и трудовых ресурсов; эргономические; эстетические; технологичности; стандартизации и унификации и др. (подробнее см. главу 5).

Физические величины используются для описания свойств, в совокупности определяющих качество, но понятия "физическая величина" и "показатель качества" не тождественны. Физические величины отражают объективные свойства природы, а показатели качества -- общественную потребность в конкретных условиях. Так, например, масса - физическая величина, а масса изделия - показатель его транспортабельности; скорость - физическая величина, а эксплуатационная скорость автобуса - показатель его назначения; освещенность - физическая величина, а освещенность на рабочем месте - эргономический показатель.

Как и физические величины, показатели качества имеют размерность или могут быть безразмерными. На них в полной мере распространяются все положения теории размерностей.

Количественной характеристикой показателей качества, как и физических величин, является их размер, который нужно отличать от значения - выражения размера в определенных единицах. Размер и значение от выбора единиц не зависят. Например, трудоемкость изготовления и (или) эксплуатации продукции определяется количеством времени, затраченного на изготовление и (или) эксплуатацию единицы продукции, и выражается для промышленных изделий в нормо-часах. Ясно, что трудоемкость изготовления конкретного узла или агрегата (показатель технологичности продукции) не изменится, если ее выразить, например, в человеко-днях. Не изменяются и экономические показатели, такие, например, как себестоимость или цена изделия, от того, что будут выражены не в рублях, а в копейках.

Отвлеченное число, входящее в значение показателя качества (равно, как и в значение физической величины), называется числовым значением. Понятно, что оно-то как раз и зависит от выбора единиц.

Значения показателей качества, как и значения физических величин, могут быть абсолютными и относительными. Абсолютные значения физических величин всегда имеют размерность, а относительные - всегда безразмерные. В отличие от этого абсолютные значения показателей качества могут быть как размерными, так и безразмерными, а относительные - только безразмерными.

Показатели качества делятся на единичные и комплексные. Единичные относятся к одному из свойств, определяющих качество, комплексные - сразу к нескольким свойствам. Комплексные показатели качества могут быть связаны с единичными через функциональные зависимости, отражающие объективные законы природы, а могут быть некоторой комбинацией их, соответствующей определению комплексного показателя.

В комплексных показателях качества низкие значения одних единичных показателей могут компенсироваться высокими значениями других. Иногда это соответствует реальным жизненным ситуациям.

В то же время недопустимо компенсировать низкие значения главных, важнейших показателей качества высокими значениями второстепенных. Для исключения такой возможности комплексный показатель качества домножают на так называемый коэффициент вето, обращающийся в 0 при выходе любого из важнейших единичных показателей за допустимые пределы и равный 1 во всех остальных случаях. Благодаря коэффициенту вето комплексный показатель качества падает до нуля, если хотя бы один из важнейших единичных показателей оказывается неприемлемым.

Так же, как производные физические величины, комплексные показатели качества можно продолжать и дальше комбинировать между собой, добиваясь все большего и большего обобщения свойств, формирующих в целом представление о качестве, Таким образом, структура показателей качества является многоуровневой (рис. 3.11).

Комплексные показатели качества, относящиеся к определенной группе его свойств, называются групповыми. Разновидностью комплексного показателя качества, позволяющего с экономической точки зрения определить оптимальную совокупность свойств изделия, является интегральный показатель качества. Например, интегральным показателем качества буровой установки может быть удельная глубина бурения

,

где Н - суммарная глубина проходки буровой установки до капитального ремонта, м; Зс, Зэ - соответственно себестоимость и затраты на эксплуатацию буровой установки до капитального ремонта.

Примером интегрального показателя качества транспортных средств могут служить удельные затраты на 1 километр пробега, то есть

,

где L- пробег транспортного средства до капитального ремонта, км.

Обобщенный показатель качества относится к такой совокупности свойств продукции, по которой оценивается ее качество. При экономических расчетах в роли обобщенного комплексного показателя обычно выступает интегральный показатель качества.

3.10. Общие характеристики измерительных приборов

Измерительный прибор представляет собой устройство, предназначенное для преобразования измерительной информации в форму, доступную для непосредственного восприятия наблюдателем.

Измерительные приборы делятся на аналоговые и цифровые.

3.10.1. Аналоговые измерительные приборы

Аналоговый измерительный прибор характеризуется тем, что информативный параметр входного сигнала (измеряемая величина) преобразуется в информативный параметр выходного сигнала (измеренное значение), при этом информативный параметр выходного сигнала в зависимости от значения измеряемой величины может принимать любые значения в пределах заданных границ.

Для обеспечения возможиости дать заключение относительно значения неизвестной входной величины (измеряемой величины) исходя из выходного сигнала измерительного прибора (измеренного значения) необходимо знать градуировочную характеристику измерительного прибора, т. е. особенности преобразования сигналов при воздействии влияющих величин. Измеряемая величина поступает с выхода измерительного преобразователя, сравнивается с сигналом согласующего устройства, усиливается, ослабляется и (или) преобразуется, а затем выдается выходным устройством в виде однозначной информации, воспринимаемой человеком или же направляемой в вычислительный блок.

Каждый измерительный прибор состоит из трех функциональных блоков: первичного измерительного преобразователя, согласующего устройства (блока сравнения) и устройства вывода измерительного сигнала. Каждый функциональный блок может рассматриваться как соединение одинаковых или различных по своим функциональным характеристикам элементов и узлов. При этом не всегда возможно однозначно разграничить отдельные функциональные блоки.

Первичные преобразователи могут быть активными или пассивными элементами измерительной системы. Активные первичные преобразователи требуют обычно дополнительных источников энергии.

Наиболее широко распространены такие первичные преобразователи, как механическкие, пневматические, гидравлические, оптические, электрические, емкостные и индуктивные.

Механические первичные преобразователи (см. рис. 3.12) используются для линейных и угловых размеров, объема, времени (путем непосредственной силовой или кинематической связи с объектом измерения); силы и давления (через деформируемые элементы); температуры (за счет теплового расширения твердых тел, жидкостей и газов).

Пневматические и гидравлические первичные преобразователи используются (рис. 3.13) для длин, скоростей (объема), частоты вращения, сил (через связь давления, расхода и сечения сопла) и температуры (через изменение давления).

Оптические первичные преобразователи используются (рис. 3.13) для длин и углов (непосредственное измерение, через интерференцию света); концентрации растворов (через поляризацию света и преломление лучей); механических напряжений (через поляризацию света).

Электрические первичные преобразователи подразделяются на:

Пассивные электрические преобразователи (рис. 3.14), которые могут быть: пьезоэлектрическими - для длин, сил и давления (используется пьезоэлектрический эффект); электродинамическими для колебаний - для частоты вращения, скорости (используется пропорциональность индуцируемого в катушке напряжения переменному магнитному потоку, вызванному перемещением катушки); электрическими для температур (используется термоэлектрический эффект Зеебека); световыми для светового потока (используется светоэффект).

Длина

Угол

Длина

Угол

Объем

Время

Штриховая мера длины

Рычаг

Резьба

Зубчатые колеса

Вращающие-

ся лопости

Маятник

Сила

Сила

Давление

Давление

Температура

Температура

Sa

Плоская пружина

Деформируемое тело

Трубчатая пружина

Кольцевой дифманометр

Дилатометрический стержень

Биметаллическая пластина

Рис. 3.12. Механические первичные измерительные преобразователи [46]

Длина

Скорость (объем)

Частота вращения

Сила (длина)

Сила (длина)

Температура

Сопло-заслонка

Сопло Вентури

Насос с дросселем

Пластинчатая пружина

Сильфон

Газовый манометрич. термометр

Длина

Длина

Угол (длина)

Угол (длина)

Механич. напряжение

Показатель преломлен.

Измерительный микроскоп

Интерференционный компаратор

Автоколлиматор

Наклонное зеркало

Поляриметр

Рефрактометр

Рис. 3.13. Пневматические, гидравлические (вверху) и оптические (внизу) первичные преобразователи [46]

Активные резистивные преобразователи (см. рис. 3.14), которые включают в себя: резистивные преобразователи длин (используется зависимость длины резистора и выходного напряжения); резистивные тензометрические преобразователи длины (используется зависимость сопротивления проволоки от ее удлинения) применяются для измерения внутренних напряжений в материале; резистивные преобразователи силы (используется изменение сопротивления контактируемых повехностей под действием силы); резистивные преобразователи температуры (используется температурная зависимость сопротивления проводников и полупроводников).

Сила

Частота вращения

Частота вращения

Скорость

Температура

Световой поток

Пьезокристалл

Редукцион. тахометр

Генератор

Подвижная катушка

Термоэлемент

Фотоэлемент

Длина

Длина

Сила

Электр. ток

Температура

Свет. поток

(магнитная индукция)

Потенциометр

Тензометр. пеобразов.

Угольные пластинки

Генератор Холла

Терморезистор

Фоторезистор

Рис. 3.14. Пассивные электрические (вверху) и активные ресистивные (внизу) первичные измерительные преобразователи [46]

Емкостные преобразователи (рис. 3.15), применяемые для измерения длин (через зависимость емкости от площади электродов и расстояния между ними), уровней и толщин твердого неэлектропроводного вещества (используется зависимость емкости от смещения границы двух веществ с различными диэлектрическими свойствами, расположенными между пластинами конденсатора).

Индуктивные преобразователи (см. рис. 3.15), в которых используется зависимость индуктивности катушки от изменения магнитного сопротивления, которое происходит благодаря изменению магнитного пути или магнитной проницаемости. Эти преобразователи могут быть: перемещения с поперечным якорем (используется изменение магнитного пути); перемещения с втяжным якорем (используется изменение магнитной проницаемости); магнитоупругими (используется принцип магнитоупругости, поскольку магнитная проницаемость ряда материалов зависит от механического напряжения).

Длина

Длина

Длина

Длина (толщина)

Длина (уровень)

Угол

Световой поток

Дифференц. конденсатор

Цилидрич. конденсатор

Паралл. расп. граничн. диэл.

Перп. расп. граничн. диэлектрика.

Повортный конденс. перем. емкости

Длина

Длина

Длина

Длина

Длина

Сила

Поперечный якорь

Дифференц. поперечный якорь

Втяжной якорь

Дифференц. втяжной якорь

Дифференц. трансформатор

Магнитоупругий преобразоват.

Рис. 3.15. Активные емкостные (вверху) и индуктивные (внизу) первичные измерительные преобразователи [46]

Длина

Сила

Давление

Сила тока

Ползунковый реостат

Поршневая система

Струйный усилитель

Усилитель на транзисторах

Напряжение

Мощность

Световой поток

Освещенность

Магнитный усилитель

Электромашинный усилитель

Фоторезистор

Собирающая линза

Рис. 3.16. Усилительные звенья [46]

Согласующие устройства аналоговых измерительных сигналов могут вкючать в себя: измерительную мостовую схему; измерительный усилитель (механические, гидравлические, пневматические, электрические магнитные и оптические) (рис. 3.16); демпфирующие звенья (резинометаллические, поршневые, воздушные, на вихревых токах, электические демпфирующие резисторы, тепловые экраны, поглощаюшие фильтры, поляризационные фильтры); вычислительные элементы (звенья).

Устройства вывода измерительного сигнала. Представление измеренного значения в аналоговой форме характеризуется непрерывным изменением относительного положения указателя (индекса, метки) и шкалы. В зависимости от вида представляемых входных сигналов существуют системы с механическими, пневматическими или электрическими измерительными свойствами (рис. 3.17).

Длина

Длина

Уровень

Частота вращения

Сила

Штангенциркуль

Индикатор часового типа

Поплавок

Центробежный регулятор

Поршневой манометр

Давление

Расход

Напряжение

Сила тока

Температура

Мембранная коробка

Напорный диск

Измерит. мех. магнитоэлектрич. прибора

Измерит. мех. прибора тепловой системы

Биметаллически термометр

Рис. 3.17. Аналоговые показывающие приборы [46]

С целью снижения субъективных влияний, особенно при измерении быстро изменяющихся во времени величин, осуществляется регистрация выходных величин. Аналоговыми регистрирующими приборами являются приборы: с непрерывной записью, точечной записью, с непрерывной световой записью, светолучевые осциллографы, электронно-лучевые осциллографы, регистрирующие устройства на магнитной ленте.

3.10.2. Цифровые измерительные приборы

Интенсификация производственных процессов и научных исследований тесно связана с проведением измерений и обработкой результатов измерений при помощи автоматических измерительных систем. Переход к цифровой технике способствует использованию автоматических измерительных систем и методов активного контроля в процессе производства. В исторически короткое время цифровые измерительные приборы получили поэтому очень широкое применение.

Измеряемые величины разделяют на аналоговые, обладающие несчетным множеством значений по размеру, и квантованные, обладающие счетным множеством значений по размеру.

Применение цифровой измерительной техники связано с квантованием измеряемых величин и их кодированием.

Квантование величины - это операция создания при помощи меры или масштабного преобразователя сигнала, абсолютные или относительные размеры параметров которого имеют ограниченное число значение.

Кодирование - это операция перевода по определенным правилам формального объекта, выраженного совокупностью кодовых символов одного алфавита, в формальный объект, выраженный символами другого алфавита. При кодировании в качестве символов используют буквы алфавита, цифры в определенной системе счисления и различные условные знаки. Наиболее широко применяется числовое кодирование.

Цифровая измерительная техника имеет следующие преимущества по сравнению с аналоговой:

незначительные погрешности отсчета благодаря устранению субъективных влияний (параллакса, усталости, психофизиологических особенностей операторов);

быстрая и простая регистрация измеренных значений (запись, печать, запоминание);

удобство контроля за технологическим процессом путем подключения к центральному контрольно-измерительному пункту и использования управляющей вычислительной машины;

обеспечение автоматизации технологического процесса (измерение, управление, регулирование) путем подключения к управляющей вычислительной машине, работающей в реальном масштабе времени;

простота коррекции погрешностей измерений с использованием соответствующих подпрограмм в электронных вычислительных устройствах.

На рис. 3.18 приведены принципиальные структуры аналоговых и цифровых измерительных систем.

Погрешность измерений при использовании цифровых измеритель-

ных приборов (не связанная с погрешностями, вызываемыми отдельными измерительными звеньями) зависит от наименьшего шага квантования.

Рис. 3.18. Принципиальные структуры аналоговых и цифровых измерительных систем [46]

Цифровые измерительные приборы могут быть с аналого-цифровым преобразованием: на входе системы (чисто цифровые измерительные системы) характеризуются тем, что аналого-цифровой преобразователь одновременно является первичным измерительным преобразователем; на выходе; промежуточное (непрерывное преобразование величин в цифровые).

Наиболее часто используемые на практике измерительные системы с аналого-цифровым преобразованием на входе содержат первичные преобразователи линейных и угловых величин, а также преобразователи частоты.

Цифровые измерительные системы с аналого-цифровым преобразованием на выходе системы характеризуются тем, что аналого-цифровой преобразователь подключается к аналоговому согласующему устройству (усилителю, фильтру, решающему устройству и т. д.). Обычно для этого применяют аналого-цифровые преобразователи.

В цифровых измерительных системах с промежуточным преобразованием непрерывных величин в цифровые аналого-цифровой преобразователь располагается между аналоговым первичным преобразователем и цифровым согласующим устройством (усилителем, фильтром, решающим устройством и т.д.) и цифровые сигналы на выходе согласующего устройства снова преобразуются в аналоговые сигналы, например, для управления процессом с помощью гибридной аналого-цифровой техники.

Первичный преобразователь воспринимает непосредственно или косвенно измеряемую величину и формирует информативный параметр измерительного сигнала. Хорошо зарекомендовали себя цифровые измерительные преобразователи длин и углов, а также квазицифровые частотные измерительные преобразователи. Наряду с ними находят применение цифровые измерительные преобразователи усилия в перемещение.

3.11. Расчет точности кинематических цепей

В различных областях машиностроения и приборостроения применяют механизмы и механические передачи, к которым предъявляются требования кинематической точности. Под кинематической точностью механизма или передачи понимается строгая согласованность движений (перемещений, скоростей или ускорений) ведомого и ведущего звеньев кинематической цепи. В одних механизмах требования относятся к угловым поворотам звеньев, в других -- к согласованности угловых поворотов и линейных перемещений.

Ошибкой механизма, характеризующей его точность, называют отклонение действительного значения его выходного параметра от расчетного (идеального) значения. Ошибки механизмов возникают, главным образом, вследствие приближенности выбранной схемы, технологической неточности изготовления звеньев и элементов кинематических пар, неточности монтажа, износа трущихся элементов, внешних силовых воздействий, внутренних силовых явлений в механизмах при их движении и отличия условий эксплуатации (например, температуры и влажности окружающей среды) от номинальных.

В зависимости от характера связей между выходными и входными параметрами, т. е. вида уравнений, описывающих поведение кинематической цепи, различают кинематические и динамические ошибки механизмов.

Кинематическая ошибка механизма определяется в основном его первичными ошибками, к которым относят отклонения размеров элементов кинематических пар, их формы и расположения от идеальных. К первичным ошибкам относятся:

1. Ошибка схемы (структурная ошибка) механизма возникает в том случае, если вместо идеального выбран теоретический механизм с более простой схемой, чем требуется. Так делают для улучшения эксплуатационных качеств механизма, т. е. чтобы его ошибка была меньше, чем ошибка механизма с идеальной, но более сложной схемой.

2. Ошибка положения механизма - отклонение положений ведомых звеньев действительного и соответствующего ему идеального механизма при одинаковых положениях из ведущих звеньев. Если же ведущее звено действительного механизма займет неправильное положение, то соответствующее отклонение положения его ведомого звена называют ошибкой положения ведомого звена, или конечной ошибкой механизма.

3. Ошибка перемещения механизма, под которой понимают разность перемещений ведомых звеньев действительного и идеального механизмов при одинаковых перемещениях их ведущих звеньев.

4. Мертвый ход - это ошибка, появляющаяся для одного и того же положения ведущего звена, но при различном направлении его движения. Эта ошибка существенно влияет на точность механических систем с реверсивным движением. Мертвый ход возникает вследствие зазоров в кинематических парах или упругой деформации звеньев.

Ясно, что результирующая точность любой сложной механической системы в конечном счете определяется точностью составляющих ее простых.

Методы определения ошибок механизмов. По форме методы решения задач точностных анализа и синтеза механизмов могут основываться на различных приближениях, в том числе теоретико-вероятностных. Известны следующие методы:

1. Аналитические - наиболее приемлемы для тех механизмов, для которых легко вывести функцию положения и вычислить частные производные без необходимости учитывать ошибки взаимного расположения и формы элементов кинематических пар.

2. Метод преобразованного механизма удобен для плоских механизмов с низшими парами, в которых основное влияние на точность оказывают ошибки размеров звеньев. Он весьма нагляден и достаточно точен при инженерных расчетах.

3. Метод планов малых перемещений применяется для тех же механизмов, что и предыдущий метод.

4. Метод относительных ошибок удобен для рычажных и фрикционных механизмов, упрощающий решение многих задач.

5. Метод плеча и силы применим к быстродействующим счетно-решающим устройствам с зубчатыми и кулачковыми механизмами, на точность которых существенно влияют ошибки взаимного расположения и формы элементов кинематических пар.

Аналитический (дифференциальный) метод. Существует несколько подходов к решению этой задачи. Рассмотрим решение, изложенное в [17], для механизмов с голономными связями, в которых ограничены возможные перемещения звеньев, но не ограничены скорости точек.

В идеальном механизме с функциональными зависимостями, не содержащими дифференциальных операций, координата выходного (ведомого) звена может быть представлена функцией

0 = 0 (, q1, Q2, …, qn),

0 - координата выходного звена идеального механизма; - координата входного звена; qi - значения метрических параметров звеньев, которые полностью определяют размеры, форму и взаимное расположение звеньев механизма.

Положение ведомого звена действительного механизма определяется координатой

= 0 + вм =( + , q1 + q1, …, qn + qn), (3.16)

где вм -- ошибка положения ведомого звена действительного механизма; -- ошибка положения ведущего звена.

Ошибки qi обычно не более допусков на размеры звеньев и, следовательно, малы по сравнению со значениями параметров qi.

После разложения функции (3.16) в ряд Тейлора и, ограничиваясь только нулевыми и линейными его членами, получим:

,

откуда найдем приближенное выражение для ошибки положения ведомого звена действительного механизма:

. (3.17)

Индекс 0 у частных производных указывает на то, что они должны вычисляться для идеальных (точных) значений параметров qi и обобщенной координаты .

Формула (3.17) справедлива для действительного механизма, имеющего первичные ошибки, но выполненного по идеальной схеме. В общем же случае параметр вм зависит также и от структурной ошибки механизма:

,

где с = т - 0 -- ошибка схемы; т - функция положения теоретического механизма; 0 - функция положения идеального механизма.

Ошибка положения действительного механизма с идеальной схемой

. Ошибка положения, вызванная только одной первичной ошибкой qk параметра qk , k = (/qk)0qk .

Из формулы (3.17) следует, что ошибка положения ведомого звена механизма равна сумме ошибок, вызываемых каждой первичной ошибкой в отдельности. Вследствие этой независимости действия первичных ошибок вычисление суммарной ошибки положения механизма или положения его ведомого звена не представляет сложности. Лишь для некоторых механизмов вычисление частных производных (/qi)0 громоздко и тогда более предпочтительным может быть графоаналитический метод определения ошибок.

Первичные ошибки могут быть скалярными (ошибки длин звеньев), люфтовыми (перемещения звеньев вследствие зазоров в кинематических парах) и векторными (эксцентриситеты вращающихся звеньев, перекосы осей шарниров и поступательных пар). Поэтому результирующая (суммарная) ошибка положения механизма

,

где индексы i, j и относятся соответственно к люфтовым, скалярным и векторным ошибкам.

Для нескольких однотипных реальных механизмов все первичные ошибки qi, qj q будут независимыми и случайными. То же можно сказать и в отношении всех частных производных. Таким образом, частные ошибки, как составляющие результирующей ошибки серии однотипных механизмов, рассеиваются в своих значениях, подчиняясь тем или иным законам распределения вероятностей. Большой практический интерес представляет проверочный расчет результирующей ошибки серии механизмов теоретико-вероятностным методом, если предельные отклонения (допуски) первичных ошибок и законы их распределения известны.

Поскольку частные производные - не случайные величины и их значения известны для каждого положения механизма, ошибки определяют на основе свойств математического ожидания М и среднего квадратичного отклонения :

; .

Другие варианты аналитического расчета точности кинематической цепи изложены, например, в [2], [20] и др.

С методоми преобразованного механизма, планов малых перемещений и относительных ошибок можно познакомиться в [17].


Подобные документы

  • Правовые основы метрологического обеспечения единства измерений. Система эталонов единиц физической величины. Государственные службы по метрологии и стандартизации в РФ. Деятельность федерального агентства по техническому регулированию и метрологии.

    курсовая работа [163,5 K], добавлен 06.04.2015

  • Подготовка и проведение высокоточных измерений в метрологической практике. Порядок разработки стандартов в Российской Федерации. Цели стандартизации: повышение уровня безопасности жизни и здоровья граждан; соблюдение требований технических регламентов.

    контрольная работа [23,1 K], добавлен 06.08.2013

  • Основы, цели, задачи и функции стандартизации. Категории и виды стандартов, порядок их разработки. Органы и службы по стандартизации. Метрологические понятия. Классификация измерений. Роль метрологии. Вопросы сертификации в законах Российской Федерации.

    реферат [109,1 K], добавлен 09.01.2009

  • Предмет и основные задачи теоретический, прикладной и законодательной метрологии. Исторически важные этапы в развитии науки об измерениях. Характеристика международной системы единиц физических величин. Деятельность Международного комитета мер и весов.

    реферат [23,8 K], добавлен 06.10.2013

  • Характеристика стандартизации: цели, задачи, принципы и функции. Упорядочение объектов стандартизации. Параметрическая стандартизация. Унификация. Нормативно-правовые основы метрологии. Единицы измерения физических величин. Методы обработки результатов.

    презентация [115,0 K], добавлен 09.02.2017

  • Метрологические свойства и характеристики средств измерений. Основные задачи, решаемые в процессе метрологической экспертизы. Поверка и калибровка средств измерений. Метрологическая экспертиза и аттестация. Структура и функции метрологической службы.

    курс лекций [320,3 K], добавлен 29.01.2011

  • Система предпочтительных чисел. Принципы и методы стандартизации. Международная система единиц физических величин. Объекты и методика выполнения измерений, виды контроля. Правовое обеспечение сертификации. Контроль качества и приемка земляных работ.

    курсовая работа [42,3 K], добавлен 04.02.2015

  • Основные сведения о физических величинах, их эталоны. Система международных единиц, классификация видов и средств измерений. Количественные оценки погрешности. Измерение напряжения и силы тока. Назначение вольтметра, осциллографа и цифрового частотомера.

    шпаргалка [690,1 K], добавлен 14.06.2012

  • Понятия, термины и определения в формулировке ФЗ РФ "О техническом регулировании". Содержание и применение технических регламентов. Цели и принципы стандартизации. Основные положения системы обеспечения единства измерений. Единицы физических величин.

    курс лекций [522,0 K], добавлен 04.11.2014

  • Повышение качества продукции как центральная задача современного производства. Общая характеристика критериев потребительского рынка. Рассмотрение особенностей метрологической аттестации средств измерений, применяемых в производственном объединении.

    курсовая работа [62,3 K], добавлен 31.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.