Аксиально-поршневой двигатель

Назначение, конструкция, отличительные признаки и преимущества аксиально-поршневого двигателя с шайбовым механизмом, принцип работы. Определение дезаксиала аксиально-поршневого насоса, расчет диаметров поршня и разноски отверстий в блоке цилиндров.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 15.01.2014
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

Введение

1. Техническая часть

2. Принцип работы двигателя

3. Расчетная часть. Расчет блока цилиндров

Список использованной литературы

ВВЕДЕНИЕ

В 1911 году компания Macomber Rotary Engine Company из Лос-Анджелеса выпустила на рынок один из первых аксиальных двигателей внутреннего сгорания. Это был семицилиндровый двигатель с изменяемой степенью сжатия путём изменения угла наклона шайбы, и регулирования таким образом хода поршней.

Устройство предназначено для использования в области машиностроения, в поршневых пневматических двигателях. Наиболее хорошо известно применение аксиальных двигателей в торпедах, для которых желательна цилиндрическая форма двигателя с маленькой площадью миделева сечения, а также нет проблем с его охлаждением. Например, современные торпеды Mark-48 оборудованы аксиальным двигателем мощностью 500 лошадиных сил.

1. ТЕХНИЧЕСКАЯ ЧАСТЬ

Аксиально-поршневой двигатель содержит установленный в корпусе блок цилиндров с поршнями двойного действия, взаимодействующими с двухсторонней волновой дорожкой ротора-распределителя. Ротор-распределитель выполнен в виде вала с радиальными и Z-образными продольными пазами на его цилиндрической поверхности и жестко, неразъемно установленного на нем золотника с двухсторонней волновой дорожкой и окнами, взаимодействующими с соответствующими пазами вала. Вал ротора-распределителя снабжен одним или двумя хвостовиками. Упрощается конструкция и расширяются функциональные возможности.

Ключевое преимущество аксиальных двигателей с шайбовым механизмом состоит в том, что поршни расположены параллельно друг другу по краю шайбы. Это даёт возможность расположить выходной вал параллельно поршням, а не под 90 градусов, как у обычных двигателей с коленчатым валом. В результате двигатель получается очень компактным.

Расположение поршней и принцип действия шайбового механизма позволяет регулировать степень сжатия путём изменения угла наклона шайбы.

Аксиально-поршневой двигатель может быть использован в качестве привода горных машин, таких, как погрузочные и погрузочно-доставочные машины, буровые станки и лебедки, проходческие и другие машины. Двигатель содержит корпус, в котором параллельно оси ротора выполнены цилиндрические полости, в которых размещены поршни двухстороннего действия, взаимодействующие с волнообразным кулачком ротора.

В роторе выполнена система каналов и окон, обеспечивающих впуск и выпуск сжатого газа в камеры цилиндров. Окна ротора имеют противоположное смещение, обеспечивающее равномерное открытие и закрытие камер цилиндрических полостей, которые на конечном участке перемещения поршней при совершении рабочего хода и на начальном при совершении обратного хода соединены с атмосферой через систему дренажных отверстий корпуса. Смещение окон ротора для подачи сжатого газа в рабочие камеры цилиндрических полостей выполнено из условия прекращения подачи сжатого воздуха в указанные камеры при угловом перемещении ротора на 50o относительно верхней мертвой точки поршня. Повышаются технико-экономические показатели работы двигателя, увеличивается мощность без изменения габаритных размеров, снижается уровень шума и трудоемкость изготовления. 9 ил.

Изобретение относится к поршневым двигателям с осями цилиндров, параллельными к оси коренного вала, предназначено для преобразования энергии сжатого газа в механическую работу и может быть использовано в качестве привода горных машин, таких как погрузочные и погрузочно-доставочные машины, буровые станки и лебедки, проходческие и другие машины.

Известна аксиально-поршневая гидро- или пневмомашина двойного действия, поршни которой взаимодействуют с кулачком-копиром ротора и расположены в цилиндрах, оси которых параллельны оси вращения ротора. По сравнению с радиально-поршневыми двигателями известная машина имеет меньшую удельную металлоемкость, повышенную мощность.

Известен аксиально-поршневой пневматический двигатель, в котором поршни помещены в цилиндрах, расположенных параллельно валу двигателя и на равном от него расстоянии. Внутри каждого поршня размещен каток, который взаимодействует с торцевой поверхностью волнообразного кулачка, расположенного на валу двигателя.

Волнообразный кулачок предназначен для преобразования возвратно-поступательного движения поршней во вращательное движение вала. Распределение рабочего тела - сжатого воздуха, подвод и отвод его от цилиндров осуществляется через систему распределения, представляющую собой совокупность каналов, выполненных в валу и корпусе двигателя. Известный аксиально-поршневой пневматический двигатель по сравнению с радиально-поршневыми имеет меньшие габаритные и весовые показатели, однако возможности увеличения его мощности при неизменных габаритах исчерпаны не до конца.

Наиболее близким по технической сущности и достигаемому результату к заявленной конструкции двигателя является аксиально-поршневой двигатель, содержащий корпус, в котором расположены поршни двухстороннего действия и размещен ротор-распределитель. В корпусе выполнены отверстия для подвода и отвода сжатого воздуха от ротора-распределителя. В роторе-распределителе параллельно его оси расположены продольные каналы, а в зоне питания выполнены проточки. Продольные каналы объединены в две группы в чередующемся порядке при помощи радиальных каналов. Продольные каналы снабжены окнами для подвода воздуха к поршням и окнами для отвода воздуха из запоршневых камер. Эти окна имеют противоположное смещение и обеспечивают синхронное открытие и закрытие рабочих и запоршневых камер.

В этом двигателе за счет радиальных каналов, соединяющих продольные каналы для подвода сжатого воздуха в рабочие камеры цилиндрических полостей и продольные каналы для отвода отработанного сжатого воздуха из запоршневых камер цилиндрических полостей, в работе участвуют все продольные каналы. Благодаря этому в момент, когда поршень совершает рабочий ход, обеспечивается максимальный подвод рабочей среды в рабочие камеры, и энергия сжатого воздуха используется более полно на совершение работы, а не на преодоление сопротивления при перемещении по малому сечению каналов.

Однако указанное усовершенствование двигателя не может значительно увеличить коэффициент полезного действия, а синхронное открытие канала подачи сжатого воздуха в рабочие камеры цилиндрических полостей и отвода из запоршневых камер этих полостей не отвечает рациональному распределению энергии сжатого воздуха для ее преобразования в механическую работу двигателя.

Изобретение решает задачу повышения технико-экономических показателей работы двигателя, увеличения его мощности без изменения габаритных размеров, снижения уровня шума и трудоемкости изготовления.

Технический результат, получаемый при использовании изобретения, состоит в рациональном использовании сжатого воздуха, заключающемся в том, что сжатый воздух подают в рабочие камеры цилиндрических полостей только в момент наибольшего коэффициента полезного действия преобразования поступательного перемещения поршней во вращательное движение вала двигателя и отсекают, когда указанный коэффициент очень мал или равен нулю.

Указанный технический результат получают за счет того, что в известном аксиально-поршневом двигателе, содержащем корпус, в котором на равном расстоянии от оси ротора и параллельно ей выполнены цилиндрические полости, в каждой из которых с образованием рабочей и запоршневой камер размещен поршень двухстороннего действия, внутри которого установлен, по меньшей мере, один каток с возможностью взаимодействия с волнообразным кулачком, закрепленным на роторе, в котором выполнены две изолированные друг от друга системы продольных каналов, одна - для подвода сжатого воздуха в рабочие камеры цилиндрических полостей, другая - для отвода из запоршневых камер, каждая система соединена с соответствующей зоной подвода и отвода сжатого воздуха, а каждый продольный канал ротора по обе стороны от волнообразного кулачка имеет окна для подвода и отвода сжатого воздуха соответственно в рабочие и из запоршневых камер цилиндрических полостей, причем указанные окна имеют противоположное смещение, окна для подвода и отвода сжатого воздуха в камеры и из камер каждой цилиндрической полости выполнены с угловым смещением относительно друг друга и с возможностью разновременного открытия и закрытия указанных камер, камеры цилиндрических полостей на конечном участке перемещения поршней при совершении рабочего хода и на начальном - при совершении обратного хода, соответствующем Размещено на http://www.allbest.ru/

10o углового перемещения ротора относительно нижней мертвой точки поршня, соединены с атмосферой через системы дренажных каналов, выполненных в корпусе, а смещение окон ротора для подачи сжатого воздуха в рабочие камеры цилиндрических полостей выполнено из условия прекращения подачи сжатого воздуха в указанные камеры при угловом перемещении ротора на 50o относительно верхней мертвой точки поршня.

Указанные существенные отличительные признаки двигателя в совокупности с общими известными признаками прототипа позволят повысить кпд преобразования поступательного перемещения поршней во вращательное ротора, снизить уровень шума при работе двигателя, т.к. в конце рабочего хода поршней в рабочие камеры не подается сжатый воздух и они соединены в этот момент через систему дополнительных дренажных каналов с атмосферой. Это же соединение на начальном участке перемещения поршня в исходное положение обеспечит меньшее сопротивление при совершении рабочего хода на момент, когда запоршневая камера становится рабочей и в нее поступает сжатый воздух.

Принципиальная схема данного двигателя представлена на чертежах, где на:

рис. 1 показан продольный разрез двигателя по линии VII-VI рис. 2;

рис. 2 - разрез двигателя по линии I-I рис. 1;

рис. 3 - продольный разрез ротора двигателя по линии II-II рис. 2;

рис. 4 - поперечное сечение ротора двигателя по линии III-III рис. 3;

рис. 5 - поперечное сечение ротора двигателя по линии IV-IV рис. 3:

рис. 6 - поперечное сечение ротора двигателя по линии V-V рис. 3;

рис. 7 - поперечное сечение ротора двигателя по линии VI-VI рис. 3;

рис. 8 - совмещение поперечных сечений ротора двигателя по линиям V-V и VI-VI у прототипа;

рис. 9 - совмещение поперечных сечений ротора двигателя по линиям V-V и VI-VI у заявленного двигателя.

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5

Рис. 6

Рис. 7

Рис. 8

Рис. 9

Аксиально-поршневой двигатель содержит корпус 1, в котором на равном расстоянии от оси ротора 2 и параллельно ей выполнены цилиндрические полости 3, в каждой из которых с образованием рабочей 4 и запоршневой 5 камер размещен поршень 6 двухстороннего действия, внутри которого установлены на осях 7 катки 8 с возможностью взаимодействия с волнообразным кулачком 9, закрепленным на роторе 2, в котором выполнены две изолированные друг от друга системы продольных каналов: одна 10 - для подвода сжатого воздуха в рабочие камеры 4 цилиндрических полостей 3, а другая 11 - для его отвода из запоршневых камер 5. Каждая система 10 и 11 соединена с соответствующей зоной подвода 12 и отвода 13 сжатого воздуха. Зоны образованы кольцевыми проточками 14 и 15, выполненными на роторе по обеим сторонам волнообразного кулачка 9 и поверхностью цилиндрической полости 16, в которой размещен ротор 2 двигателя. В корпусе 1 выполнены отверстие 17 для подвода сжатого воздуха и отверстие 18 для отвода отработанного воздуха. Зоны подвода 12 и отвода 13 сжатого воздуха соединены с соответствующим отверстием 17 и 18 корпуса 1, а через окна 19 и 20 - с продольными каналами 10 и 11 систем подвода и отвода воздуха. Поршни 6 имеют вырезы 21. Катки 8 поршней 6 находятся в контакте с направляющими поверхностями 22 волнообразного кулачка 9, волны которого входят в вырезы 21 поршней 6. Для прохода волн кулачка 9 при вращении ротора 2 в корпусе 1 выполнены пазы 23.

Для впуска сжатого воздуха в рабочие камеры 4 в корпусе 1 выполнены окна 24. При обратном ходе поршня 6 окна 24 служат для выпуска отработанного воздуха из камер 4. Для выпуска отработанного воздуха из запоршневой камеры 5 в корпусе 1 выполнены окна 25. При обратном ходе поршня 6 окна 25 служат для впуска сжатого воздуха в камеру 5. Каждый продольный канал 10 и 11 ротора 2 по обеим сторонам от волнообразного кулачка 9 имеет окна 26 для подвода сжатого воздуха через окно 24 корпуса 1 в рабочие камеры 4 и окна 27 для отвода отработанного воздуха из запоршневой камеры 5 через окна 25 корпуса 1. Окна 26 и 27 ротора 2 по обеим сторонам волнообразного кулачка 9 имеют противоположное смещение, т.е. при впуске сжатого воздуха в рабочую камеру 4 цилиндрической полости 3 окно 26 соединено с продольным каналом 10 системы подвода, а запоршневая камера 5 в этот момент соединена с продольным каналом 11 системы отвода отработанного воздуха. В прототипе расположение окон 26 и 27 выполнено таким образом, что происходит синхронно впуск сжатого воздуха в рабочую камеру 4 и выпуск отработанного воздуха из запоршневой камеры 5. В заявленном двигателе указанные окна имеют угловое смещение относительно друг друга, что обеспечивает возможность разновременного открытия и закрытия указанных камер. аксиальный поршневой насос цилиндр

Расчетами, выполненными для трехволнового кулачка 9, определена оптимальная величина углового смещения окон, которая составила 10o.

На конечном участке перемещения поршней 6 при совершении рабочего хода и на начальном - при совершении обратного хода, камеры цилиндрической полости 3 соединены с атмосферой через систему дренажных каналов 28 и 29 корпуса 1. На указанных участках в рабочую камеру 4 уже прекращается подача сжатого воздуха, а отвод отработанного воздуха осуществляется через указанную систему дренажных каналов, минуя основную систему отвода отработанного воздуха двигателя. Указанные перемещения поршня 6 соответствуют величине углового перемещения ротора относительно нижней мертвой точки поршня 10o.

Смещение окон 26 и 27 ротора 2 выполнено из условия прекращения подачи сжатого воздуха в камеры 4 и 5 цилиндрических полостей 3 при угловом повороте ротора на 50o относительно верхней мертвой точки поршня 6.

Продольные каналы 10 системы подвода сжатого воздуха могут быть соединены между собой радиальными каналами 30 в районе окон 19 и 26, а продольные каналы 11 системы отвода отработанного воздуха - радиальными каналами 31 в районе окон 20 и 27.

2. ПРИНЦИП РАБОТЫ ДВИГАТЕЛЯ

Аксиально-поршневой двигатель работает следующим образом. Через отверстие 17 (рис.1) сжатый воздух поступает в зону подвода 12, а из нее через окна 19 в продольные каналы 10, по которым поступает через окна 26 и 24 в рабочую камеру 4 цилиндрической полости 3. Под действием сжатого воздуха поршень 6 начинает рабочий ход от верхней мертвой точки влево (по чертежу). Усилие поршня 6 через каток 8 передается на направляющую торцевую поверхность 22 кулачка 9 и, благодаря криволинейности поверхности 22, заставляет кулачок 9, а следовательно, и ротор 2 совершать поворот. Запоршневая камера 5 на начальном этапе обратного хода, соответствующем угловому повороту ротора 2 на 10o, соединена с атмосферой через систему дренажных каналов 28 и 29 и оказывает минимальное сопротивление перемещению поршня 6 под действием усилия, развиваемого в рабочей камере 4. На остальном этапе обратного хода запоршневая камера отсекается от системы дренажных отверстий и выпуск отработанного воздуха из нее осуществляется через систему отвода, т.е. окна 25, 27, продольные каналы 11, окна 20 и отверстия 18. При повороте ротора 2 на 50o происходит закрытие окон 24 и сжатый воздух в рабочую камеру 4 не поступает. Этот момент соответствует положению катка 8 на участке торцевой поверхности 22 кулачка 9 с минимальной крутизной, при которой осевое усилие поршня 6 преобразуется в усилие на вращение ротора с минимальным кпд, а в нижней мертвой точке поршня 6 это преобразование вообще равно нулю. После отсечки сжатого воздуха от рабочей камеры 4 происходит подготовка этой камеры к совершению следующего этапа - холостого хода. Для этого указанная камера через систему дренажных каналов 28 и 29 соединяется с атмосферой и происходит сброс давления в камере. В прототипе сжатый воздух подается в камеру до конца рабочего хода, что не отвечает условию рационального использования энергии сжатого воздуха.

При повороте ротора 2 на угол 60o камеры 4 и 5 меняются местами. Камера 5 становится рабочей, а камера 4 - запоршневой, при этом они соединяются с соответствующими окнами подвода и отвода воздуха. На начальном участке холостого хода поршня 6 запоршневая камера 5 через систему дренажных отверстий 28 и 29 также соединена с атмосферой.

Перемена направления вращения ротора 2 осуществляется путем присоединения подвода сжатого воздуха к отверстию 18 вместо отверстия 17.

Указанные существенные отличительные признаки совместно с существенными признаками прототипа, общими с данным двигателем, обеспечат решение поставленной задачи.

3. РАСЧЕТНАЯ ЧАСТЬ. РАСЧЕТ БЛОКА ЦИЛИНДРОВ

Определяем дезаксиал аксиально-поршневого насоса по формуле [1]:

, (3.1)

где - угол наклона оси блока цилиндров относительно оси вала;

,

Диаметр поршня :

, (3.2)

где - рабочий объем насоса;

z =7 - число поршней;

, - безразмерные коэффициенты (; - для стали), принимаем,

Полученный результат округляем по ГОСТ 6540-68 до

Диаметр разноски отверстий в блоке цилиндров (рис. 10) [1] по формуле:

(3.3)

Ход поршня [1]:

(3.4)

Толщина условной толстостенной трубы a и размера перемычки b [1]:

(3.5)

(3.6)

Рис 10. Основные расчетные размеры блока цилиндров

Определение геометрических размеров блока цилиндров (рис. 10):

Наружный диаметр блока цилиндров [1]:

(3.7)

Внутренний диаметр расточки в блоке цилиндров [1]:

(3.8)

Высота блока цилиндров [1]:

, (3.9)

где - ход поршня;

- ширина технологической проточки;

- ширина дна блока цилиндров;

Максимальное давление [1]:

(3.10)

Проверка блока цилиндров прочность [1]:

, (3.11)

где - напряжения растяжения стенок толстостенной трубы.

Проверка выполнения условия жесткости [1]:

, (3.12)

где - расчетное значение деформации;

- модуль упругости материала блока цилиндров, ;

- коэффициент Пуассона, .

Сравниваем полученные значения и со значениями []и [] соответственно. Из [2] принимаем: []=100МПа; []=8мкм.

Рис. 11 Блок цилиндров

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Кутенев В.Ф., ЗленкоМ.А., Тер-Мкртчьян Г.Г. Управление движением поршней -- неиспользованный резерв улучшения мощностных и экономических показателей дизеля // Автомобильная промышленность. -- 1998 -- №11. -- с. 25-29.

2. Тер-Мкртчьян Г.Г. Двигатели ВАЗ: современный технический уровень и перспективы развития за счет регулирования степени сжатия // Автомобильная промышленность. -- 2008. -- №10 -- с.17-19.

3. Зленко И.А., Кутенев В.Ф., Романчев Ю.А. Аксиальные двигатели. Особенности конструкции. // Автомобильная промышленность. -- 1993. -- №5 -- с. 6-9

4. Илей Л. Двигатель с переменным рабочим объемом // Автомобильная промышленность США. -- №8. -- 1986. -- с.8.

5. Патент RU20732436C1, МПК F02B75/26 -- Аксиально-поршневая машина F02B75/26, авторы Зленко М.А., Кутенев В.Ф., Романчев Ю.А., Бродягин Ю.В.

Размещено на Allbest.ru


Подобные документы

  • Общая характеристика схемы аксиально-поршневого насоса с наклонным блоком цилиндров и диском. Анализ основных этапов расчета и проектирования аксиально-поршневого насоса с наклонным блоком. Рассмотрение конструкции универсального регулятора скорости.

    курсовая работа [4,1 M], добавлен 10.01.2014

  • Проектирование приспособления для сверлильно-фрезерной операции. Метод получения заготовки. Конструкция, принцип и условия работы аксиально-поршневого насоса. Расчет погрешности измерительного инструмента. Технологическая схема сборки силового механизма.

    дипломная работа [1,6 M], добавлен 26.05.2014

  • Конструктивные особенности, области применения, технические и технологические параметры радиально-поршневых и аксиально-поршневых роторных насосов, их достоинства и недостатки. Схема конструкции и принцип работы аксиально-плунжерной гидромашины.

    реферат [318,3 K], добавлен 07.11.2011

  • Определение влияния механических примесей, содержащихся в масле, на износ качающего узла аксиально-поршневого гидронасоса. Методика проведения испытаний. Анализ результатов стендовых испытаний аксиально-поршневых насосов при загрязнении масла водой.

    контрольная работа [2,6 M], добавлен 27.12.2016

  • Классификация, устройство и принцип работы направляющей аппаратуры гидроприводов: логических клапанов, выдержки времени. Назначение и элементы уплотнительных устройств гидроприводов. Закон Архимеда. Расчет аксиально-поршневого насоса с наклонным блоком.

    контрольная работа [932,3 K], добавлен 17.03.2016

  • Основные условия предварительного выбора гидродвигателей. Расход рабочей жидкости гидромотора аксиально поршневого нерегулируемого. Расчет и выбор трубопроводов. Уточнение параметров и характеристик объемного гидропривода, расчёт теплового режима.

    курсовая работа [157,3 K], добавлен 27.06.2016

  • Расчет процессов наполнения, сжатия, сгорания и расширения, определение индикаторных, эффективных и геометрических параметров авиационного поршневого двигателя. Динамический расчет кривошипно-шатунного механизма и расчет на прочность коленчатого вала.

    курсовая работа [892,4 K], добавлен 17.01.2011

  • Подготовка к комплексному проектированию поршневого насоса с кривошипно-ползунным механизмом. Ознакомление с общими принципами исследования кинематических и динамических свойств механизмов. Построение диаграмм движения методом графического интегрирования.

    курсовая работа [429,2 K], добавлен 18.10.2010

  • Методика вычисления коэффициента и степени неравномерности подачи поршневого насоса с заданными параметрами, составление соответствующего графика. Условия всасывания поршневого насоса. Гидравлический расчет установки, ее основные параметры и функции.

    контрольная работа [481,9 K], добавлен 07.03.2015

  • Структура и свойства антифрикционных гальванических покрытий. Влияние процессов трения на структуру гальванических покрытий Pb-Sn-Sb. Технические рекомендации по повышению износостойкости пары прения подпятник – планшайба аксиально-поршневого насоса.

    дипломная работа [5,7 M], добавлен 08.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.