Системы контроля состояния подсистем танкера, с использованием современной элементной базы

Анализ комплексной автоматизации управления вспомогательными механизмами энергетических установок и судовых систем. Общее расположение и архитектура судна. Техническое описание системы кондиционирования воздуха. Реализация диспетчерского уровня системы.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 25.08.2010
Размер файла 5,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2. установим запорные устройства (исполнительные механизмы) в местах размещения каждой пеноподводящей насадки (8 исполнительных механизмов);

3. обеспечим непрерывный мониторинг (в реальном времени) состояния датчиков температуры;

4. при несовпадении сигнала с датчика с технологическими параметрами реализуем:

4.1. автоматический и полуавтоматический запуск оросительной подсистемы;

4.2. выдачу сигналов тревоги и индикацию аварийного участка на мнемосхеме оператора.

3.2 Подсистема кондиционирования воздуха

Судовые помещения, в которых возможно выделение вредных для организма газов, специфических запахов и других примесей, оборудуют автономными системами приточно-вытяжной вентиляции. К таким помещениям относятся медицинские, продовольственно-пищевые, продовольственные кладовые, аккумуляторные (раздельно для кислотных и щелочных аккумуляторов), насосные отделения нефтеналивных судов и газовозов, производственные помещения рыбодобывающих и рыбообрабатывающих судов, помещения рефрижераторных машин, мастерские для ремонта топливной аппаратуры, сварочные мастерские и станции углекислотного и жидкостного химического тушения.

Системы вентиляции могут быть искусственными, естественными и комбинированными. Выбор типа вентиляции зависит от назначения помещений, а также от назначения и типа судна и его энергетических возможностей. На судах большого водоизмещения применяют, как правило, искусственную вентиляцию, для судов валовой вместимостью менее 5000 р. т допускается только естественная вентиляция.

При условии исключения возможности распространения вредных газов и запахов из одного помещения в другое допускается объединять в общую вытяжную вентиляционную систему следующие помещения: общественные, санитарно-гигиенические, санитарно-хозяйственные, служебные, кладовые судового снабжения, кладовые хозяйственные и прочие общего назначения.

Приток воздуха в помещения общественные, служебные, санитарно-гигиенические, хозяйственные, кладовые судового снабжения и хозяйственные осуществляется естественным путем из коридоров через решетки или сетки, устанавливаемые в нижней части дверей пли переборок. При наличии на судне системы кондиционирования воздуха приток в служебные и общественные помещения может осуществляться от этой системы.

В общую приточную вентиляционную систему допускается объединять следующие помещения: жилые, общественные и служебные.

Удаление воздуха из общественных помещений с числом мест более 12 производится искусственным путем через решетки или сетки, установленные на вытяжном трубопроводе, в остальных случаях естественным путем в коридоры через решетки или сетки, установленные в нижней части дверей или переборок. Не допускается удаление воздуха в коридоры и тамбуры из помещений, в которых имеются источники неприятных запахов, вредных примесей и газов.

Если помещения оборудуют естественной вентиляцией, то ее выполняют самостоятельной для каждого помещения. Каналы естественной вентиляции прокладывают в виде вертикальных стояков без погибов. Допускается не более одного погиба под углом до 30°, с радиусом погиба не менее 1,5 диаметра условного прохода трубы. Для каждого помещения устанавливают как минимум два канала, заканчивающихся снаружи головками с вытяжными устройствами, а внутри помещений - вентиляционными сетками. Каналы располагают на возможно большем удалении один от другого для эффективного вентилирования всего объема помещения. Если помещения расположены на открытых палубах или примыкают к коридорам и тамбурам, имеющим открытые проемы на палубы, то один из каналов рекомендуется заменять вентиляционной крышкой. Крышку следует устанавливать в нижней зоне помещения (если это допустимо с точки зрения непотопляемости отсеков), в противоположной от канала стороне помещения.

Тип вентиляции и воздухоподача. Различные судовые помещения в зависимости от времени пребывания в них людей, количества тепла, вредных газов и специфических запахов, которые могут выделять установленные в них механизмы и системы, оборудуют тем или иным типом вентиляции.

После выполнения расчетов по определению необходимых количеств приточного и вытяжного воздуха проверяют баланс между притоком и вытяжкой. С этой целью суммируют количества воздуха, поступающие в коридоры и удаляемые из коридоров. Если при этом обнаруживается дебаланс, то коридоры оборудуют естественной вентиляцией.

Устройства для приема и выброса воздуха. От правильного размещения этих устройств во многом зависит эффективность работы систем вентиляции.

Машинно-котельная вентиляция предназначается для создания и поддержания заданных условий воздушной среды в машинных помещениях (разности температур, подвижности и газового состава воздуха), а также для обеспечения работы механизмов, потребляющих воздух из объема МКО.

Системами вентиляции оборудуют следующие помещения: машинные отделения с дизельными, паротурбинными и газотурбинными установками; главные и вспомогательные котельные отделения, центральные посты управления энергетическими установками, шумоизолирующие выгородки дизелей, помещения гребных электродвигателей, коридоры валопроводов, вспомогательные помещения в объеме энергетических установок (мастерские, помещения ремонта топливной аппаратуры, помещения сепараторов, механические и электротехнические кладовые и т. п.).

В состав системы вентиляции входят: электровентиляторы (осевые и центробежные), воздухоприемные и воздухораспределительные устройства, запорно-переключающая арматура, глушители шума, теплообменные аппараты и трубопроводы. Проектирование этих систем производят с учетом специфических особенностей судна, его энергетической установки и заданного района плавания.

На судах с энергетической установкой мощностью свыше 300 э. л. с. в помещениях главных и вспомогательных двигателей и котлов устанавливают искусственную приточную вентиляцию (на судах меньшей мощности допускается естественная приточная вентиляция). Вытяжка воздуха из машинных помещений, как правило, осуществляется естественным путем. Искусственной вытяжной вентиляцией оборудуют помещения энергетической установки, имеющие вредные и пожароопасные газовыделения (помещения ремонта топливной аппаратуры, масляных и топливных сепараторов). Она может быть также в виде местных отсосов от оборудования механических мастерских, сварочных участков и из-под настилов машинных отделений.

При проектировании машинно-котельной вентиляции соблюдают требования Регистра России, Санитарных правил для морских судов и других нормативных документов. Основные из них приводятся ниже.

Приемные устройства располагают, как правило, перед световым люком или дымовой трубой. Их конструкция должна исключать попадание воды при мытье палуб и атмосферных осадков в систему, обеспечивать расчетную производительность по воздуху и быструю герметизацию машинного отделения (например, в случае пожара). На специальных судах, перевозящих сыпучие грузы навалом (бокситы, уголь, руды и т. п.), приемные устройства оборудуют эффективными средствами очистки приточного воздуха в виде промывных фильтров или циклонных аппаратов, работающих в период грузовых операций.

В зависимости от вида груза и средних размеров зерен пыли промывные фильтры рекомендуется проектировать на следующие степени сепарирования (к. п. д. фильтра):

Угольная пыль (б = 30 мкм) 98%

Бокситы (б = 85 мкм) 99%

Железорудная пыль (б = 220 мкм) 99,7%

Технические характеристики промывных фильтров обычно не превышают следующих величин:

Расход воды на 1 м3 фильтруемого воздуха0,1 л

Давление воды у оросителя1,4-3,0 кгс/см2

Скорость потока воздуха в оросительной камере3,5 м/с

Приточный воздух подается в рабочую зону машинно-котельных отделений на основные, вспомогательные и ремонтные площадки. За рабочую зону принимается пространство высотой около 2,2 м над настилом или площадками, где расположены места постоянного пребывания вахтенных. Остальные площадки считаются вспомогательными.

Чтобы избежать образования застойных зон в машинно-котельных отделениях, для подачи воздуха рекомендуются следующие обязательные места:

- на дизельных судах - площадки вдоль главного двигателя, в районе вспомогательных и стояночных дизель-генераторов, перед главными распределительными щитами и за ними, площадки на уровне цилиндров главных двигателей, у гребных электродвигателей, вдоль фронта вспомогательных котлов;

- на паротурбинных, газотурбинных судах и судах с СПГГ - площадки у ГТЗА и открытых пультов управления, в районе вспомогательных и стояночных дизель-генераторов, вдоль СПГГ, перед главными распределительными щитами и за ними, вдоль фронта вспомогательных котлов.

Рекомендуемый вид вентиляции вспомогательных помещений МКО приводится в таблице 3.2.

Приточный воздух на эти площадки поступает через поворотные и неповоротные вертикальные и горизонтальные воздухораспределители, позволяющие изменять количество, скорость и направление воздуха (рис. 3.4.).

В механические мастерские, помещения преобразователей, в выгородки распределительных щитов и другие помещения, в которых возможно длительное пребывание машинной команды, воздух подается через поворотные распределители типа «пункалувр». Кладовые различного назначения оборудуют приточными или вытяжными воздухопроводами с концевыми сетками.

Воздух, подаваемый к площадкам обслуживания механизмов и во вспомогательные помещения МКО, где необходимо систематическое присутствие вахтенных и обслуживающего персонала, в зимний период подогревается до температуры не ниже 18° С. Известны схемы вентиляции с подачей к указанным местам в летний период охлажденного воздуха.

Таблица 3.2. Рекомендуемый вид вентиляции вспомогательных помещений МКО

Помещения

Приток, количество обменов в час

Вытяжка, количество обменов в час

Механические мастерские, помещения преобразователей, выгородки главных распределительных щитов

Искусственный, по расчету на ассимиляцию избыточных тепловыделений

Естественная, по балансу с притоком

Ремонта топливной аппаратуры

Естественный, по балансу с вытяжной вентиляцией

Искусственная, 35 обменов в час

Сепараторов масла и топлива

То же

Искусственная, 30 обменов в час

Механические кладовые

Искусственный, 15 обменов в час

Естественная, по балансу с притоком

Электротехнические кладовые

То же

То же

Временные площадки машинно-котельных отделений, приспосабливаемые для выполнения ремонтно-профилактических работ силами машинной команды оборудуют устройствами для подачи душирующего воздуха от системы машинной вентиляции, на которой предусматриваются специальные (обычно заглушенные) отростки. В зимний период душирующий воздух подогревается до температуры не ниже 18° С.

1 - сепараторы топлива н масла; 2 - электровеятилятор центробежный; 3 - заслонка дроссельная; 4 - воздухораспределитель поворотный; 5 - вспомогательный котел; в - утилизационный котел; 7, 11 - воздухоприемное устройство; 8 - электровеятилятор центробежный вертикальный; 9-световой люк; 10 - ширма; 12 - электровентилятор осевой; 13 - подогреватель воздуха; 14- главный двигатель; 15 - вспомогательный дизель-генератор.

Рис. 3.4. Принципиальная схема искусственной приточной и естественной вытяжной вентиляции МКО судна с дизельной установкой

Вытяжка воздуха осуществляется естественным путем из верхней зоны машинно-котельного отделения, как правило, через кожух дымовой трубы. Если удалить воздух из машинно-котельных отделений естественным путем невозможно, допускается установка в шахте вытяжных электровентиляторов.

Удаление воздуха из машинно-котельного отделения через световой люк не допускается.

На судах с паротурбинными, газотурбинными установками и с СПГГ рекомендуется применение для выброса отработавших газов эжектирующих устройств в совокупности с организованной вытяжкой воздуха из помещений МКО через кожух дымовой трубы. Эжектирующее устройство в этом случае является наиболее эффективным средством выброса газов от энергетического оборудования, исключающим задымление палуб.

Системы вентиляции являются разветвленными судовыми системами, состоящими из разнообразного, в том числе и крупногабаритного, оборудования. Их проектирование тесно связано с планировкой общего расположения судовых помещений, а в ряде случаев влияет на архитектуру судна в целом. Используемые в этих системах электродвигатели для привода вентиляторов и насосов, а также теплообменные аппараты, потребляющие различного рода тепло- и хладоноситель, оказывают существенное влияние на общую энерговооруженность судна. Проектирование систем вентиляции является трудоемким процессом, требующим специальных навыков и достаточно высокой квалификации исполнителей.

На основании описанных принципов действия системы кондиционирования, в рамках данного дипломного проекта:

1. выполним размещение датчиков температуры в помещениях судна на уровне 180 см от пола (13 датчиков температуры);

2. установим запорные устройства (исполнительные механизмы) в узловых местах воздухопровода (4 исполнительных механизма);

3. обеспечим непрерывный мониторинг (в реальном времени) состояния датчиков температуры;

4. при несовпадении сигнала с датчика с технологическими параметрами реализуем:

4.1. автоматический и полуавтоматический запуск оросительной подсистемы;

4.2. выдачу сигналов тревоги и индикацию аварийного участка на мнемосхеме оператора.

3.3 Осушительно-балластная подсистема

На рисунке 3.5. показана схема систем охлаждения главной машины и перекачки воды внутри судна. Насос 1, предназначенный для охлаждения главной машины 5, расположен ниже уровня жидкости, подлежащей перемещению, поэтому через приемную сетку 3 по всасывающему (приемному) трубопроводу 2 вода поступает к насосу, откуда по нагнетательному трубопроводу 4 -- в рубашки цилиндров и далее по отливному трубопроводу вытекает за борт. В приемное отверстие насоса вода поступает под давлением атмосферного воздуха на свободную поверхность воды на уровне грузовой ватерлинии и столба воды, равного глубине погружения приемного отверстия. Насос должен только сообщить воде энергию, достаточную для того, чтобы она могла подняться от уровня всасывания до уровня нагнетания и преодолеть гидравлические сопротивления, встречаемые в нагнетательном и отливном трубопроводах, местные сопротивления, а также атмосферное давление на уровне отливного отверстия.

Рис. 3.5. Схема систем охлаждения главной машины и перекачки воды внутри судна.

Насос 8, предназначенный для перекачки воды внутри судна, расположен выше уровня жидкости, подлежащей перемещению. Вода через приемную сетку 6, невозвратно-запорный клапан, приемный трубопровод, невозвратно-запорную клапанную коробку 7, насос 8 и трубопровод 9 поступает в расходный бак 10. Насос должен создать пониженное давление во всасывающем трубопроводе, чтобы перекачиваемая жидкость дошла до уровня всасывания насоса. ВВ, и сообщить жидкости энергию для подъема до уровня ГГ и преодоления гидравлических сопротивлений во всасывающем и отливном трубопроводах, а также давления воды в расходном баке. Насос в этом случае работает с подпором.

Кроме того, для тушения пожаров на судах по способу изоляции используют системы затопления, которые предназначены для заполнения забортной водой помещений, в которых хранят или перевозят взрывчатые и легковоспламеняющиеся вещества, а также некоторые жидкости, плотность которых выше, чем у воды (сероуглерод, дибутилфталат и др.). По мере заполнения помещения водой над горящими веществами создается слой, который надежно изолирует их от кислорода воздуха и охлаждает поверхность.

Осуществить это нужно за короткий промежуток времени, поэтому производительность насосов системы затопления должна быть высокой, а диаметр трубопроводов -- большим. Для затопления помещений могут использоваться специальные кингстоны либо пожарные рукава от систем водяного пожаротушения.

На основании описанных принципов действия осушительно-балластной подсистемы, в рамках данного дипломного проекта:

1. выполним напольное размещение датчиков влажности в МКО (10 датчиков влажности);

2. установим запорные устройства (исполнительные механизмы) в узловых местах главного насоса (2 исполнительных механизма);

3. обеспечим непрерывный мониторинг (в реальном времени) состояния датчиков влажности;

4. при несовпадении сигнала с датчика с технологическими параметрами реализуем:

4.1. автоматический и полуавтоматический запуск оросительной подсистемы;

4.2. выдачу сигналов тревоги и индикацию аварийного участка на мнемосхеме оператора.

4. АЛГОРИТМИЧЕСКАЯ СТРУКТУРА КОНТРОЛЯ И УПРАВЛЕНИЯ

4.1 Алгоритм первичной обработки сигналов с датчиков и выработки экстренных сообщений

Под алгоритмической структурой контроля и управления будем понимать совокупность алгоритмов по отдельным режимам работы технологического процесса с указанием условий перехода с одного режима работы на другой.

При измерении технологических параметров подсистем танкера информация от датчиков поступает в аппаратуру ввода/вывода в виде унифицированных сигналов (0-10В, 4-20 мА и т.д.), сигналов от термопар, термометров сопротивления, то есть реальной физической величине соответствует напряжение, сила тока, индуктивность или частота импульсов. В устройствах связи с объектом (УСО) эти сигналы преобразуются в двоичные коды длиной от 8 до 16 разрядов. Чтобы провести анализ получаемой информации, необходимо преобразовать коды АЦП в масштаб реальных физических величин: мм, т/час, оС и т. д. К тому же датчики могут иметь статические ошибки, нелинейные характеристики или зашумленный выходной сигнал.

Для получения корректных значений результатов мониторинга из двоичных кодов УСО применим алгоритмы первичной обработки такие, как проверка на достоверность, сглаживание, проверка на технологические границы. Программную реализацию алгоритмов контроля и управления выполним в математическом пакете "MatLab 7.0.1" с целью проверки их работоспособности.

Для адекватного функционирования синтезируемой системы управления необходимо разработать алгоритмы первичной обработки информации, поступающей от датчиков. Эти алгоритмы должны обеспечивать выработку экстренных сообщений оператору в случае, когда нарушается нормальный режим работы, и возникает предаварийная ситуация.

Сигналы с датчиков поступают по физическим линиям на АЦП. На эти сигналы накладываются всевозможные помехи (импульсные помехи; радиопомехи промышленных частот; помехи, обусловленные погрешностью датчиков). Сигнал с АЦП обрабатывается в ЭВМ и для того, чтобы исключить влияние помех, разрабатываются алгоритмы контроля. К ним относятся алгоритмы проверки на достоверность, фильтрации и проверки на технологические границы.

Для ввода аналогового сигнала необходимо осуществить инициализацию АЦП и установить коэффициент усиления усилителя по соответствующему каналу ввода.

Приведем блок-схему алгоритма ввода сигналов с датчиков на рисунке 4.1.

Рис. 4.1 Блок-схема алгоритма ввода сигналов с датчиков

Сигналы, поступающие с датчиков, подвергаются первичной обработке, алгоритмы которой опишем далее.

4.2 Алгоритм проверки на достоверность

Алгоритм проверки на достоверность служит для определения наличия импульсной помехи и ее устранения, для обнаружения короткого замыкания или обрыва в канале связи.

При проверке осуществляется циклический опрос всех датчиков. Интервал проверки на достоверность определяется как К-Топр, где Топр - время опроса датчика, а коэффициент К оценивается, исходя из динамических характеристик в каждом канале (можно выбрать максимальное для всех каналов значение). Первые К-значений принимаются достоверными. Проверка выполняется по условию:

(4.1)

где i - номер датчика; j - номер отсчета (j=K+1, K+2...).

Если условие (4.1) нарушается, то вводится признак нарушения и счетчик количества нарушений. Вместо Хij записывается последнее достоверное значение. Затем проверяется следующий соседний отсчет на условие (4.1). Если в очередной раз условие нарушается, то счетчик нарушений инкрементируется, и опять же записывается последнее достоверное значение. Если число нарушений достигло 3-х, то принимается решение о наличии устойчивой помехи. Тогда анализируется знак разности (4.1) и определяется вид помехи: если «+» - короткое замыкание, если «-» - обрыв. При этом в памяти ЭВМ фиксируется время нарушения и номер канала, в котором оно обнаружено.

В соответствии с вышесказанным блок-схема алгоритма проверки на достоверность выглядит следующим образом.

Рис. 4.2 Блок-схема алгоритма проверки на достоверность

Моделирование работы алгоритма произведено в среде "MatLab 7.0.1", листинг которой приведен в приложении 1. Сигналы с датчиков были имитированы при наличии случайных сбоев, обрывов и коротких замыканий канала (рис. 4.3).

а - сигнал на выходе датчика; б - сигнал в канале измерений; в - сигнал проверенный на достоверность.

Рис. 4.3 Результаты моделирования работы алгоритма проверки на достоверность

На рисунке 4.3,а показан сигнал с датчика температуры воздуха машинно-котельного отделения танкера; на рисунке 4.3,б отражена имитация обрыва и короткого замыкания в канале связи сигнала с датчика температуры воздуха; на рисунке 4.3,в - вид сигнала после выполнения алгоритма проверки на достоверность. В результате моделирования работы алгоритма проверки на достоверность были выявлены все импульсные помехи и получен "чистый" сигнал для дальнейшей обработки.

4.3 Алгоритмы фильтрации

При работе технологических объектов создаются помехи. Для устранения высокочастотных помех используются аппаратные RC-фильтры. Но они не способны ослабить помехи с частотами, близкими к частотам полезных сигналов. Простейшим примером такой помехи является погрешность измерения параметров технологического процесса. Для ослабления такого рода помех обычно используются алгоритмы скользящего среднего или экспоненциального сглаживания.

Методы скользящего среднего и экспоненциального сглаживания используются для прогнозирования временных рядов. Формально временной ряд - это множество пар данных (X,Y), в которых X - это моменты или периоды времени (независимая переменная), а Y - параметр (зависимая переменная), характеризующий величину исследуемого явления. Цель исследования временных рядов состоит в выявлении тенденции изменения фактических значений параметра Y во времени и прогнозировании будущих значений Y. Модель, построенную по ретроспективным данным можно использовать при наличии устоявшейся тенденции в динамике значений прогнозируемого параметра.

Суть методов скользящего среднего и экспоненциального сглаживания состоит в том, фактические уровни исследуемого временного ряда заменяются их средними значениями, погашающими случайные колебания. Это позволяет более четко выделить основную тенденцию изменения исследуемого параметра. Эти относительно простые методы прогнозирования временных рядов, основанные на представлении прогноза в виде суммы m предыдущих наблюдаемых значений (), причем каждое из них учитывается с определенным весовым коэффициентом .

.

Использование методов скользящего среднего и экспоненциального сглаживания основано на следующих допущениях:

- временной ряд является устойчивым в том смысле, что его элементы являются реализациями следующего случайного процесса:

,

где b - неизвестный постоянный параметр, - случайная ошибка.

- случайная ошибка имеет нулевое математическое ожидание и постоянную дисперсию; данные для различных периодов времени не коррелированны.

Метод скользящего среднего. Расчетная формула по методу скользящего среднего имеет вид:

, (4.2)

где Mi - параметр сглаживания, величина которого определяет количество отсчетов , взятых для вычисления одного сглаженного значения .

Раскроем формулу (4.2) для частных значений k, а именно:

,(4.3)

, (4.4)

. (4.5)

Принцип скользящего окна поясняется формулами (4.3) - (4.5), из которых следует, что для вычисления очередного сглаженного значения записанная в Мi ячейках памяти информация сдвигается влево, и в освободившуюся ячейку заносится новый отсчет датчика. После чего выполняются процедуры суммирования Мi отсчетов и умножения на коэффициент . Из анализа алгоритма (4.2) следует, что для его реализации потребуется Mi+2 ячейки памяти, а время готовности алгоритма выдать с заданной точностью 1-е сглаженное значение составит

.(4.6)

Величина параметра сглаживания вычисляется по заданному значению коэффициента ослабления помех , который, в свою очередь, представляет собой отношение:

,(4.7)

где- среднеквадратическое значение помех в отсчетах датчиков xik,

- среднеквадратическое значение помех в сглаженных, вычисленных в соответствии с алгоритмом (4.2) значений xcik.

Чтобы оценить величину Mi, представим каждую из переменных, входящих в выражения (4.2), (4.3) - (4.5) как:

(4.8)

Подставляя (4.8) в (4.2) или (4.3) - (4.5) и вычитая математическое ожидание , получим уравнения относительно абсолютных значений погрешностей, которые будут идентичны выражениям (4.2) или (4.3) - (4.5), например,

.

Предполагая, что значения погрешностей в соседних точках не коррелированны и характеризуются дисперсией можно записать следующее уравнение относительно дисперсии погрешности сглаживания:

или

Следовательно, с учетом выражения (4.7) значение параметра сглаживания для i-го датчика равно:

.(4.9)

Алгоритм скользящего среднего представлен на рисунке 4.4.

Рис. 4.4 Алгоритм скользящего среднего

Результаты моделирования работы алгоритма представлены на рисунке 4.5.

Рис. 4.5. Результаты моделирования работы алгоритма скользящего среднего

На рисунке 4.5 изображен сигнал полученный с помощью алгоритма скользящего среднего. Сравнив его с сигналом, полученным после выполнения алгоритма проверки на достоверность (рис. 4.3,в) видим, что сигнал стал более сглаженным. Первые десять отсчетов датчика (выделены пунктирным прямоугольником на рис. 4.5) не сглажены, так как они непосредственно формируют скользящее окно и сгладить их не возможно, в силу отсутствии предварительной информации.

Метод экспоненциального сглаживания. Расчетная формула по методу экспоненциального сглаживания имеет вид:

, (4.10)

при начальном значении и диапазоне изменения параметра сглаживания: 0<i<1.

Следует отметить, что в реальных условиях в результате вывода технологического процесса или технического объекта в установившийся режим работы становится известным желаемое значение контролируемой или регулируемой переменной, которое ранее было обозначено как . Именно эта величина и может быть использована в качестве начального значения .

Величина параметра определяет длительность переходных процессов и качество сглаживания. Чем меньше , тем лучше сглаживание, но тем большее время потребуется для получения сглаженного значения с заданным ослаблением помехи .

Поэтому, как и в предыдущем алгоритме сглаживания, возникает задача нахождения значения параметра сглаживания и времени готовности по расчетной формуле (4.10) вычислить 1-е сглаженное значение с принятым коэффициентом ослабления помех .

Для определения параметра сглаживания перейдем в выражении (4.10) к дисперсиям погрешностей измерений, принимая те же допущения, что и для алгоритма (4.2), тогда

.

Откуда

,(4.11)

или

(4.12)

Выражение (4.12) позволяет рассчитать параметр для алгоритма экспоненциального сглаживания, если задан коэффициент ослабления помех .

Расчетную формулу (4.10) можно представить не в рекуррентной форме, а в виде суммы следующего вида:

.

Считая, что погрешности измерения в каждом отсчете i-го датчика не коррелированны, приходим к аналогичному уравнению относительно дисперсий этих погрешностей:

Выражение в квадратных скобках можно записать как сумму убывающей геометрической прогрессии со знаменателем

Следовательно,

.(4.13)

На основании формул (10) и (12) получаем:

(4.14)

В выражении (4.14) член с ростом k стремится к нулю, приближаясь к (4.11). Задаваясь степенью приближения д, можно вычислить значение k, которое будет определять количество рекуррентных вычислений в расчетной формуле (4.10), и, следовательно, время получения первого сглаженного значения при заданном коэффициенте ослабления (4.7).

На основании сказанного из равенства находим

,(4.15)

Алгоритм экспоненциального сглаживания представлен на рисунке 4.6.

Рис. 4.6 Алгоритм экспоненциального сглаживания

Результаты моделирования работы алгоритма представлены на рисунке 4.7.

Рис. 4.7 Результаты моделирования работы алгоритма экспоненциального сглаживания

На рисунке 4.7 изображен сигнал, полученный с помощью алгоритма экспоненциального сглаживания. Сравнив его с сигналом, полученным после выполнения алгоритма проверки на достоверность (рис. 4.3,в) видим, что сигнал стал более сглаженным. Для получения первого сглаженного значения необходимо время (выделено пунктирным прямоугольником на рис. 4.7), которое может быть рассчитано по формуле

. (4.16)

Как следует из (4.16), это время будет возрастать с увеличением точности вычислений д. Достоинством метода экспоненциального сглаживания, по сравнению со скользящим окном, является малый объем памяти, хотя он значительно дольше входит в установившийся режим. Следовательно, с учетом необходимости контроля состояния большого количества датчиков (более 30), выбираем алгоритм скользящего среднего, позволяющий быстрее выйти в установившийся режим.

4.4 Алгоритм проверки на технологические границы

Каждая измеряемая величина технологического процесса изменяется в заданных пределах. Если параметр выходит за желаемый диапазон, возникает опасность нарушения процесса работы системы. Поэтому оператор должен вовремя принять меры по устранению нарушений. Для этого разрабатывается алгоритм проверки на технологические границы.

Предположим, измеряемый параметр должен изменяться в диапазоне

Dx = Хнк - Хвк, тогда если текущее Xik (i - номер отсчета, k - канал измерения) лежит в пределах Хнк - Хвк и выполняется условие:

где - полоса гистерезиса, равная 5% от диапазона изменения параметра; - значение признака нарушения границы для предыдущего отсчета.

В этом случае диспетчер не получает сообщений, и текущее значение признака нарушения границы = 0. Если Xik > Xвi (4.18) или Xik < Xвi (4.19), то оператору подается сигнал тревоги, = 1. Причем, если выполняется условие (4.18), то нарушена верхняя граница диапазона, если (4.19), то - нижняя.

При выходе сигнала за заданные границы в памяти фиксируется время нарушения, канал, в котором оно произошло, а также какая граница была нарушена. Блок-схема алгоритма проверки на технологические границы представлена на рисунке 4.8.

Рис. 4.8 Блок-схема алгоритма проверки на технологические границы

Результаты моделирования работы программы в среде "MatLab 7.0.1" показаны на рисунке 4.9.

Рис. 4.9. Результаты моделирования алгоритма проверки на технологические границы

На первом графике (рис. 4.9) показана имитация сигнала датчика давления воздуха в трубопроводе машинно-котельного отделения, а на втором - изменение состояние признака перехода . Листинг программы для моделирования алгоритмов контроля и управления приведен в приложении 1.

5. ТЕХНИЧЕСКАЯ СТРУКТУРА СИСТЕМЫ

Для проектирования системы управления необходимо разработать ее элементную базу. К техническим средствам предъявляются требования по быстродействию, точности, надежности, стоимости и др. Реализацию этих требований начнем с выбора датчиков.

5.1 Выбор датчиков

По исходным данным о диапазонах изменения и предъявляемым требованиям по точности измерения и регулирования были выбраны соответствующие датчики температуры, давления и расхода жидкости.

Датчик температуры "T7/MPX". Многоточечный измеритель температуры и уровня раздела фаз разработан для использования как составная часть системы коммерческого учета нефтепродуктов: TSS/Oil для измерений вертикального температурного профиля и уровня подтоварной воды в резервуарах-хранилищах. Т7/МРХ представляет собой Smart измеритель температуры с HART® выходом, интегрированный с мультиплексором и температурным зондом с 15-ю термометрами сопротивлений Pt-100.

Точность измерения температуры составляет 0,1° С при применении термосопротивлений класса t/TO DIN. Точность измерения уровня раздела фаз вода-нефтепродукты составляет 1 см. Для подключения к компьютеру дополнительно может поставляться RS232/HART® преобразователь интерфейса. Различные конструктивные оформления зонда позволяют использовать его при избыточных давлениях 2, 25 или 64 кГ/см2.

Точность измерения температуры в системах коммерческого учета весьма важна, так как ошибка в 1°С приводит к ошибке в определении массы нефтепродукта в резервуаре в 0.1%. Внешний вид датчика температуры серии "Т7/МРХ" изображен на рисунке 5.1.

Рис. 5.1 Внешний вид и конструкция датчика "Т7/МРХ"

Технические характеристики датчиков серии "Т7/МРХ" приведены в таблице 5.1.

Таблица 5.1 Технические характеристики датчиков серии "Т7/МРХ"

Наименование характеристики

Величина характеристики

Тип датчика температуры

2-х проводной термометр сопротивления Pt-100

Точность, °С

0.1

Максимальная длина измерительного зонда, м

30

Напряжение питания, В

12...30

Максимальное сопротивление нагрузки, Ом

100

Сопротивление изоляции, ГОм

1,5

Тип выхода

Токовый, 2-проводная линия 4/20мА

Диапазон измеряемых температур, °С

-50…+200

Рабочий диапазон температур, °С

-40...+85

Максимальное избыточное давление, кг/см2

64кг/см2

Датчик давления "27SP". Датчик давления серии 27 используется во всех отраслях промышленности для измерения давления жидкости, газа и пара. Датчик давления серии 27 типа Р использует пьезорезистивный сенсор; это активный резистивный мост Уинстона, нанесенный на кристаллический силиконовый чип. Датчик давления серии 27 типа S использует пленочный сенсор, основанный на принципе измерения усилий с подложкой и диафрагмой из керамического материала. Серия 27 имеет малые размеры и фиксированные диапазоны измерения. Внешний вид датчика давления серии "27SP" изображен на рисунке 5.2.

Рис. 5.2. Внешний вид и конструкция датчика "27SP"

Технические характеристики датчиков серии "27SP" приведены в таблице 5.2.

Таблица 5.2 Технические характеристики датчиков серии "27SP"

Наименование характеристики

Величина характеристики

Выходной сигнал, мА

4..20мА

Линейность, %

0,2

Гистерезис и повторяемость, %

0,1

Калибровочная точность, %

0,25

Температурный дрейф нуля, %

0.25

Температурный дрейф диапазона, %

0,07

Питание, В

12. ...30

Сопротивление нагрузки, Ом

600

Долговременная стабильность, %

0,2

Уход нуля, %

0,3

Относительная влажность, %

98

Температура:

рабочая, °С

предельная, °С

-40...+80

-55...+125

Температура хранения, °С

-40... +90

Время реакции при 63% входном сигнале, мсек

5

Датчик расхода "ДРК-1". Датчики применяются для измерения расхода и объема жидкостей, в том числе загрязненных, неоднородных, агрессивных, взрывоопасных. Пределы измерений в зависимости от модификации от 1 до 20000 м3/ч. Погрешность, % 1,5; 2,5. Габаритные размеры 50х80мм. Выходной сигнал датчика - 4…20 мА.

Рис. 5.3. Внешний вид и конструкция датчика ДРК-1

5.2 Выбор исполнительных механизмов

Электрические исполнительные механизмы (ИМ) предназначены для перемещения регулирующих органов в системах автоматического регулирования технологическими процессами в соответствии с командными сигналами автоматических регулирующих и управляющих устройств.

Выбор ИМ осуществляется в зависимости от типа регулирующего органа по требуемому моменту [8]. Так как в исследуемой системе необходимо управлять расходом вещества, то в качестве регулирующего органа применяется поворотная заслонка. Момент, развиваемый двигателем ИМ, должен быть больше реактивного момента Мреак обусловленного стремлением потока вещества закрыть заслонку, из-за необходимости учета затяжки сальников и трения в опорах. Так как момент сил трения трудно учитывать, обычно выбирают ИМ с моментом вдвое больше реактивного вращающего момента [7]:

Мим = 2PD3,

где - коэффициент, зависящий от угла поворота заслонки (при = 65 - 70°С значение этого коэффициента максимально и равно 0.07), Р - перепад давления на диске заслонки (Па), D - диаметр диска заслонки (м).

Выберем заслонку диаметром в 10 см, что соответствует диаметру прохода в седле трубопровода. Положим, что перепад давления на диске заслонки составляет Р = 24500 Па. Тогда реактивный момент равен:

Мреак ==1.715 .

Следовательно, двигатель должен развивать момент не меньше, чем 3,43 .

Выберем ИМ, который удовлетворяет рассчитанным параметрам. Для управления заслонками выбираются [18] однооборотные двигатели МЭО или многооборотные МЭМ - исполнительные механизмы, которые выпускаются в комплекте с определенным типом усилителя мощности.

Однооборотные ИМ типа МЭО поворачиваются на требуемый угол за указанное в маркировке время. Такой тип ИМ выпускается с концевыми выключателями, ограничивающими положение выходного вала и сигнализирующими о достижении предельных значений этого положения. Характерной особенностью двигателей типа МЭО является их высокое быстродействие, возможность длительной работы в стопорном режиме при полном напряжении питания, отсутствие ограничения по продолжительности и частоте включений.

В качестве ИМ выберем МЭО-6,3/10-0,25-01 (рис. 5.3), который имеет следующие технические характеристики, представленные в таблице 5.3:

Таблица 5.3 Технические характеристики исполнительных механизмов серии МЭО-6,3/10-0,25-01

Наименование характеристики

Величина характеристики

Номинальный момент на выходном валу,

16

Время одного оборота выходного вала, с

10

Максимальный рабочий угол поворота выходного вала, °

90

Напряжение питания при частоте 50 Гц, В

24

Потребляемая мощность, Вт

110

Масса, кг

7,3

Максимальная частота включений, кл/час

1200

Исполнительный механизм типа МЭО - 16-93 выпускается в комплекте с тиристорным усилителем ФЦ-0610, датчиком положения ДУП-М, пускателем бесконтактным реверсивным ПБР-2М, механизмом сигнализации положения МСП, блоком питания БП-24 и другим сопутствующим оборудованием.

Рис. 5.3 Внешний вид и конструкция ИМ МЭО - 16-93

5.3 Расчет разрядности АЦП и МК

Основываясь на информации о требуемой точности представления управляемых величин, их диапазоне изменения и количестве округлений в каждом используемом алгоритме первичной обработки информации, оценим длину разрядной сетки АЦП и АЛУ микроконтроллера.

Имеется три измеряемых величины: температура, давление, расход. Для их измерения используются датчики T7/MPX, 27SP, ДРК-1.

Требуемая точность контроля параметров равна:

Посчитаем разрядность АЦП, необходимую для считывания информации с датчиков, по формуле [14]:

,(5.1)

где Dx -- диапазон изменения сигнала, и -- коэффициенты, характеризующие доли погрешности вычислений, приходящиеся на датчики и АЦП соответственно. В соответствии с техническими характеристиками датчиков выбираем - = 0,35; = 0,5. Рассчитаем погрешность показаний каждого датчика по формуле:

(5.2)

В соответствии с (5.2) рассчитаем для каждого измеряемого параметра: , , .

Теперь по формуле (49) найдем количество разрядов АЦП, необходимое для каждого из каналов:

Выберем максимальное из них: = 10. Рассчитаем число дополнительных разрядов в АЛУ микроконтроллера по формуле:

,

где - количество округлений для каждого алгоритма, - коэффициент ослабления помехи, - коэффициент преобразования.

Подставив значения количества округлений для каждого алгоритма (m1 = 9, т2 = 30, т3 = 3, т4 = 4), приняв значение коэффициента ослабления помехи = 5 и найдя значение коэффициента преобразования по формуле:

получим, что число дополнительных разрядов равно нулю.

Однако из-за погрешностей округления в алгоритме вычисления управляющего воздействия это число возрастет, но не более, чем на 4 разряда. А поскольку в микроконтроллере разрядность кратна байту, то АЛУ выбираемого микроконтроллера должно быть 16-ти разрядным.

Проверим выбранные технические средства по быстродействию. Для этого необходимо обеспечение условия:

,(5.3)

где - время вычислений в микроконтроллере, для заданных алгоритмов, - время преобразований аналоговых сигналов в цифровой код, - время, затрачиваемое аппаратурой передачи данных на передачу информации от объекта управления к контроллеру и обратно. Подставив данные для микроконтроллера и АЦП в формулу (5.3), получим:

.(5.4)

Так как неравенство (5.4) выполняется, следовательно микроконтроллер и АЦП подходят по быстродействию для реализации системы.

5.4 Схема соединения устройств автоматизации

Фирма Advantech [19] предлагает широкий ассортимент технических средств автоматизации, в том числе модули серии ADAM-4000, которые в сочетании с функциональными возможностями программного обеспечения TRACE MODE позволяют просто решить большинство задач разработки масштабируемых систем распределенного сбора данных и управления.

При помощи модулей ADAM можно реализовать все необходимые функции разработанной автоматизированной системы управления: организацию ввода в микроконтроллер данных с датчиков и вывода сигналов на исполнительные механизмы, сопряжение с ЭВМ PC для осуществления контроля переменных системы. Основной причиной выбора устройств ADAM для технической реализации разработанной системы является то, что они совместимы с пакетом сбора данных, управления и контроля TRACE MODE, в котором разработан мониторинг системы контроля состояния подсистем нефтеналивного танкера. К тому же модули ADAM имеют хорошие функциональные, надежностные и качественные характеристики.

Компоненты, необходимые для сборки, инсталляции и конфигурирования сети из модулей ADAM:

* Модули ADAM;

* Системный компьютер, совместимый со стандартом IBM PC/AT, способный передавать символы в ASCII формате через порт RS-232 или RS-485;

* Источник питания модулей ADAM (от 10 до 30 В постоянного тока);

* Преобразователь интерфейса (при необходимости);

* Повторитель (при необходимости).

5.4.1 Общие характеристики модулей серии ADAM-4000

Модули серии ADAM-4000 являются малогабаритными многофункциональными интеллектуальными устройствами связи с объектом, специально разработанными для применения в промышленных условиях эксплуатации. Встроенный микропроцессор, входящий в состав каждого изделия, обеспечивает независимое от управляющей вычислительной системы выполнение функций гальванически изолированного ввода-вывода аналоговых и дискретных сигналов с последующей их нормализацией, фильтрацией и преобразованием в форму, пригодную для передачи по последовательному каналу связи, а также информационный обмен с ведущим узлом сети передачи данных на базе интерфейса RS-485.

Для обмена данными в системах на базе устройств ADAM используется единственная витая пара. Вследствие высоких уровней шумов, в промышленных условиях предпочтительнее использовать именно экранированные витые пары. Для обеспечения качественной, надежной связи в устройствах серии ADAM реализованы специальные цепи подавления и защиты от помех. Это упрощает монтажные и пуско-наладочные работы, а также позволяет снизить общую стоимость системы за счет сокращения затрат на кабельную продукцию, разъемные соединения, повторители и дополнительные фильтры.

Для увеличения протяженности линии связи, на основе которой организуется сеть модулей ADAM-4000, а также для включения в состав сети более 32 устройств имеется возможность применения повторителя ADAM-4510, предназначенного для усиления сигналов интерфейса RS-485. Каждый повторитель обеспечивает возможность организации очередного сегмента сети длиной до 1200 м, содержащего до 32 модулей серии ADAM. Общее количество устройств, образующих сеть и управляемых через один последовательный порт главной вычислительной системы, может составлять 256.

Протокол обмена с устройствами серии ADAM-4000 представляет собой набор команд в виде символьных строк в формате ASCII. Опрос устройств прикладными программами состоит из простых операций записи и чтения символьных строк из последовательного порта, что легко реализуется на любом языке программирования, подобном Си, Паскаль и Бейсик. Поддержка символьного протокола в формате ASCII означает, что имеется возможность создания сети устройств серии ADAM на базе вычислительных систем практически любых типов и производителей.

Программная поддержка модулей ADAM-4000 реализована для большинства наиболее популярных пакетов разработки программного обеспечения сбора данных, управления и диспетчерского контроля, подобных GENESIS, TRACE MODE, GENIE и др. При использовании указанных инструментальных средств разработка программного обеспечения сбора данных и управления может быть проведена практически без участия квалифицированных программистов.

В модулях ADAM реализована функция удаленной программной настройки типов и диапазонов принимаемых аналоговых сигналов, что обеспечивает возможность их сопряжения с различными датчиками и преобразователями непрерывных параметров.

Тип и диапазон входного сигнала устанавливается путем передачи в адрес модуля по последовательному каналу связи соответствующей команды от управляющей ЭВМ. Таким образом, для решения различных измерительных задач возможно применение модулей одного и того же типа, что существенно сокращает затраты на разработку и обслуживание системы, а также придает ей универсальность.

Для создания системы управления на базе модулей серии ADAM-4000 будем использовать IBM PC-совместимый контроллер связи ADAM-4500 в качестве ведущего узла сети.

5.4.2 IBM PC-совместимый контроллер связи ADAM-4500

Устройство ADAM-4500 является функционально законченным автономным контроллером связи, предназначенным для реализации распределенных систем сбора данных и управления. Контроллер ADAM-4500 содержит встроенную операционную систему ROM-DOS, совместимую с MS-DOS, за исключением поддержки стандартного сервиса системы BIOS. Применение данного контроллера предоставляет пользователю возможность создания программного обеспечения на языках высокого уровня с использованием персональных IBM PC совместимых ЭВМ.

Контроллер ADAM-4500 имеет в своем составе два коммуникационных порта (СОМ1 и COM2), которые обеспечивают возможность организации взаимодействия практически с любыми устройствами с последовательным доступом. Порт СОМ1 может быть настроен на функционирование в режиме интерфейсов RS-232 или RS-485 путем установки соответствующего переключателя. Порт COM2 работает в режиме RS-485. Данная конфигурация портов контроллера позволяет реализовывать различные приложения с интенсивным обменом по двум последовательным каналам связи.

Часы реального времени, входящие в состав контроллера, обеспечивают возможность получения точных меток времени при фиксации каких-либо событий в контролируемой прикладной области. Сторожевой таймер предназначен для осуществления повторного запуска системы в случае непредвиденной остановки исполнения программы.

Внешний вид контроллера связи ADAM-4500 показан на рисунке 5.4.

Рис. 5.4 IBM PC совместимый контроллер связи ADAM-4500

Основные технические характеристики контроллера:

* процессор: AMD 188Е8-40МГц;

* ОЗУ: 256 кб (234 кбайт памяти доступны для прикладных программ);

* Flash-диск: 256 кб (170 кбайт доступны для хранения прикладных программ);

* операционная система: Datalight ROM-DOS, совместимая с MS-DOS;

* встроенные часы реального времени;

* сторожевой таймер;

* последовательные порты: СОМ1 и COM2 (СОМ1 - RS-232/RS-485; COM2-RS-485);

* интерфейс RS-232:

* сигналы: TxD, RxD, RTS, CIS, DTR, DSR, DCD, RI, GND, о режим обмена: асинхронный полнодуплексный, "точка-точка",

* скорость обмена: до 115200 бит/с,

* максимальная протяженность линии связи: до 15,2м (по стандарту);

* интерфейс RS-485:

* сигналы: DATA+, DATA-, GND,

* режим обмена: асинхронный полудуплексный, многоточечный,

* скорость обмена: до 115200 бит/с,

* используемые линии порта RS-232 для загрузки программного обеспечения: TxD, RxD, GND;

* автоматическое определение направления потока данных в режиме RS-485;

* питание нестабилизированным постоянным напряжением: 10...30 В, защита от изменения полярности напряжения питания;

* рабочий диапазон температур -10°С...+70°С;

* габаритные размеры: 120 х60 мм;

* потребляемая мощность: 2 Вт;

* микромонитор реального времени TRACE MODE;

* до 128 точек ввода/вывода;

* до 32 программ.

Для организации ввода аналоговых сигналов с датчиков будем использовать модуль аналогового ввода серии ADAM-4000. Так как в разработанной системе шесть измеряемых величин, то необходимо шесть каналов ввода. Можно поставить 6 одноканальных устройств ввода, но с точки зрения экономической эффективности, а также экономии пространства и удобства обслуживания системы, для технической реализации выберем восьмиканальный модуль аналогового ввода ADAM-4017.

5.4.3 Модули аналогового ввода серии ADAM-4000

Модули аналогового ввода имеют в своем составе 16-разрядный сигма-дельта аналого-цифровой преобразователь (АЦП), управляемый микропроцессором, который предназначен для приема и преобразования сигналов термопар, термометров сопротивления, а также аналоговых сигналов в виде тока или напряжения. Микропроцессор выполняет преобразование цифровых отсчетов аналогового сигнала, поступающих с выхода АЦП, в значения, представляемые в одном из следующих форматов: инженерные единицы, проценты полной шкалы, дополнительный код или Омы. После получения запроса на передачу данных от ведущего узла сети на базе RS-485 микропроцессор модуля передает отсчет входного аналогового сигнала, представленный в одном из перечисленных форматов, в адрес ведущего узла сети.

5.4.4 Восьмиканальный модуль аналогового ввода ADAM-4017

Модуль ADAM-4017 является 8-канальным устройством аналогового ввода, оснащенным 16-разрядным АЦП и имеющим устанавливаемый программным способом для всех каналов диапазон и тип входных аналоговых сигналов. Модуль представляет собой наиболее экономичное решение для создания территориально распределенных автоматизированных систем сбора данных. ADAM-4017 имеет гальваническую развязку между подсистемой аналогового ввода и встроенным микропроцессором с напряжением 3000 В постоянного тока, что значительно снижает вероятность повреждения устройств и ведущей вычислительной системы помехами и наводками высокой интенсивности, характерными для промышленных условий эксплуатации

Технические характеристики модуля ввода ADAM-4017:

* количество и тип каналов аналогового ввода: 6 дифференциальных, 2 однополярных;

* тип входного сигнала: напряжение (мВ), напряжение (В), ток (мА);

* диапазон входного сигнала: ±150 мВ, ±500 мВ, ±1 В, ±5 В, ±10 В, ±20 мА;

* напряжение изоляции: 3000 В постоянного тока;

* защита от перенапряжения по входу до ±35 В;

* время аналого-цифрового преобразования (для 8 каналов): 100 мс;

* полоса пропускания: 13,1 Гц;

* основная погрешность измерения: не хуже ±0,1 %;


Подобные документы

  • Изучение функционирования и описание схемы управления котельной установкой. Реализация корректирующих устройств на регуляторах, этапы создания диспетчерского центра, его программное обеспечение. Анализ путей снижения затрат за счет внедрения системы.

    дипломная работа [4,1 M], добавлен 12.02.2010

  • Устройство управления рабочими механизмами как неотъемлемая часть автоматизированной системы управления технологическими процессами, его принцип работы и назначение. Выбор и обоснование элементной базы данного устройства, проведение теплового расчета.

    курсовая работа [181,5 K], добавлен 03.06.2010

  • Классификация систем кондиционирования воздуха, принципиальная схема прямоточной системы. Тепловой баланс производственного помещения. Расчёт процессов обработки воздуха в системе кондиционирования. Разработка схемы воздухораспределения в помещении.

    курсовая работа [3,9 M], добавлен 04.06.2011

  • Характеристика основных типов кондиционеров: бытовые, полупромышленные и системы промышленного кондиционирования и вентиляции. Расчет необходимой мощности кондиционера. Эксплуатация кондиционера и монтаж. Центральные системы кондиционирования воздуха.

    контрольная работа [26,5 K], добавлен 08.12.2010

  • Анализ основных требований к системам кондиционирования воздуха. Основное оборудование для приготовления и перемещения воздуха. Сведения о центральных кондиционерах и их классификация. Конструкция и принцип работы их основных секций и отдельных агрегатов.

    дипломная работа [12,3 M], добавлен 01.09.2010

  • Автоматика судовых энергетических установок и аппаратуры контроля, ее структура и элементы, функциональные особенности. Системы автоматической сигнализации и защиты. Судовые котельные установки и регулирование их работы, вентиляция и кондиционирование.

    отчет по практике [882,5 K], добавлен 13.05.2016

  • Процессы нагрева и охлаждения воздуха и их отображение на I-d диаграмме. Мульти-сплит системы: назначение, типы, устройство, конструктивные особенности, электрические и гидравлические схемы. Схемы автоматизации кондиционеров. Процессы обработки воздуха.

    контрольная работа [610,9 K], добавлен 13.03.2013

  • Краткое описание технологического процесса, конструкция, режимы работы и технические характеристики центрального кондиционера. Выбор технических средств автоматизации, программного обеспечения и датчиков, расчет регулирующего и исполнительного механизма.

    дипломная работа [2,4 M], добавлен 26.05.2010

  • Общая характеристика цеха, технологический процесс нагрева проволоки в термотравильном агрегате. Описание функциональной схемы автоматизации, выбор ее типовых элементов. Автоматика разрабатываемой системы управления подачей воздуха в термотравителе.

    дипломная работа [242,5 K], добавлен 16.06.2015

  • Анализ технологических процессов на насосных станциях канала. Разработка требований к системе оперативно-диспетчерского контроля и управления, элементов программного и технического обеспечения. Меры пожарной безопасности, экологический контроль.

    дипломная работа [1,0 M], добавлен 25.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.