Исследование влияния технологических параметров процесса каширования на физико-механические свойства многослойных полимерных материалов

Многослойные и комбинированные пленочные материалы. Адгезионная прочность композиционного материала. Характеристика и общее описание полимеров, их свойства и отличительные признаки от большинства материалов. Методы и этапы испытаний полимерных пленок.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 21.11.2010
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Бессольвентные клеи бывают двухкомпонентными и однокомпонентными. Как правило, однокомпонентные клеи применяются при склеивании бумаги с пленкой или фольгой. При использовании двухкомпонентных клеев необходимо устройство дозирования и смешения обоих компонентов: смолы и отвердителя. В нем клей подогревается до необходимой температуры и подается в кроющий узел. Обязательные условия для получения качественного ламината: точный контроль температуры нагрева, точная дозировка компонентов, обогрев шлангов, по которым клей подается в кроющий узел. В обиходе это устройство называют «миксером».

«Официальное» название - «станция смешения клея». В последнее время появились универсальные миксеры, в которых можно использовать двухкомпонентные и однокомпонентные клеи. В России в основном используются станции смешения Dopag, Contaldi, 2 KM, Nordmeccanica.

Сольвентные клеи по-прежнему находят широкое применение в ламинировании, однако ужесточение природоохранного законодательства во многих странах поставило перед производителями композитных материалов альтернативу: или увеличить свои расходы за счет внедрения систем сжигания остатков растворителей или перейти к использованию бессольвентных клеев. Как правило, выбирается второй вариант. Стоимость камеры сжигания может превышать миллион евро. За эти деньги можно приобрести несколько новых бессольвентных ламинаторов. Для нашей страны эта проблема не столь актуальна. Причины этого: довольно либеральное законодательство и (на данный момент), практически, отсутствие ламинаторов для работы с сольвентными клеями в стране [21].

Каширование с помощью клеев без растворителя было разработано изначально из соображений защиты окружающей среды, но оказалось также более экономичным по сравнению с традиционным кашированием клеями на основе растворителей и экструзионным ламинированием.

Также при кашировании клеями без растворителей существенно увеличивается скорость процесса, т.к. клеевой слой не нуждается в подсушивании. Двухкомпонентные клеи, действующие без растворителей и могут быть переработаны при температуре 35-40?С. Клей состоит из базового компонента - смолы - изоционат компоненты - NCO; и отвердителя - гидроксил компоненты - ОН в соотношении 1:0,8 по массе. После окончания времени отверждения клея материалы безопасны для пищевой упаковки, т.к. не содержат свободных мономеров - мигрирующих аминов (т.е. все изоционатные группы вступили в реакцию). Отверждение при температуре около 40?С значительно сокращает период стабилизации. Время отверждения составляет 24 часа и готовый многослойный материал готов к дальней шей переработке с целью получения упаковки.

Способом каширования может быть получено большинство гибких многослойных и комбинированных материалов.

Техническое описание.

Ламинаторы оценивают по качеству изготавливаемых композитных материалов. Ламинат должен быть безукоризненен: равномерно прозрачен, не иметь морщин, быть проклеен по всей ширине полотна и т.п. Клей должен равномерно покрывать материал, в противном случае возникнут участки, имеющие разную толщину. На материале не должно быть «проплешин», т.е. участков, не покрытых клеем. Эти недостатки производства могут привести к потере клиентов.

Для ламинирования применяются различные материалы. В первую очередь - пленки: полиэтилен высокого и низкого давления, ориентированный и неориентированный полипропилен, полиэтилентерефталат, ПВХ, полиамид, целлофан различной толщины, с различными добавками и без них, металлизированные пленки и т.д. [21].

Главные узлы, из которых состоит кашировальная машина (рис. 1.7)

* кроющая колонна;

* безваловые размотчики М1 и М2;

* безваловый намотчик М3;

* кашировальная колонна.

Приборы для кондиционирования валов и электрический шкаф установлены позади машины.

Пленка, предназначенная для нанесения клея, устанавливается на размотчике М1, и через систему валов подается к нагреваемому до t = 380 кроющему валу 5. Пленка прижимается к кроющему валу обрезиненным валом 6 во время нанесения клея.

Рис. 1.7. Технологическая схема кашировальной машины

Машина оборудована системой коронирования для предварительной обработки пленки. Система состоит из генератора, обычно устанавливаемого на полу, и из узла коронного разряда, размещаемого рядом с размотчиком: пленка проходит через вал внутри узла коронного разряда; несколько электродов, установленных полукругом вокруг ролика, посылают электрический разряд высокого напряжения на пленку. В результате чего увеличивается внешняя шероховатость обрабатываемой поверхности, и как следствие улучшается фиксирующая способность клея.

В качестве адгезива используют двухкомпонентный полиуретановый клей. При использовании боссольвентной технологии покрытия, покрытая клеем пленка не нуждается в подсушивании. Готовый многослойный материал не содержит остатков растворителя, в результате чего работу считают более экологически безопасной. С другой стороны техника покрытия должна контролироваться более тщательно, а клей должен быть готов только к моменту использования. По этой причине машина соединена с независимой системой подачи бессольвентного клея, в которой он подготавливается, нагревается, смешивается и подается через сопло. Клей должен распределятся равномерно, поэтому каретка оборудована двигающимся устройством, которое во время подачи клея передвигает сопло от одного конца емкости с клеем к другому. Клей удерживается между дозирующими валами двумя тефлоновыми пластинами.

Поперечная регулировка пленок во время работы обеспечивается автоматическими датчиками кромки полотна. Основные регулируемые процессы происходят в кроющей секции (рис. 1.8).

Клей находится между двумя дозирующими валами 1 и 2, которые установлены параллельно на калиброванном расстоянии. Вал 1 - неподвижен, а вал 2 с t = 350 вращается и при этом вся его поверхность покрывается клеем. Толщина клея зависит от зазора в 0,08-0,1 мм между двумя дозирующими валами.

Рис. 1.8. Кроющая секция

1. Неподвижный дозирующий вал (нагреваемый).

2. Вращающийся дозирующий вал (нагреваемый).

3. Обрезиненный трансферный вал.

4. Скоба запора и регулировки трансферного вала.

5. Хромированный кроющий вал (нагреваемый).

6. Обрезиненный прижимной вал кроющего узла.

7. Пленка, на которую наносится клей.

8. Цилиндры управления трансферным валом.

9. Поддон для отходов клея.

Перенос нужного количества клея с дозирующего вала 2 на кроющий вал 5 осуществляется при помощи обрезиненного трансферного вала 3. Он вращается со скоростью в 10 раз выше дозирующего вала 2. Когда скорость движения полотна увеличивается, нужно переносить большее количество клея и скорость дозирующего вала 2 пропорционально увеличивается. Таким образом, изменяя скорость дозирующего вала в широких пределах, оператор может контролировать количество переносимого клея. Тангенциальная скорость кроющего вала равна скорости полотна.

Движение полотна от кроющей колонны к кашировальной происходит в верхней металлической раме, называемой «мост».

В кашировальной колонне происходит склеивание посредством клея путем прижатия двух пленок друг к другу, во время их прохождения через «кашировальный узел» 1 - две пленки проходят через кашировальный вал, прижимаемые обрезиненным прижимным валом и происходит склеивание. Кашировальный узел с соответствующим двигателем придает машине рабочую скорость в соответствии с данными, установленными оператором. Когда тензодатчики испытывают увеличение или уменьшение усилия, приложенного к валу, то есть, натяжения пленки, соответствующие двигатели немедленно ускоряются или замедляются, чтобы восстановить предварительно установленное значение усилия (натяжения пленки, установленного оператором).

Кашированый узел состоит из кашировального вала, сделанного из хромированной стали, и обрезиненного прижимного вала, закрепленного на двух кронштейнах, приводимых парой пневматических цилиндров. Вал приводится электродвигателем. Пневматически приводимый дисковый тормоз зажимает кашировальный вал, когда нельзя допустит нежелательное вращение.

Кашировальный вал имеет две стенки (спиральную оболочку) и снабжен вращающимися патрубками на концах, чтобы соединять его с устройством кондиционирования, так как, по характеристикам клея, валы должны нагреваться во время работы. Температура в кроющем узле 400С.

Далее через охлаждающий барабан многослойный материал поступает на безваловый намотчик М3. Функция этого устройства - контроль намотки продукта, полученного в процессе склеивания пленок с размотчиков М1 и М2.

С точки зрения конструкции он устроен так же, как и размотчики М1 и М2, но снабжен обрезиненным прижимным валом, который является холостым валом, прижимающим наматываемый рулон благодаря двум пневматическим цилиндрам двустороннего действия.

Главная функция прижимного вала состоит в уплотнении наматываемого рулона, не допуская попадания воздуха между витками. Его нужно поднимать при смене рулона, когда машина не работает. Резиновое покрытие прижимного вала не нужно калибровать, только менять вал после износа резины.

На отечественном рынке производства упаковочных материалов используются кашировальные машины импортного производства. В технической документации на машины, а также в научно-технической литературе отсутствуют сведения и методики определения оптимальных параметров и технологических режимов для различных исходных слоев монопленок и различных типов клеев. На практике эти проблемы решают методом проб и ошибок. Это приводит к возникновению многочисленных видов дефектов. Некоторые из этих дефектов, причины их возникновения и практические рекомендации по способам их устранения приведены в табл. 1.1.

Таблица 1.1. Основные дефекты в производстве многослойных полимерных материалов методом каширования, причины и способы их устранения

Дефекты

Причины и способы их устранения устранения

«Телескопический» эффект - наматываемый рулон проскальзывает в сторону.

Возможные причины:

* чрезмерное количество клея;

* разрегулированность прижимного вала намотчика;

* неправильное натяжение намотки - намотка при постоянном, а не уменьшающемся натяжении.

Многослойный материал менее прозрачен в середине, чем по краям.

Центральная часть обрезиненного прижимного вала, возможно, износилась.

Образование продольных складок на пленке перед склеиванием.

Может быть вызвано износом центральной части обрезиненного прижимного вала узла каширования.

Недостаточное количество клея по обоим краям полотна

Возможно вследствие старения клея рядом с ограничительными тефлоновыми панелями, поскольку он слишком медленно замещается новым клеем. Вручную размешайте клей в дозировочной емкости и вращайте неподвижный дозирующий вал

Недостаточное количество клея на одном краю полотна (пузыри, проплешины)

Возможно вследствие: * недостаточного давления трансферного вала; * неправильной регулировки одной из регулировочных скоб трасферного вала; * неправильной установки или обратной сборки или не зажата запорная скоба трансферного вала; * одна из движущихся опор трансферного вала заедает из-за попадания клея или недостаточной смазки.

Недостаточное количество клея по центру

Износ обрезиненного вала кроющего узла

Недостаточное количество клея по всему полотну

Возможно, вследствие: * недостаточного давления трансферного вала; * неправильной регулировки трасферного вала; увеличение рабочей температуры и, соответственно, уменьшения расстояния между дозирующими валами.

Подлипание торцов материала

Чрезмерное количество клея, или материал порезан до завершения процесса полимеризации клея.

Такие дефекты, являются в большинстве своем, не исправимыми и приводят к повышенным расходам расходных материалов и простоям дорогостоящего оборудования. Чтобы исключить выше указанные дефекты, необходимо разработать научно-обоснованные рекомендации, связывающие технологические режимы производства материалов с их физико-механическими, эксплуатационными и другими характеристиками. Для разработки таких рекомендаций необходимо проводить комплексные испытания для инженерной оценки свойств многослойного материала в изделии. Инженерная оценка должна проводится путем получения серий зависимостей, на основании которых можно судить о возможном поведении материала при эксплуатации. Зависимости строятся с учетом влияния различных параметров, таких как скорость, количество клея, температуры и др. Полученные результаты могут быть использованы для прогнозирования поведения многослойных материалов в различных условиях эксплуатации, и оптимизации самого процесса их изготовления.

Проведенный литературный анализ показал, что исследований по интересующей меня тематике мало и проводимая работа является актуальной, она позволит выявить влияние технологических параметров на физико-механические свойства кашированых плёнок и заложить основу для дальнейших исследований.

2. Методическая часть

Полимеры отличаются от большинства материалов, таких как металлы, бумага, керамика, натуральные волокна, главным образом, своим «вязкоупругим» поведением. Слово «вязкоупругий» используется для описания такого поведения, при котором под напряжением проявляются одновременно как вязкие, так и упругие характеристики. Подобное свойство является прямым следствием строения полимерных молекул в виде длинных цепей. В то время как механическое поведение большинства материалов под нагрузкой может считаться либо упругим, либо деформационным течением, отклик полимеров на приложенное напряжение сочетает оба указанных типа. Отношение вязких и упругих компонент, называемое «демпферным», может очень сильно варьироваться в весьма небольшом температурном диапазоне; при этом оно сильно зависит от скорости нагружения.

Одним из самых распространенных изделий из полимерных материалов является пленка. Методы испытаний полимерных пленок развивались не только на основе приемов традиционных технологий и материалов. Крупные производители и потребители изобретали свои собственные лабораторные испытания, чтобы получить возможность управлять свойствами пленок или определить применяемость пленки для того или иного процесса или приложения. Организации, занимающиеся разработкой стандартов. предложили методы испытаний, приемлемые во всех отраслях промышленности [1].

Требования к методам испытаний

К разрабатываемому методу испытаний в обязательном порядке предъявляются несколько требований:

1. Метод должен быть быстрым, чтобы его результаты можно было использовать для контроля качества в условиях работы высокопроизводительных машин без создания задержек в производстве и отправке продукции.

2. Результаты должны быть воспроизводимыми и совпадающими в различных испытательных лабораториях и на различных испытательных машинах. Это означает, что тест должен быть нечувствительным к небольшим вариациям в получении образца, износу или другим мелким различиям испытательной аппаратуры.

3. Точность результатов не должна превышать требуемую. Стоимость излишней точности редко бывает оправданной в промышленности. и часто значение с точностью нескольких процентов дает всю необходимую информацию.

4. Предпочтительно, чтобы результаты были научно значимыми. Обязательно, чтобы они имели технологическую значимость и давали ясное свидетельство реальных функциональных свойств пленки.

Главным преимуществом стандартного метода является то, что результаты, полученные при его применении в различных лабораториях, можно сравнивать [1].

Интерпретация результатов

Главными трудностями, которые встают на пути проведения масштабного тестирования и интерпретации его результатов, являются (относительно быстрое) изменение свойств в зависимости от скорости деформирования и особенно от температуры.

Механические характеристики обычных материалов чаще всего нечувствительны к температуре при нормальных внешних условиях и температурах при упаковке / обработке пленок, используемых в упаковочной промышленности. Однако полимер, будучи вязкоупругим материалом (в температурном диапазоне менее 100?С) может из состояния твердого стеклоподобного вещества превратиться в жидкость.

Вязкоупругость - это комплексное понятие, все полимерные материалы проявляют примерно одинаковое поведение, детали которого определяются химической природой полимера, его молекулярной массой и молекулярно-массовым распределением, степенью кристалличности и т.д.

Разрушение материала при растяжении, например, одноосном, может быть хрупким, квазихрупким или пластическим (вязким) в зависимости от величины и вида деформации предшествующей разделению образца материала или изделия на части (как правило, на две части).

Хрупкое разрушение характеризуется разделением материала на две части при локализации пластической деформации у вершины трещины или без пластической деформации вообще, что определяет малые затраты энергии на продвижение трещины. Скорость роста трещины высока и соизмерима со скорость звука в данном материале.

Пластическое - (вязкое) разрушение характеризуется наиболее медленным распространением трещины с интенсивным течением всего объема материала в том числе части материала расположенной вне зоны роста трещины. Затраты энергии на продвижение трещины относительно велики.

Квазихрупкое разрушение является промежуточным вариантом и характеризуется локализацией пластической деформации у вершины трещины и на пути ее вероятного роста [1].

2.1 Выбор объекта исследования

Современная упаковка требует применения полимерных упаковочных материалов, обладающих комплексом свойств, обеспечить которые невозможно при использовании одного полимера. Нет полимерного материала, который обеспечивал бы одновременно все необходимые для упаковки свойства, такие, как привлекательный внешний вид, механическая прочность, заданная проницаемость для газов и паров воды, свариваемость, способность к глубокой вытяжке, коэффициент трения, термостойкость, и при этом имел бы приемлемую цену.

Поэтому разрабатывают и применяют упаковочные материалы, состоящие из нескольких слоев разных полимеров, так называемые многослойные пленочные материалы - МПМ. Такие материалы могут обладать спектром свойств, которым не обладает ни один из слоев в отдельности.

При конструировании многослойной упаковки большое значение имеет оптимальное содержание слоев и их чередование, определяемое индивидуальными свойствами упаковываемого продукта, а также условиями и сроками хранения.

Используют двух- и трехслойные комбинированные материалы, состоящие из полимера, бумаги и фольги, где каждый слой играет свою определенную роль.

Внешний слой определяет прочностные свойства материала и защищает продукт от внешнего воздействия. Он должен быть термостойким и не размягчаться в условиях термической сварки при формировании шва. В качестве таких слоев могут быть использованы двуосно-ориентированная полипропиленовая пленка (БОПП) с термосварным покрытием, полиамиды, различные виды бумаги и фольги, защищенные лаковым покрытием.

Внутренний слой предназначен защитить продукт от контакта с внешним слоем упаковки и, главное, обеспечить возможность герметизации упаковки при термической сварке. Чаще всего для этих целей используют следующие полимеры: полиэтилен высокого давления (ПЭВД), полиэтилен низкого давления (ПЭНД), линейный полиэтилен высокого давления (ЛПЭВД) и другие.

Для проведения исследования влияния технологических параметров процесса каширования на физико-механические свойства многослойных полимерных материалов были выбраны следующие 2 фактора:

1. Толщина клеевого слоя при кашировании;

2. Скорость каширования;

В качестве объектов исследования были взяты многослойные пленочные материалы на основе прозрачного ориентированного полипропилена (ОПП) толщиной 20 мкм в комбинации с белым полиэтиленом высокого давления (ПЭВД), толщиной 25 мкм.

Также были получены и исследованы клеевые плёнки. В качестве адгезива использовали бессольвентный клей фирмы Henkel торговой марки Liofol из полиуретана.

Полиуретан - гетероцепное высокомолекулярное соединение (ВМС):

В последние 5 лет используют двухкомпонентные полиуретановые клеи, действующие без растворителей и могут быть переработаны при температуре 35-40?С. Клей получается в результате взаимодействия ароматического диизоцианата с алкидной смолой, содержащей свободные гидроксильные группы в соотношении 1:0,8 по массе. После окончания времени отверждения клея материалы безопасны для пищевой упаковки, т.к. не содержат свободных мономеров - мигрирующих аминов (т.е. все изоционатные - NCO группы вступили в реакцию). Утверждаются при комнатной температуре и дают прочное соединение при склеивании дерева между собой и с другими материалами. Жизнеспособность клеевого раствора 8-10 часов [6].

Отверждение при температуре около 400С значительно сокращает период стабилизации. Время отверждения составляет 24 часа. Ступенчатая сополимеризация диизоцианатов с соединениями, содержащими более двух ОН-групп, приводит к образованию макромолекул, имеющих сетчатую структуру, не растворимых в органических растворителях и не способных плавиться [13].

2.2 Методика получения клеевых плёнок

Оборудование:

Получение плёнок проводится на полуавтоматической машине для трафаретной печати.

Сетки для трафаретной печати в данном процессе не используются, задействован только вакуумный стол машины и закреплённый на фиксированной высоте ракель.

Рис. 2.1. Полуавтоматическая машина для трафаретной печати

Подготовка материалов:

Клей состоит из базового компонента - смолы - изоционат компоненты - NCO; и отвердителя - гидроксил компоненты - ОН в соотношении 1:0,8 по массе.

Для получения клеевых плёнок данные компоненты взвешиваются и смешиваются в стеклянной ёмкости.

Также подготавливается антиадгнезионная бумага для нанесения жидкого клея.

Получение образцов:

Клеевая смесь наносится на антиадгезионную бумагу, после чего излишки клея удаляются ракелем. Высота зазора между бумагой и ракелем регулируется, что позволяет получать плёнки различной толщины. Однако данная методика не позволяет получать образцы малых (рабочих) толщин.

Для проведения эксперимента клеевые плёнки были получены двумя методами:

Более толстые плёнки удалось получить нанесением жидкого клеевого состава на антиадгезионную бумагу с последующей сушкой на открытом воздухе. Однако получение образцов меньшей толщины данным способом затруднено в связи с малой адгезией клея к данной бумаге. При получении тонких образцов свежая клеевая плёнка немедленно накрывалась вторым слоем антиадгезионной бумаги для предотвращения концентрации состава в капли.

Рис. 2.2. Клеевые плёнки

Полученные клеевые плёнки выдерживались в лаборатории в течение 48 часов до окончательного завершения процесса полимеризации.

2.3 Определение прочности при разрыве

Испытания на разрыв проводились в продольном и поперечном направлениях в соответствии с ГОСТ 14236-86. ГОСТы испытаний на растяжение предполагают получение стандартных характеристик, каковыми являются разрушающее напряжение ?р (Мпа) и относительное удлинение в момент разрыва ?р (%).

Испытания на одноосное растяжение проводились на разрывной машине с постоянной скоростью перемещения нижнего зажима. При испытании на диаграмме записывается кривая растяжения в координатах «нагрузка-удлинение». Кривые, как правило, имеют одинаковую форму, но отличаются масштабным фактором. Чтобы избежать случайностей из-за отклонения образцов по толщине, а также возможной микроскопической дефектности образцов, строится усредненная кривая, которая является характеристикой материала при данных условиях испытаний [20].

Аппаратура: для проведения испытаний использовалась разрывная машина РМ-50 (рис. 2.3), которая предназначена для определения качества пленочных и рулонных материалов методом измерения прочности при растяжении и удлинении при разрыве в лаборатории кафедры «Управления качества» МГУП.

Технические характеристики РМ - 50:

прибор работает от сети переменного тока напряжением 220 В частотой 50±0,5 Гц;

режим работы прибора повторно-кратковременный;

потребляемая мощность - не более 100 ВА;

габариты прибора 400х400х700 мм, масса прибора не более 8 кг.

В комплект прибора РМ - 50 входят: ложемент для зажимов (обеспечивает процесс закрепления образца в зажимах), предохранитель, кабель для подключения компьютера, паспорт, руководство по эксплуатации, программа управления машиной РМ - 50, руководство к программе управления.

Прибор отвечает требованиям, сформулированным в ГОСТ 28840-90 «Машины для испытания материалов на растяжение, сжатие и изгиб». Прибор отвечает общим требованиям безопасности по ГОСТ 12.2003 и общим требованиям к безопасности к электрооборудованию по ГОСТ 12. 2. 0070 и ГОСТ 12. 2. 0077.

Принцип работы прибора состоит в растяжении образца 3 (рис. 2.4.), верхний конец которого через зажим 2 связан с силоизмерителем. Нижний конец образца, закрепленный в зажиме 5, смещается вниз с постоянной скоростью, определенной стандартом испытаний. Образец деформируется, и усилие, развиваемое при деформации, измеряется силоизмерителем. Смещение нижнего зажима измеряется энкодером.

Изменение напряжение в образце по мере нарастания относительной деформации выражается графически в виде кривой растяжения. По кривой растяжения определяют прочность при растяжении, относительную деформацию при разрыве, предел текучести, модуль упругости при растяжении и другие характеристики материала, оговоренные в ГОСТ 14236 - 81 или заданные стандартом испытаний.

Шкала усилий, скорость растяжения, пуск и остановка машины при испытании производится посредством компьютера. В случае отказа («зависания») компьютера машина автоматически прекращает измерение.

Конструктивно прибор состоит из двух основных частей - ходовой и измерительной. Ходовая часть включает стойки 2 (рис. 2.3), несущие измерительный блок и ходовой винт 5 (с приводом), который обеспечивает крепление и перемещение нижнего зажима 3.

Нижний зажим размещен на ползуне 4, скользящем по стойкам. Ползун опирается на гайку, которая перемещается вверх-вниз при вращении ходового винта. Ходовой винт приводится во вращение от асинхронного двигателя 8 мощностью 30 Вт. Частота вращения двигателя задается частотным регулятором и может варьироваться в пределах 5:1. Скорость перемещения зажима при этом варьируется от 500 мм/мин до 100 мм/мин.

На правой стойке прибора размещены ограничители хода 6, связанные с концевыми выключателями. Ограничители устанавливают пределы перемещения штанги вверх (т.е. устанавливают базовую длину образца) и вниз (т.е. устанавливают максимум растяжения образца).

Измерительный блок 1 обеспечивает крепление верхнего зажима и измерение усилия, возникающего на нем при растяжении образца. Для измерения используется тензометрический датчик усилия. Максимальное усилие, измеряемое этим датчиком - 500 Н (50 кг). Рабочий интервал измеряемых усилий - от 100 Н/шкалу до 500 Н/шкалу.

В измерительном блоке расположены датчик усилий, усилитель сигнала. Прибор связан кабелем с персональным компьютером. Сигнал обрабатывается в компьютере и представляется в виде кривой растяжения [20].

Проведение испытаний: собрать зажимы 2 и 5 (рис. 2.4) на ложементе и заправить в них образец 3. Выбрать нужный интервал нагрузок и скорость испытаний, задать толщину образца. Поместить зажимы с образцом на штангах 1 и 6. Запустить на компьютере программу измерения, задать предел измерения в меню «Настройки», включить режим регистрации, затем кнопку «Старт» и движение штанги вниз. Когда образец разорвется, остановить движение зажима с помощью кнопки «Стоп». Записанную кривую растяжения следует сохранить в файл в программе Microsoft Word.

Обработка результатов: после проведения испытаний все данные переносятся в Microsoft Word и обрабатываются.

Для каждого испытанного образца строятся зависимости напряжения от деформации ? = f(?).

Рис. 2.4. Крепление образца: 1 - верхняя штанга; 2 - верхний зажим; 3 - образец; 4 - стойка; 5 - нижний зажим; 6 - нижняя штанга; 7 - ползун

При расчете напряжения и деформации используются следующие формулы:

?1 = ; ?ист. = ?1 (1+?), (2.3.1)

где: ?1 и ?ист. - соответственно разрушающее напряжение на первоначальное и истинное сечение в Па; S0 - первоначальная площадь поперечного сечения в м2, Р - нагрузка, ? - деформация, определяемая по уравнению:

? = , (2.3.2)

где: l - длина растянутого образца (мм); l0 - исходная длина образца (мм) [20].

В отчете представлены таблицы с данными испытаний и графики кривых растяжений.

2.4 Испытание на разрыв образцов с надрезом

Разрушение материала при растяжении, например, одноосном, может быть хрупким, квазихрупким или пластическим (вязким) в зависимости от величины и вида деформации предшествующей разделению образца материала или изделия на части (как правило, на две части).

Хрупкое разрушение характеризуется разделением материала две части при локализации пластической деформации у вершины трещины или без пластической деформации вообще, что определяет малые затраты энергии на продвижение трещины. Скорость роста трещины высока и соизмерима со скорость звука в данном материале.

Пластическое - (вязкое) разрушение характеризуется наиболее медленным распространением трещины с интенсивным течением всего объема материала в том числе части материала расположенной вне зоны роста трещины. Затраты энергии на продвижение трещины относительно велики.

Квазихрупкое разрушение является промежуточным вариантом и характеризуется локализацией пластической деформации у вершины трещины и на пути ее вероятного роста.

Для испытания на разрыв материала с надрезом используется универсальная машина для испытания на растяжение, описанная выше.

Подготовка материалов: Испытания на растяжение с надрезом проводились в продольном и поперечном направлениях. Использовались те же образцы, что и для предыдущего исследования, но с нанесением надрезов (искусственной трещины).

Надрезы на образцы наносились согласно ГОСТ 262-53.

Проведение испытаний: собрать зажимы 2 и 5 (рис. 2.4.) на ложементе и заправить в них образец 3. Выбрать нужный интервал нагрузок и скорость испытаний, задать толщину образца. Поместить зажимы с образцом на штангах 1 и 6 с запасом, как показано на рис. 2.5. Запустить на компьютере программу измерения, задать предел измерения в меню «Настройки», включить режим регистрации, затем кнопку «Старт» и движение штанги вниз. Когда образец разорвется, остановить движение зажима с помощью кнопки «Стоп». Записанную кривую растяжения следует сохранить в файл в программе Microsoft Word.

Рис. 2.5. Крепление образца: 1 - верхний зажим; 2 - образец; 3 - нижний зажим

2.5 Методика статистической обработки результатов экспериментов по ГОСТ 11.004-74

Настоящий стандарт устанавливает правила определения оценок и доверительных границ для параметров нормального распределения по совокупности опытных независимых наблюдений, полученных в результате испытаний, если исследуемые закону нормального распределения.

1) Оценка параметров нормального распределения.

а) Несмещенной оценкой для генерального среднего и нормального распределения является выборочное среднее x:

= х i - х) 2 (2.5.1)

где х i, х 2… х n - совокупность наблюдаемых значений случайной величины х.

б) Несмещенная оценка для среднеквадратичного отклонения при неизвестной точности измерений:

S = (2.5.2)

2) Определение доверительных границ для генеральной средней при неизвестной генеральной дисперсии.

а) Определение нижней доверительной границы dH для генеральной средней по выборке объема n осуществляется следующим образом: задают значение односторонней доверительной вероятности ? 1 по заданным значениям ? 1 и k=n-1 по таблице находят значение t ?1. Вычисляют (нижнюю) доверительную границу dH для генеральной средней по формуле:

dH = (2.5.3)

б) Определение верхней доверительной границы для генеральной средней по выборке объема n осуществляется следующим образом: задают значение односторонней доверительной вероятности ? 2; по заданным значениям ? 2 и k=n-1 по таблице находят значение t ?2. Вычисляют верхнюю доверительную границу по формуле:

dB = (2.5.4)

в) Нижняя и верхняя границы dH и dB образуют доверительный интервал для генеральной средней при двусторонней доверительной вероятности ?*, где ?* определяется по формуле:

?* = ?i + ?2 - 1 (2.5.5)

г) Если принята двусторонняя доверительная вероятность ?1 = ?2 = ?, то доверительный интервал для генерального среднего находится по формулам:

(2.5.6)

где ? = ty S / n

Значение находится по формуле: y = (1+y*) / 2

из таблицы по заданным значениям y и k = n - 1.

3. Экспериментальная часть

Ассортимент упаковываемых товаров в многослойные пленки постоянно растет. И теперь невозможно создать монопленочный материал, который удовлетворял бы необходимым требованиям. Т.к. даже сочетание двух пленок обеспечивает следующие преимущества: а) увеличение прочностных характеристик, которое происходит за счет блокировки слабых мест (опасных дефектов) одного слоя прилегающими к ним бездефектными участками второго слоя. При наличие адгезионного взаимодействия между слоями происходит перераспределение напряжений и синхронизация работы отдельных слоев, из которых состоит многослойный материал; б) увеличиваются барьерные характеристики (уменьшается влаго-, паро- и жиропроницаемость; увеличивается жиростойкость); в) за счет чего увеличивается срок годности упакованного продукта.

Для производства многослойных пленочных материалов часто используют метод каширования.

На предприятии по производству многослойных и комбинированных пленочных материалов для гибкой упаковки ООО «Пакетти-групп» была установлена линяя итальянской фирмы «Nord meccanica group» (Super Simplex) по производству материалов способом бессольвентного каширования.

Поэтому целью моей дипломной работы является изучение влияния технологических параметров каширования на многослойные плёночные материалы.

На данной установке были получены следующие многослойные пленочные материалы (МПМ): прозрачный ориентированный полипропилен (ОПП) толщиной 20 мкм в комбинации с полиэтиленом высокого давления толщиной 25 мкм. В качестве адгезива использовали бессольвентный полиуретановый клей.

3.1 Результаты испытаний на разрыв

На первом этапе работы были проведены испытания на разрыв. Испытания проводились согласно методике, описанной в пункте 2.3. данной работы. Результаты представлены в приложении 2 и в сводных таблицах 3.1. и 3.2.

Таблица 3.1. Результаты испытаний на разрыв образцов с различной толщиной адгезива

№ образца

толщина клеевого слоя, мкм

долевое направл-е

Поперечное направл-е

? при разрыве, МПа

? при разрыве, %

? при разрыве, МПа

? при разрыве, %

1

1,4

108,79

47,12

56,91

157,87

2

1,7

95,37

48,37

56,86

151,09

3

2,0

84,5

46,17

53,77

142,87

4

2,3

84,47

43,58

52,92

144,54

5

2,6

103,24

50,25

56,59

157,34

Таблица 3.2. Результаты испытаний на разрыв образцов, полученных на различных скоростях каширования

№ образца

скорость каширования, м/мин

долевое направл-е

Поперечное направл-е

? при разрыве, МПа

? при разрыве, %

? при разрыве, МПа

? при разрыве, %

6

100

63,22

44,37

55,22

145,77

7

150

58,77

50,12

50,06

150,35

8

200

58,32

48,38

52,65

149,17

9

250

56,1

46,41

53,66

146,96

10

350

63,12

47,94

54,02

142,23

3.2 Результаты испытаний на разрыв с надрезом

Затем были проведены испытания на разрыв образцов с искусственным дефектом - надрезом, равным 3 мм, согласно методике, представленной в пункте 2.4. данной работы. Результаты представлены в приложении 3, а также в табл. 3.3, 3.4, 3.5

Таблица 3.3. Испытания на разрыв плёнок, полученных с различной толщиной адгезива, с поперечным надрезом длиной 3 мм

№ образца

толщина клеевого слоя, мкм

долевое направл-е

Поперечное направл-е

? при разрыве, МПа

? при разрыве, %

? при разрыве, МПа

? при разрыве, %

1

1,4

17,53

34,96

13,97

35,48

2

1,7

18,23

20,18

13,98

21,51

3

2,0

18,06

16,91

14,59

18,75

4

2,3

17,84

24,91

14,91

27,88

5

2,6

18,51

23,77

14,94

29,75

Таблица 3.4. Испытания на разрыв плёнок, полученных при различных скоростях каширования, с поперечным надрезом длиной 3 мм

№ образца

скорость каширования, м/мин

долевое направл-е

Поперечное направл-е

? при разрыве, МПа

? при разрыве, %

? при разрыве, МПа

? при разрыве, %

6

100

18,89

17,12

13,94

19,22

7

150

19,25

15,93

14,15

21,37

8

200

19,13

17,52

13,93

18,02

9

250

19,14

22,17

13,09

21,69

10

350

19,21

24,58

13,98

19,48

Таблица 3.5. Прочность на разрыв плёнки с толщиной клея 2 мкм с поперечным надрезом различной глубины.

глубина надреза С, мм

толщина плёнки, мм

vС, мм0.5

1/vС, мм-0.5

Предел нагрузки, Мпа

0,3

0,047

0,548

1,826

23,78

0,5

0,047

0,707

1,414

21,52

1

0,047

1,000

1,000

18,83

3

0,047

1,732

0,577

13,97

5

0,047

2,236

0,447

11,98

8

0,047

2,828

0,353

5,34

3.3 Получение и результаты испытаний клеевых плёнок

Затем, согласно методике, представленной в пункте 2.2 данной работы, в лаборатории трафаретной печати МГУП были получены клеевые плёнки. Дальнейшее исследование на прочность при разрыве проводилось по стандартной методике.

Таблица 3.6. Результаты испытаний клеевых плёнок различной толщины на прочность при разрыве

Толщина плёнки

? при разрыве, МПа

? при разрыве, %

Е плёнки

0.283

10.023

157.32

1,80

0.291

8.253

141.15

1,76

0.597

4.917

210.56

1,05

0.595

4.170

167.35

0,96

0.273

9.325

130.97

1,39

0.249

9.186

122.59

1,14

0.279

8.375

112.52

2,23

0.1

3.152

217.37

-

0.117

2.682

217.78

-

4. Обработка и обсуждение результатов исследований

4.1 Формулирование результатов исследований

На первом этапе были проведены исследования физико-механических характеристик многослойных пленочных материалов, полученных при постоянной скорости каширования, равной 100 м/мин, но с различной толщиной клеевого слоя.

Рис. 4.1. Зависимость прочности при разрыве многослойного материала от толщины адгезива. Долевое направление

Рис. 4.2. Зависимость прочности при разрыве многослойного материала от толщины адгезива. Поперечное направление

Рис. 4.3. Зависимость относительного удлинения многослойного материала от толщины адгезива. Долевое направление

Рис. 4.4. Зависимость относительного удлинения многослойного материала от толщины адгезива. Поперечное направление

В исследовании было обнаружено, что толщина клеевого слоя незначительно влияет на прочность многослойного плёночного материала. Предел прочности ?р вначале уменьшается и достигает наименьшего значения при толщине клея 2,3 мкм, при дальнейшем увеличении толщины клея предел прочности ?р несколько увеличивается и достигает значения, примерно равного тому, что получено для толщины клея 1,7 мкм. Между тем, что данные, полученные производителем для этих же образцов около года назад показывали сильную зависимость с выраженным максимумом при толщине клеевого слоя 2 мкм. Предел прочности ?р вначале увеличивался и достигал максимума при толщине клея 2 мкм, при дальнейшем увеличении толщины клея ?р несколько уменьшалась. Вероятно это связано с тем, что при толщине клея 2 мкм наблюдался процесс максимального взаимодействия адгезива с материалом, что обеспечивает некоторое увеличение ?р при разрыве. Поэтому для композиций была выбрана толщина клея 2 мкм.

Значительное расхождение между результатами, полученными для старой и новой пленок может быть обусловлено процессами старения плёнок и клеевого слоя, входящих в состав многослойного материала.

Было также отмечено, что с увеличением толщины клея относительное удлинение ?р при разрыве изменяется незначительно и остаётся для исследованных плёнок примерно равным 150% в продольном направлении и 47% в поперечном направлении. Затем исследовалась зависимость прочности при разрыве и относительного удлинения при разрыве от скорости процесса каширования. Материалы были изготовлены с толщиной адгезива 2 мкм.

Рис. 4.5. Зависимость прочности при разрыве многослойного материала от скорости процесса каширования. Долевое направление

Рис. 4.6. Зависимость прочности при разрыве многослойного материала от скорости процесса каширования. Поперечное направление

Рис. 4.7. Зависимость относительного удлинения при разрыве многослойного материала от скорости процесса каширования. Долевое направление

Рис. 4.8. Зависимость относительного удлинения при разрыве многослойного материала от скорости процесса каширования. Поперечное направление

С увеличением скорости процесса каширования наблюдается минимальное отклонение прочности на разрыв и относительного удлинения исследуемых плёнок, практически линейная зависимость. Прочность при разрыве в долевом направлении остаётся примерно равной 53 МПа, а в поперечном направлении 60 МПа. Относительное удлинение при разрыве остаётся примерно равным 147% в продольном направлении и 47% в поперечном. Поэтому можно сделать вывод о том, что скорость каширования не влияет на прочностные характеристики полученных материалов.

Также исследовалась зависимость прочности при разрыве и относительного удлинения при разрыве образцов с искусственным дефектом - надрезом, равным 3 мм.

Рис. 4.9. Зависимость прочности плёнки с надрезом = 3 мм от толщины клеевого слоя. Долевое направление

Рис. 4.10. Зависимость относительного удлинения плёнки с надрезом = 3 мм от толщины клеевого слоя. Долевое направление

Рис. 4.11 Зависимость прочности плёнки с надрезом = 3 мм. от толщины клеевого слоя. Поперечное направление

Рис. 4.12 Зависимость относительного удлинения плёнки с надрезом = 3 мм от толщины клеевого слоя. Поперечное направление

Исследование показало, что прочность образцов с надрезом незначительно выше при большей толщине адгезива, а относительное удлинение наоборот, снижается. Однако данные отклонения показателей проходят в очень малых диапазонах значений, что свидетельствует о низком влиянии толщины адгезива на прочность и относительное удлинение при разрыве образцов многослойного плёночного материала с надрезом.

Для проверки полученных результатов были исследованы плёнки с толщиной адгезива 2 мкм с различной глубиной поперечного надреза. По результатам исследования было установлено, что закон Гриффитса для данных плёнок выполняется с вероятностью 96,9%, что говорит о высокой точности проведённых исследований.

Рис. 4.13. Влияние глубины надреза на прочность

Рис. 4.14. Влияние глубины надреза на прочность

На рисунках 4.15 и 4.16 представлены зависимости предела прочности ?р и относительного удлинения ?р при разрыве от толщины плёнки.

На рис. 4.17 представлена зависимость модуля упругости клеевой плёнки от её толщины.

Рис. 4.15. Зависимость прочности от толщины клеевой плёнки

Рис. 4.16. Зависимость относительного удлинения от толщины клеевой плёнки

Рис. 4.17. Зависимость модуля упругости клеевой плёнки от её толщины

После определения данных зависимостей по графикам были теоретически рассчитаны значения прочности и относительного удлинения клеевой плёнки, а также модуль упругости для рабочих толщин. Данные приведены в таблице 4.1

Таблица 4.1. Физико-механические характеристики клеевых плёнок малой толщины

Толщина клеевого слоя

? при разрыве, МПа

? при разрыве, %

Е плёнки

1,4

0,072

1,045

0,097

1,7

0,087

1,268

0,128

2

0,102

1,51

0,149

2,3

0,117

1,73

0,172

2,6

0,132

1,952

0,194

Затем были рассчитаны характеристики многослойного полимерного материала по правилу аддитивности свойств входящих в него компонентов.

?общ= ?1*(h1? hобщ)+ ?2*(h2? hобщ)+ ?3*(h3? hобщ) (4.1)

где: ?общ - прочность кашированой плёнки при разрыве; ?1 - прочность ОПП; ?2 - прочность ПЭВД; ?3 - прочность клеевого слоя; h1 - толщина ОПП; h2 - толщина ПЭВД; h3 - толщина клеевого слоя; hобщ - толщина кашированой плёнки.

?общ= ?1*(h1? hобщ)+ ?2*(h2? hобщ)+ ?3*(h3? hобщ) (4.2)

где: ? общ - относительное удлинение кашированой плёнки; ? 1 - относительное удлинение ОПП; ? 2 - относительное удлинение ПЭВД; ? 3 - относительное удлинение клеевого слоя; h1 - толщина ОПП; h2 - толщина ПЭВД; h3 - толщина клеевого слоя; hобщ - толщина кашированой плёнки.

Расчетные значения были сопоставлены с экспериментальными, полученными на производстве. Результаты приведены в сводных таблицах 4.2, 4.3, 4.4, 4.5.

Таблица 4.2

Толщина клеевого слоя, мкм

? при разрыве ОПП, Мпа

? при разрыве ПЭВД, Мпа

? при разрыве клеевой плёнки, Мпа

??, МПа

Фактическая ? при разрыве, Мпа

? ? при разрыве, МПа

1,4

267

192

0,072

218,5

85

133,5

1,7

267

192

0,087

217,1

106

111,1

2,0

267

192

0,102

215,7

131

84,7

2,3

267

192

0,117

214,4

92

122,4

2,6

267

192

0,132

213,0

62

151,0

Результаты сравнения расчетной и экспериментальной прочности на разрыв многослойного плёночного материала, скашированного непосредственно перед испытанием (продольное направление).

Таблица 4.3. Результаты сравнения расчетного и экспериментального удлинения при разрыве многослойного плёночного материала, скашированного непосредственно перед испытанием (продольное направление)

Толщина клеевого слоя, мкм

? при разрыве ОПП, %

? при разрыве ПЭВД, %

? при разрыве клеевой плёнки, %

??, %

Фактическая ? при разрыве, %

? ? при разрыве, %

1,4

60

328

1,045

202,6

80

122,6

1,7

60

328

1,268

201,3

79

122,331

2,0

60

328

1,51

200,1

83

117,1

2,3

60

328

1,73

198,8

83

115,8

2,6

60

328

1,952

197,6

79

118,6

Таблица 4.4. Результаты сравнения расчетной и экспериментальной прочности на разрыв многослойного плёночного материала, скашированного непосредственно перед испытанием (продольное направление)

Толщина клеевого слоя, мкм

? при разрыве ОПП, Мпа

? при разрыве ПЭВД, Мпа

? при разрыве клеевой плёнки, Мпа

??, МПа

Фактическая ? при разрыве, Мпа

? ? при разрыве, МПа

1,4

123

190

0,072

155,4

85

70,4

1,7

123

190

0,087

154,4

106

48,4

2,0

123

190

0,102

153,4

131

22,4

2,3

123

190

0,117

152,4

92

60,4

2,6

123

190

0,132

151,5

62

89,5

Таблица 4.5. Результаты сравнения расчетного и экспериментального удлинения при разрыве многослойного плёночного материала, скашированного непосредственно перед испытанием (продольное направление)

Толщина клеевого слоя, мкм

? при разрыве ОПП, %

? при разрыве ПЭВД, %

? при разрыве клеевой плёнки, %

? ?, %

Фактическая ? при разрыве, %

? ? при разрыве, %

1,4

252

323

1,045

282,7

356

73,3

1,7

252

323

1,268

280,9

366

85,1

2,0

252

323

1,51

279,1

382

102,9

2,3

252

323

1,73

277,4

348

70,6

2,6

252

323

1,952

275,6

327

51,4

При работе с материалом, состоящим из нескольких слоев, логично было ожидать прочностных свойств, превосходящих свойства каждого из слоев в отдельности, или, как минимум, не ниже самого прочного из них.

Однако, эксперимент показал, что прочность двухслойного скашированного материала получается ниже, чем прочность любого из составляющих его материалов. В нашем случае предел прочности пленки, состоящей из скашированных ОПП и ПЭВД во всех экспериментах оказался ниже предела прочности ПЭВД.

Имея совершенно незначительную прочность при разрыве, клеевой слой, однако, оказывает решающее воздействие на предел прочности всей многослойной композиции.

Сравнительный анализ показал, что для исследованных материалов правило аддитивности не действительно.

1. Толщина клеевого слоя для материалов на основе ОПП и ПЭВД оказывает влияние на величину прочности при растяжении и относительное удлинение при разрыве.

2. Максимальные значения прочности при растяжении и относительного удлинения при разрыве наблюдается у материалов на основе ОПП и ПЭВД при толщине клея, равной 2 мкм.

3. Скорость каширования в исследованном диапазоне от 100 до 350 м/мин существенного влияния на прочностные и деформационные свойства многослойного кашированого плёночного материала на основе ОПП и ПЭВД не оказывает.

4. В процессе старения в течение одного года прочность при растяжении кашированых плёнок на основе ОПП и ПЭВД снизилась в продольном направлении на 54%, а в поперечном на 64%. Относительное удлинение при разрыве снизились в продольном направлении на 47%, а в поперечном на 41%.

5. Исследования прочности многослойного кашированого полимерного плёночного материала с надрезом на растяжение показали, что его прочностные и деформационные свойства зависят от величины трещины. Эта зависимость описывается уравнением Гриффитса, что свидетельствует о хрупком характере разрушения. Можно предположить, что решающий вклад в этот механизм разрушения вносит процесс охрупчивания клея в процессе старения.

6. Исследования влияния состава слоёв многослойного кашированого материала на основе ОПП и ПЭВД на прочность при растяжении и относительное удлинение при разрыве показало, что для исследованных материалов правило аддитивности вклада слоёв в суммирующие свойства материала не работает.

5. Охрана окружающей среды

Охрана окружающей среды от загрязнения промышленными выбросами и бытовыми отходами является частью социальной и государственной задачи охраны природы, включающей комплекс взаимосвязанных мероприятий.

Интенсивное развитие науки и техники, рост промышленного производства, количества автотранспорта, химизация сельского хозяйства - все эти факторы обуславливают усиление эксплуатации ресурсов, оказывает большое воздействие на окружающую среду. Ухудшается экономическая обстановка, что не может не сказаться на здоровье человека. Необходимо принимать меры по рациональному использованию земли и ее недр, водных ресурсов, растительного и животного мира для сохранения чистоты воздуха, обеспечению воспроизводства природных богатств и улучшения окружающей среды человеком.


Подобные документы

  • Многослойные и комбинированные материалы являются композиционными материалами. Деление упаковочных материалов на многослойные и комбинированные. Термин "многослойные материалы" относится к группе материалов, состоящих из слоев синтетических полимеров.

    реферат [34,5 K], добавлен 15.07.2008

  • Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.

    учебное пособие [4,8 M], добавлен 13.11.2013

  • Изучение истории создания и теплофизических свойств полимеров и полимерных пленок. Экспериментальные методы исследования тепловодности, температуропроводности и теплоемкости. Особенности применения полимерных пленок в различных областях производства.

    курсовая работа [1,3 M], добавлен 08.12.2013

  • Особенности мягкой тары из полимерных пленочных материалов, требования к ней, особенности и этапы технологического процесса изготовления, роль прочности и методы ее повышения. Многослойные пленочные материалы для производства мягкой тары. Анализ образца.

    дипломная работа [3,2 M], добавлен 29.08.2014

  • Общая характеристика и классификация полимеров и полимерных материалов. Технологические особенности переработки полимеров, необходимые процессы для создания нужной структуры материала. Технологии переработки полимеров, находящихся в твердом состоянии.

    контрольная работа [1,3 M], добавлен 01.10.2010

  • Способы получения полимерных композитов, тип наполнителя и агрегатное состояние полимера. Физико-химические аспекты упрочнения и регулирования свойства полимеров, корреляция между адгезией и усилением. Исследование взаимодействия наполнитель-связующее.

    реферат [21,9 K], добавлен 30.05.2010

  • Горение полимеров и полимерных материалов, методы снижения горючести в них. Применение, механизм действия и рынок антипиренов. Наполнители, их применение, распределение по группам. Классификация веществ, замедляющих горение полимерных материалов.

    реферат [951,6 K], добавлен 17.05.2011

  • Механические свойства строительных материалов: твердость материалов, методы ее определения, суть шкалы Мооса. Деформативные свойства материалов. Характеристика чугуна как конструкционного материала. Анализ способов химико-термической обработки стали.

    контрольная работа [972,6 K], добавлен 29.03.2012

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Понятие и основные этапы вакуумной металлизации как процесса формирования покрытий путем испарения металлов в вакууме и конденсации их на поверхности полимеров. Главные условия эффективного применения данной методики. Свойства полимерных материалов.

    курсовая работа [178,2 K], добавлен 12.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.