Системы контроля состояния подсистем танкера, с использованием современной элементной базы
Анализ комплексной автоматизации управления вспомогательными механизмами энергетических установок и судовых систем. Общее расположение и архитектура судна. Техническое описание системы кондиционирования воздуха. Реализация диспетчерского уровня системы.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 25.08.2010 |
Размер файла | 5,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Таким образом, при возникновении аварии на танкере возникает множество отрицательно влияющих на окружающую среду последствий. Данных последствий поможет избежать цифровая система диагностики защиты танкера от затопления, которая позволит оценивать ситуацию в реальном времени, предсказать пути ее распространения и задействовать основные механизмы системы для борьбы с аварией. Достоинством системы является также ее непрерывная работа и в моменты возникновения аварийной ситуации, что позволяет принимать верные решения для ее устранения.
9. СОЦИАЛЬНАЯ ЗНАЧИМОСТЬ РАБОТЫ
Проектируемая в дипломе система контроля состояния подсистем на нефтеналивном танкере типа "Победа" имеет огромную социальную значимость. Количество аварий происходящих на судах все еще велико. Это связано в первую очередь с несовершенством систем диагностики предаварийного состояния, во-вторых невозможностью существующих систем предсказывать ход развития аварийной ситуации. Из достоинств разрабатываемой системы можно выделить непрерывную диагностику состояния судна до и в момент аварии. Так как сигналы с датчиков централизовано сведены в рубку, это позволяет принимать своевременные и верные решения командным составом судна о проведении мероприятий по борьбе с возникшей чрезвычайной ситуацией. Реализация системы диагностики в цифровом виде с использованием модулей ADAM, позволяет быстро масштабировать и конфигурировать систему в соответствии с выдвигаемыми требованиями.
ЗАКЛЮЧЕНИЕ
Тенденция к дальнейшему сокращению численности обслуживающего персонала; необходимость ограничения потока информации до уровня, определяемого возможностями оператора к восприятию и переработке информации, а также к осуществлению воздействий; требования ограничения массогабаритных характеристик пультов управления, щитов и панелей, а также необходимость регистрировать изменение многих параметров подсистем -- все это обусловило создание системы обработки и представления информации.
В данном дипломном проекте произведен анализ подсистем нефтеналивного танкера. В качестве контролируемых подсистем были выбраны: подсистема пожаротушения, подсистема кондиционирования и осушительно-балластная подсистема. Подсистема управления энергетическими установками рассмотрена не была, в силу ограничений накладываемых правилами морского регистра России.
Для выбранных подсистем были выделены основные принципы диагностики их состояния. Была предложена схема реализации соединений системы с помощью модулей ADAM. Использование данных технологий предоставляет огромные перспективы при реализации систем, так как позволяет переконфигурирвоать или перемасштабировать систему в короткие промежутки времени.
Использование SCADA-системы позволило организовать диспетчерский уровень с интуитивно понятным интерфейсом пользователя.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Александров А. В. Судовые системы. Л., «Судостроение», 1982.
2. Андреева О. А., Максимов В. И., Печковский B.C. Современные средства тушения судовых пожаров воздушно-механической пеной. Л., «Морской транспорт», 1989.
3. Ассоров Ф. Г., Пономарев И. М., Шпиков Б. И. Тушение пожаров на морских судах. М., «Морской транспорт», 1996.
4. Ассоров Ф. Г., Шпиков Б. И. Пожарная безопасность на морском транспорте. М., «Транспорт», 1995.
5. Бродский А. И. Физическая химия. Т. 1. М.--Л., Госхимиздат, 1978.
6. Буряк В. Д. О целесообразности применения систем паротушения на грузовых судах.-- «Судостроение», 1994, № 5.
7. Волков Н. Н. Конструктивная противопожарная защита жилых помещений пассажирских судов.-- «Судостроение», 1994, № 5.
8. Митькевич Г. П. Измерение прочности цены на связь. -- «Прикладная химия», т. XXII, 1968.
9. Монахов В. Т. Справочные данные по горению, развитию и тушению пожаров. Высшая школа МООП РСФСР. М 1987.
10. Носов Н. С., Березин П. П. Противопожарная защита атомного ледокола «Ленин».-- «Судостроение», 1974, №8.
11. Нэш П., Эштон Л. Борьба с пожарами и предотвращение их на судах. Пер. с англ.-- «Мировое судостроение и флот», 1993, № 6.
12. Плоткин М., Сурикова А. Тушение пожаров (нефтепродуктов) тонкораспыленной водой.-- «Морской флот», 1994, № 2.
13. Пономарев И. М. Пожарная профилактика на морском транспорте. М., «Морской транспорт», 1984.
14. Пономарев И. М. Система пенотушения на танкерах.-- «Судостроение», 1998, № 12.
15. Рабинерсон А. А. Расчет теплоизоляции судовых противопожарных ограждений.-- В сб. «Технология судостроения», 1979, № 6.
16. Ройтман М. Я. Основы противопожарного нормирования в строительстве. М., Стройиздат, 1986.
17. Рябов И. В. Современные средства тушения пожаров пенами. М., Изд. МКХ РСФСР, 1987.
18. Смольников С. Пожар на танкере.-- «Пожарное дело», 1969.
19. www.asutp.ru
20. www.advantech.ru
21. www.adastra.ru
22. Т.Н. Бакаева, А.В. Непомнящий, И.И. Ткачев. В помощь дипломнику: Методическая разработка к разделу "Безопасность и экологичность" в дипломном проекте (работе) для студентов всех специальностей. Таганрог: Изд-во ТРТУ, 2001.
23. Т.А. Пьявченко. Автоматизированные системы управления технологическими процессами и техническими объектами: Учебное пособие. Таганрог: ТРТУ, 1997.
ПРИЛОЖЕНИЯ
Приложение 1
Листинг MatLab-программы для моделирования сигналов с датчиков.
F = 500;
Ngroup = 21;
Nvar =9;
mox = 21;
sigma = sqrt( 0.01 * (9+5)^2 );
Apom = 20*mox;
Akz = 25*mox;
Aobr = 0;
x = mox + sigma*randn(1, F);
D0 = cov(x);
subplot(5, 1, 1)
plot(x)
grid on
ylim([mox-sigma*10 mox+sigma*10])
text(1, mox-sigma*10+1, strcat('Дисперсия погрешности измерений:', num2str(D0)))
legend('Сигнал датчика');
pomnum = F/50; %кол-во импульсных помех с амплитудой Apom
for m = 1:pomnum
t = round(3 + (F-3) * rand(1)); %индекс элемента массива, где будет помеха. Лежит в интервале [3;F];
x(t) = Apom;
end
t = round(3 + (F-5) * rand(1)); %индекс элемента массива, где будет короткое замыкание. Лежит в интервале [3;F-2];
x(t) = Akz;
x(t+1) = Akz;
x(t+2) = Akz;
t = round(3 + (F-5) * rand(1)); %индекс элемента массива, где будет обрыв. Лежит в интервале [3;F-2];
x(t) = Aobr;
x(t+1) = Aobr;
x(t+2) = Aobr;
%D1 = cov(x);
subplot(5, 1, 2)
plot(x)
grid on
ylim([mox-sigma*10 mox+sigma*10])
legend('Сигнал в канале измерений');
%проверка на достоверность
errorcount = 0; %счетчик нарушений
j = 3;
XB = mox + (Nvar+2);
XH = mox - (Nvar+2);
last = x(1); %последнее достоверное значение
for k = j:F
if x(k)<XH | x(k)>XB
errorcount = errorcount + 1;
if errorcount == 3
razn = x(k)-x(k-j);
if razn < 0
obr = k;
else
kz = k;
end
errorcount = 0; %так как программа продолжает выполнение
x(k)=last;
else
x(k) = last;
end
else
errorcount = 0;
last = x(k);
end
end
D2 = cov(x);
subplot(5, 1, 3)
plot(x)
grid on
ylim([mox-sigma*10 mox+sigma*10])
text(1, mox-sigma*10+1, strcat('Дисперсия:', num2str(D2), '; КЗ на отсчете:', int2str(kz), '; Обрыв в канале на отсчете:', int2str(obr)))
legend('Сигнал после проверки на достоверность');
% Algoritmi sglajivaniya
Nzad = 10;
sigmazad = 0.00001;
% Sglajivaniye "skolzashego srednego"
M = ceil(Nzad);
for t = 1:M
xc(t) = x(t);
end
for k = M:F
sum = 0;
for j = k-M+1:k-M+M
sum = sum + x(j);
end
sum = sum / M;
xc(k) = sum;
end
xcd = xc(M:F);
D3 = cov(xcd);
subplot(5, 1, 4)
plot(xc)
grid on
ylim([mox-sigma*10 mox+sigma*10])
text(1, mox-sigma*10+1, strcat('Дисперсия:', num2str(D3), '; Коэфф. ослабления :', num2str(D2/D3), '; Тск.ср.=', int2str(M), '*Tопр'))
legend('Скользящее сглаживание');
% Exponencialnoye sglajivaniye
alpha = 2/(Nzad+1);
xe(1)=alpha*x(1);
for k = 2:F
xe(k) = xe(k-1) + alpha*(x(k)-xe(k-1));
end
Teks = 0.5*log(sigmazad)/log(1-alpha);
xed = xe(ceil(Teks):F);
D4 = cov(xed);
subplot(5, 1, 5)
plot(xe)
grid on
ylim([mox-sigma*10 mox+sigma*10])
text(1, mox-sigma*10+1, strcat('Дисперсия:', num2str(D4), '; Коэфф. ослабления :', num2str(D2/D4), '; Тэкс.сгл.=', num2str(Teks), '*Tопр'))
legend('Экспоненциальное сглаживание');
Программный модуль для реализации функции аналогового ввода сигналов от датчиков.
//измерение температуры
begin
open "com1: 9600, n, 8, 1, rs, cs, cd, ds" as #1;
writeln "конфигурация, ждите";
cmd: = "%01020е0600";
writeln #1,cmd;
result:=input(4,#1);
temp:=mid(result,1,3);
if temp<>"102" then goto ent;
delay = 7 goto dela;
vver:
cmd:= "@02lo+140.00";
writeln #1,cmd;
results:=inputs (4, #1);
temps:= mto(result,1,3);
if tempo"102" then goto vver;
delay:= 2 goto dela;
cmd:= "@02еам";
vver2:
writeln #1,cmd;
results:=inputs (4, #1);
temp:= mid(temp,1,3);
if temp<>"102" then goto vver2
delay = 2: goto dela
writeln " температура: °";
writeln " *контрольная температура:";
writeln " * сигнал управления:";
writeln " текущее время:";
while true do
begin
cmd:= "#02";
writeln #1,cmd;
temps;= inputs (9, #1);
temps:= mid(temp,2,7);
writeln temps;
writeln times;
cmos:= "@02d1";
writeln #1,cmd;
alarms:= inputs (9, #1);
alarms:= mid( alarm,6,1);
if (alarms ="2" or alarms ="3") then writeln "on"
else writeln "off";
end;
dela:
//"процедура временной задержки"
begin
start:= int(timer)
while delay>-1 do
begin
if (startoint(timer)) then delay = delay-1
end;
end;
end;
Приложение 2
Вместимость танков и цистерн нефтеналивного танкера
Группа танков, цистерны |
№ танков и цистерн |
Вместимость(нетто) м3 |
||||
Грузовые танки |
Отстойные танки |
Балластные цистерны |
общая |
|||
1 группа |
1ПрБ,1ЛБ,5ПрБ 5ЛБ |
4155,4010, 5460,5315 |
18940 |
|||
2 группа |
2ПрБ, 2ЛБ, 6ПрБ, 2ЛБ |
5460,5315, 5460, 5315 |
21550 |
|||
3 группа |
3ПрБ, 3ЛБ 7ПрБ, 7ЛБ |
5460,5315 3800, 3700 |
18275 |
|||
4 группа |
4ПрБ, 4ЛБ 8ПрБ, 8ЛБ |
5460,5315 |
870,705 |
12350 |
||
1-4 группа |
71100 |
|||||
Балластные цистерны |
Б-1,Б-2,Б-3, Б-4 ,Б-5, Б-6, Б-7, Б-8, Б-9, Б10 |
2*3110 2*1525 2*3050 2*1525 2*1330 |
6220 3050 6100 3050 2660 |
|||
Форпик Ахтерпик |
1635 535 |
1635 535 |
||||
Балластные цистерны и пики |
23250 |
Приложение 3
Принципиальная схема системы.
Приложение 4
Функциональная схема системы.
Подобные документы
Изучение функционирования и описание схемы управления котельной установкой. Реализация корректирующих устройств на регуляторах, этапы создания диспетчерского центра, его программное обеспечение. Анализ путей снижения затрат за счет внедрения системы.
дипломная работа [4,1 M], добавлен 12.02.2010Устройство управления рабочими механизмами как неотъемлемая часть автоматизированной системы управления технологическими процессами, его принцип работы и назначение. Выбор и обоснование элементной базы данного устройства, проведение теплового расчета.
курсовая работа [181,5 K], добавлен 03.06.2010Классификация систем кондиционирования воздуха, принципиальная схема прямоточной системы. Тепловой баланс производственного помещения. Расчёт процессов обработки воздуха в системе кондиционирования. Разработка схемы воздухораспределения в помещении.
курсовая работа [3,9 M], добавлен 04.06.2011Характеристика основных типов кондиционеров: бытовые, полупромышленные и системы промышленного кондиционирования и вентиляции. Расчет необходимой мощности кондиционера. Эксплуатация кондиционера и монтаж. Центральные системы кондиционирования воздуха.
контрольная работа [26,5 K], добавлен 08.12.2010Анализ основных требований к системам кондиционирования воздуха. Основное оборудование для приготовления и перемещения воздуха. Сведения о центральных кондиционерах и их классификация. Конструкция и принцип работы их основных секций и отдельных агрегатов.
дипломная работа [12,3 M], добавлен 01.09.2010Автоматика судовых энергетических установок и аппаратуры контроля, ее структура и элементы, функциональные особенности. Системы автоматической сигнализации и защиты. Судовые котельные установки и регулирование их работы, вентиляция и кондиционирование.
отчет по практике [882,5 K], добавлен 13.05.2016Процессы нагрева и охлаждения воздуха и их отображение на I-d диаграмме. Мульти-сплит системы: назначение, типы, устройство, конструктивные особенности, электрические и гидравлические схемы. Схемы автоматизации кондиционеров. Процессы обработки воздуха.
контрольная работа [610,9 K], добавлен 13.03.2013Краткое описание технологического процесса, конструкция, режимы работы и технические характеристики центрального кондиционера. Выбор технических средств автоматизации, программного обеспечения и датчиков, расчет регулирующего и исполнительного механизма.
дипломная работа [2,4 M], добавлен 26.05.2010Общая характеристика цеха, технологический процесс нагрева проволоки в термотравильном агрегате. Описание функциональной схемы автоматизации, выбор ее типовых элементов. Автоматика разрабатываемой системы управления подачей воздуха в термотравителе.
дипломная работа [242,5 K], добавлен 16.06.2015Анализ технологических процессов на насосных станциях канала. Разработка требований к системе оперативно-диспетчерского контроля и управления, элементов программного и технического обеспечения. Меры пожарной безопасности, экологический контроль.
дипломная работа [1,0 M], добавлен 25.04.2009