Разработка и расчет двигательной установки на базе стационарного плазменного двигателя
Порядок расчета основных энергетических характеристик и размеров стационарного плазменного двигателя. Определение тяговой и кинетической мощностей струи ионов и протяжённости слоя ионизации рабочего тела. Расчет разрядного тока и ресурса двигателя.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 01.03.2009 |
Размер файла | 95,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
15
Министерство образования и науки Украины
Харьковский национальный аэрокосмический университет
им. Н. Е. Жуковского
«ХАИ»
Кафедра энергосиловых установок о двигателей ЛА
Разработка и расчет двигательной установки на базе
стационарного плазменного двигателя
пояснительная записка
к курсовой работе по курсу
«Основы теории и функционирования плазменных ускорителей»
Студент гр. xxxxxxxxxxxxxx.
______________ ________________
Консультант
Доцент xxxxxxx
Канд. тех. наук
xxxxxxxxx.
Нормконтроль
Ст. прxxxxx, к. т. н.
xxxxxxxxxx.
Харьков 2008г
Введение
Космические летательные аппараты, используемые для работы на различных орбитах вокруг Земли и для межпланетных полетов внутри солнечной системы, в большинстве случаев оснащены двигательными установками на основе электрореактивных двигателей, которые создают тягу необходимую для изменения положения летательного аппарата в космическом пространстве. Использование такого типа движителей целесообразно, так как они обеспечивают заданную тягу при меньших затратах рабочего тела по сравнению с двигателями другого типа.
С помощью электрореактивных двигательных установок можно решать следующие задачи: коррекцию орбит искусственных спутников Земли; обеспечение ориентации искусственных спутников Земли; выведение этих спутников на заданную орбиту; перевод космических аппаратов с опорной (околоземной) орбиты на более высокую, включая и задачи вывода космического летательного аппарата на геостационарную орбиту; обеспечение полета космического ЛА к другим планетам солнечной системы, кометам, астероидам и т.д.
Список условных обозначений, индексов и сокращений
bk - ширина ускорительного канала, м;
Cт - цена тяги, Н/Вт;
D - средний диаметр движителя, м;
Dвп, Rвп - диаметр и радиус внутреннего полюсного наконечника, м;
Dнп, Rнп - диаметр и радиус наружного полюсного наконечника, м;
Dу - габаритный размер движителя, м;
e - единичный заряд, Кл;
- токовый эквивалент массового расхода рабочего тела, А;
Ip - разрядный ток, А;
Iуд - удельный импульс, м/с;
lk - длина ускорительного канала, м;
M- масса атома ксенона, кГ;
, - массовый расход рабочего тела через анодный блок и катод, кГ/с;
Nи - кинетическая мощность потока ионов, Вт;
Np - разрядная мощность, Вт;
Nт - тяговая мощность, Вт;
P - тяга движителя, Н;
Up - разрядное напряжение, В;
?к - толщина выходных кромок разрядной камеры, м;
?т - тяговый КПД движителя;
?i - потенциал ионизации рабочего тела, эВ;
?дв - ресурс движителя, с;
КПД - коэффициент полезного действия;
РК - разрядная камера;
РТ - рабочее тело;
СПД - стационарный плазменный двигатель;
ЭРД - электроракетный двигатель
1. РАСЧЕТ ОСНОВНЫХ ЭНЕРГЕТИЧЕСКИХ
ХАРАКТЕРИСТИК И ОСНОВНЫХ РАЗМЕРОВ СПД
Расчёт основных характеристик и основных размеров СПД произведён в соответствии с экспериментально-теоретическими методическими разработками, изложенными в [1, 2, 3, 4], в которых приведены некоторые промежуточные расчёты и дано более подробное объяснение используемых далее соотношений.
К числу основных параметров, с помощью которых можно описать СПД типовой схемы, представленной на рис. 1, относятся:
а) диаметр наружной поверхности ускорительного канала Dн, определяющий типоразмер модели (М-70, М-100, М-140, М-200, М-290);
б) средний диаметр разрядной камеры D;
в) ширина канала bк;
г) длина канала lk;
д) толщина выходных кромок разрядной камеры ?k;
Для общей характеристики конструкции движителя используются также габаритные размеры Dу и lу, внутренний диаметр наружного полюсного наконечника Dнп=D+bk+2·?k и диаметр внутреннего полюсного наконечника Dвп=D-bk-2·?k. В качестве основной задачи расчёта рассматривается задача по определению совокупности значений перечисленных размеров, а также параметров магнитной системы (количество ампер-витков и размеры элементов магнитопровода), которые обеспечивают выполнение заданных требований. Перечисленные размеры определяются с использованием величины среднего диаметра движителя, что должно обеспечить идентичность относительного распределения потенциала и других локальных параметров в РК, и, т.о., обеспечить выполнение условий подобия процессов ионизации и ускорения рабочего тела (РТ) в РК. Как следствие, это позволяет ожидать идентичности интегральных характеристик моделей различного масштаба в сопоставимых условиях работы. В качестве критерия подобия используется условие [4], где ?и - средняя длина пробега атома РТ до ионизации, - массовый расход РТ через канал с площадью проходного сечения Sk. Постоянство этого соотношения при прочих равных условиях ограничивает, в частности, минимальную величину концентрации (?1019 m-3) РТ в РК и, т.о., позволяет определить минимальное значение массового расхода, необходимого для эффективной ионизации и ускорения РТ в движителе. В случае использования ксенона в качестве РТ для достижения приемлемого тягового КПД условие минимального массового расхода приобретает следующий вид
.
Суммарный массовый расход двигателя определяется как
.
Подставляя данные, рассматриваемого, в качестве примера, технического задания (ТЗ), получаем кг/с. При условии, что суммарный массовый расход определяется расходами через анодный блок - и через катод - , полагая в первом приближении, что расход через анодный блок для рассматриваемого ТЗ определяем как . Исходя из ограничения на минимальную величину массового расхода, определяем значение среднего диаметра D=0,06 м.
На основе анализа накопленного опыта по разработке и эксплуатации СПД определены соотношения основных геометрических размеров движителя с тем, чтобы при различных значениях массового расхода и мощности достигался режим работы СПД близкий к оптимальному: ширина ускорительного канала bk=0.25·D=0.015м; толщина выходной кромки разрядной камеры =0.006 м; протяжённость ускорительного канала lk=bk+2·?k.= 0.027 м . Для рассматриваемого ТЗ bk=0.02 м, , lk=0.036 м.
Наружный диаметр ускорительного канала определяется как DH=D+bk=0.075 м. Внутренний диаметр ускорительного канала определяется как DB=D-bk=0.06 м. Габаритные размеры движителя определяются как и .
1.1 Определение тяговой и кинетической мощностей струи ионов
Тяговую мощность струи ионов определяем по формуле
Подставляя значения, получаем
.
Кинетическую мощность ионного потока на выходе из РК определяем по формуле
где в зависимости от сорта РТ и разрядного напряжения коэффициенты: характеризует разброс угла вылета ионов относительно оси СПД; - разброс ионов по энергии. Больший разброс соответствует меньшему напряжению Up. = 0,95…0,97 и = 0,93…0,98 для Хе в диапазоне Up=200…300 B [1, 3]. Принимаем = 0,95 и = 0,95.
Тогда величина кинетической мощности струи ионов
Вт.
1.2 Определение протяжённости слоя ионизации РТ
В качестве характерной толщины lс слоя, в котором преимущественно происходит ионизация РТ, выбираем такую величину, которая обеспечивает вероятность ионизации РТ не менее 95%. Тогда согласно [1, 3]
,1.1
где ?и - средняя длина пробега атома до ионизации ударом электрона; - средняя, на протяжении слоя ионизации, скорость движения атомов РТ вдоль РК, определяемая температурой анода; =- коэффициент скорости ионизации атома Хе при сечении ионизации ?i и скорости электронов ve; - среднее, на протяжении слоя ионизации, произведение концентрации электронов на коэффициент скорости ионизации; k= - постоянная Стефана-Больцмана; Та=800…1000 К - диапазон температуры анода при разрядном напряжении от 150 до 350 В; =12,1 эВ - потенциал ионизации атома ксенона; e= Кл - единичный заряд; Sk - площадь поперечного сечения ускорительного канала.
Площадь поперечного сечения ускорительного определяем по формуле
.
Подставляя полученные ранее значения, определяем
.
По формуле 1.1 определяем протяжённость слоя ионизации
.
Полагая, что 95% РТ ионизируется, а затем и ускоряется уже в виде ионов разностью потенциалов , сосредоточенной на протяжении слоя ионизации до средней скорости Vион, определяем концентрацию электронов исходя из условия неразрывности потока массы в РК:
,
где кг - масса иона ксенона; В - перепад потенциала в слое ионизации при потенциале ионизации ксенона - ?и=12.1 В.
Подставляя полученные ранее значения, получаем .
Рассчитанная концентрация электронов соответствует режиму работы движителя близкому к оптимальному.
1.3 Расчет разрядного тока и напряжения разряда
Разрядное напряжение определяем с учётом т.н. “эквивалентной разности потенциалов” участка, на котором преимущественно происходит ускорение ионного потока, прикатодного падения потенциала В, а также суммы перепадов потенциала вблизи анода (??и) и перепада потенциала в слое ионизации
.
Эквивалентная разность потенциалов, которая определяет ускорение ионов, вычисляется по формуле:
1.2
где kа - коэффициент аккомодации энергии ионов поверхностью стенки принимается как kа=1; - токовый эквивалент массового расхода; - коэффициент, учитывающий долю ионного тока, выпадающего на стенки РК на протяжении (см. рис. 1.2) слоя ионизации и ускорения (СИУ) - lСИУ; Nи - кинетическая мощность струи ионов. Коэффициент рассчитывается по эмпирической формуле
1.3
Величина lСИУ может быть определена на основе анализа экспериментальных данных, полученных с использованием СПД различных типоразмеров. Результаты анализа указывают на то, что СИУ занимает область РК, в которой радиальная составляющая индукции магнитного поля на средней линии канала (см. рис. 2). Полагая, что величина магнитного поля значительно спадает на протяжении lk по экспоненциальной зависимости, величина может быть определёна с достаточной точностью из соотношения
,
где - максимальная (вблизи выхода из РК) величина индукции магнитного поля на средней линии ускорительного канала (определяется далее), а - протяжённость ускорительного канала, определённая ранее.
Рис. 2. Локализация слоя ионизации и ускорения в РК движителя ? - Угол поворота профиля РК после приработки ().
---- Профиль РК по окончанию проектировочного периода (?дв) работы СПД. Пунктиром обозначены линии равного потенциала ускоряющего электрического поля.
Величину определяем условиями, необходимыми для обеспечения азимутального дрейфа электронов в РК и прямо-пролётного движения ионов - для ларморовских радиусов электрона Rл.е и иона Rл.и должны выполняться соотношения Rл.е<<bk и Rл.и >>bk. При этом экспериментальными данными об интегральных характеристиках СПД различных типоразмеров подтверждено, что для режимов близких к оптимальным выполняется соотношение . Тогда подставляя определённые ранее значения bk и Up, вычисляем
и протяжённость СИУ
.
Подставляя значения в 1.3, получаем .
Токовый эквивалент массового расхода рассчитываем с учётом определённого ранее значения массового расхода по формуле
А.
Подставляя в 1.2 полученные ранее величины, рассчитываем
В.
Определяем разрядное напряжение
В.
Определяем оценочное значение разрядного тока по формуле
.
Проверяем условия и оценивая напряжённость электрического поля как В/м. При =24.7 mTl рассчитываем Rл.е? 1.5·10-3 м<<bk=0.02 м и Rл.и?2,2 м>>bk, что подтверждает выполнение условий “замагниченности” электронов и прямо-пролётного движения ионов в РК в скрещенных электрическом и магнитном полях.
1.4 Расчет КПД и ресурса движителя
Разрядную мощность расчитываем как
.
Для данных ТЗ .
Цену тяги определяем по формуле
.
Подставляя значения, получаем .
Определяем тяговый КПД по формуле
.
С учётом рассчитанных значений .
Далее рассчитываем параметры, определяющие ресурс двигателя. Рассчитываем период приработки РК двигателя, в течение которого происходит снижение и стабилизация скорости эрозии выходных кромок РК потоком ионов
,
где - величина тока ионов, бомбардирующих стенку РК.
,
где - объёмный коэффициент распыления поверхности стенок РК (материал - АБН) ионами Хе при разрядном напряжении 460 В [1-3].
.
Толщина кромки разрядной камеры, которая распыляется ионами за произвольное время ?, определяется зависимостью
, 1.4
где - константа (м), определяемая далее; - время работы двигателя.
Толщину кромки разрядной камеры , которая распыляется ионами за время (в течение которого происходит снижение скорости эрозии из-за поворота профиля эродирующего участка РК на угол ?=150…200), вычисляем по формуле
,
где - длина эродирующего участка (см. рис. 2) соответствует протяжённости СИУ в РК движителя; принимается ?=170.
Рассчитывается величина м.
По формуле 1.4 определяем константу м - глубина эрозии за период приработки РК.
Рассчитываем толщину стенки РК, необходимую для обеспечения требуемого ресурса работы движителя по формуле 1.2
м.
Для того чтобы движитель мог функционировать в течение заданного ресурса времени, величина должна быть меньше, чем толщина выходных кромок разрядной камеры . Проверка этого предположения показывает, что
Т.о., требование по обеспечению заданного ресурса работы РК СПД выполнено.
Подобные документы
Определение тяговой мощности стационарного плазменного двигателя и кинетической мощности струи. Расчет разности потенциалов, ускоряющей ионы, разрядного напряжения, тока и мощности. Общая характеристика магнитной системы СПД. Система подачи рабочего тела.
курсовая работа [245,7 K], добавлен 18.12.2012Определение тяговой мощности и кинетической мощности струи. Определение разности потенциалов, ускоряющей ионы. Конфигурация силовых линий магнитного поля. Расчет геометрических параметров ресивера, разрядного тока. Рассчитанные значения сопротивлений.
курсовая работа [241,7 K], добавлен 18.12.2012Выбор основных размеров двигателя. Расчет обмоток статора и ротора, размеров зубцовой зоны, магнитной цепи, потерь, КПД, параметров двигателя и построения рабочих характеристик. Определение расходов активных материалов и показателей их использования.
курсовая работа [602,5 K], добавлен 21.05.2012Расчет асинхронного двигателя с короткозамкнутым ротором. Выбор главных размеров. Расчет размеров зубцовой зоны статора и воздушного зазора, ротора, намагничивающего тока. Параметры рабочего режима. Расчет потерь, рабочих и пусковых характеристик.
курсовая работа [218,8 K], добавлен 27.10.2008Выбор главных размеров асинхронного двигателя основного исполнения. Расчет статора и ротора. Размеры зубцовой зоны статора и воздушного зазора. Расчет намагничивающего тока. Параметры рабочего режима. Расчет потерь и рабочих характеристик двигателя.
курсовая работа [351,5 K], добавлен 20.04.2012Этапы проектирования асинхронного двигателя серии 4А с короткозамкнутым ротором. Выбор главных размеров. Расчет размеров зубцовой зоны статора и воздушного зазора, намагничивающего тока. Параметры рабочего режима. Расчеты рабочих и пусковых характеристик.
курсовая работа [3,6 M], добавлен 02.04.2011Тепловой расчет двигателя. Расчет рабочего цикла для определения индикаторных, эффективных показателей работы двигателя и температурных условий работы. Зависимость теплового расчета от совершенства оценки ряда коэффициентов. Проектирование двигателя.
курсовая работа [168,5 K], добавлен 01.12.2008Техническая характеристика двигателя. Тепловой расчет рабочего цикла двигателя. Определение внешней скоростной характеристики двигателя. Динамический расчет кривошипно-шатунного механизма и системы жидкостного охлаждения. Расчет деталей на прочность.
курсовая работа [365,6 K], добавлен 12.10.2011Тепловой расчет дизеля без наддува: параметры рабочего тела, окружающей среды и остаточные газы. Методика построения индикаторных диаграмм. Порядок проведения динамического, кинематического расчета. Уравновешивание двигателя и необходимые расчеты.
курсовая работа [87,3 K], добавлен 12.10.2011Расчет параметров состояния рабочего тела, соответствующих характерным точкам цикла. Расчет индикаторных и эффективных показателей двигателя, диаметра цилиндра, хода поршня, построение индикаторной диаграммы. Тепловой расчёт для карбюраторного двигателя.
курсовая работа [97,0 K], добавлен 07.02.2011