Элементы управления и регулирования гидропневмосистем

Расчет всасывающей, сливной и напорной гидравлических линий. Выбор насоса, параметров распределителей, клапанов, дросселя, напорных фильтров, манометра, теплообменника. Определение конструктивных особенностей гидроаппаратов. Расчёт мощности привода.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 27.06.2016
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

в) подъем давления в системе в момент открытия клапана осуществляется по линейному закону;

г) путь разгона и торможения, по отношению к основной величине открытия клапана, пренебрежимо мал.

Очевидно, что пик давления будет иметь минимальное значение, если время, за которое происходит увеличение давления в системе, и время срабатывания клапана будут при условии: t1?t2. Время подъема насосом давления в системе может быть выражено формулой:

где V - объем жидкости в напорной части клапана;

в - сжимаемость жидкости в напорной части клапана;

Qср - средний расход сливаемой жидкости (Qср=0,5Q);

ДP - пиковое значение перепада давления, определяемое по формуле:

где Fкл - площадь поршня клапана;

k - коэффициент силы (0,125 - 0,25)

определим объем жидкости в напорной части:

где -длинна трубопровода напорной линии до клапана ();

Определим время срабатывания клапана :

Условие выполняется t1>t2.

Определим чувствительность клапана:

3.4 Расчет дросселя

Расчет проводится для дросселя ПГ77-14 по ТУ 2-053-1711-84.

Определим потребную площадь проходного сечения дросселя:

где µ - коэффициент расхода;

ДP - перепад давления на дросселе (ДP=Pн-Pм=17,5-17=0,5 мм).

Принимаем проходное отверстие в виде равнобедренного треугольника. Определим размеры сечения, исходя из площади:

где b - основание треугольника;

h - высота треугольника.

Примем основание треугольника b=14 мм, тогда высота треугольника будет равна:

Принимаем h=12мм. Исходя из того что сечение перекрывается за четыре оборота, определим шаг резьбы:

где n=4 - количество оборотов лимба.

Определим перепад давления на дросселе по формуле и данные занесем в таблицу:

Расчет сопротивления регулятора потока можно вести, пренебрегая кривизной канала, по формулам для труб

,

где - коэффициент гидравлического трения

- площадь открытия дросселя;

х =15м/с - скорость движения масла в дросселе, при давлении Р=15 МПа, м/с.

Определяем диаметр дросселирующего отверстия

м.

Принимаем d=14 мм.

Тогда ?Р равно

,

Построим расходную характеристику, при изменении хода дросселирующего элемента, по формулам

;

.

По таблице 12 построим график зависимости n=f(Q)

Таблица №12

Расход дросселя Qл/мин

Кол-во оборотов лимба n

Площадь проходного сечения Sдрмм2

Перепад давления ДP, МПа

0

0

0

0

4,95

1

5,625

0.33

19,8

2

22,5

1.3

44,5

3

50,625

3

141

4

82

17.5

Определяем расход дросселя по формуле:

Данные расчета занесем в таблицу.

Рисунок 16 - проходное сечение дросселя

Рисунок 17 - перепадно-расходная характеристика дросселя.

4. Уточненный расчет гидропривода

Исходными данными для проверочного расчета являются: параметры и технические характеристики выбранного оборудования, а также результаты предварительного расчета.

Перепад давлений на гидродвигателе при максимальной расчетной нагрузке:

- для гидромотора:

(65)

- для гидроцилиндра с поршневой рабочей полостью:

(66)

где, - гидромеханический КПД гидромотора;

- гидромеханический КПД гидроцилиндра, принимается равным .

Расход выходящий:

- из гидромотора:

(106)

где - объемный КПД гиромотора.

Из гидроцилиндра:

- с поршневой рабочей полостью:

(67)

Потери давления в гидролиниях

Потери давления в гидролиниях зависят от режима течения жидкости, определяемого числом Рейнольдса:

(68)

где - кинематический коэффициент вязкости жидкости.

Потери давления на трение при движении жидкости в трубопроводах определяется по формуле:

(69)

Где - коэффициент гидравлического трения;

- средняя скорость жидкости в трубопроводе;

- плотность рабочей жидкости.

При ламинарном режиме течения жидкости в жёстких трубопроводах (Re< 2300):

При турбулентном течении жидкости в гидравлических гладких трубах (2300<Re< 105):

Соединительные трубопроводы объёмных гидроприводов считаются гидравлически гладкими.

Суммарные гидравлические потери в гидроприводе состоят из потерь давления в трубопроводах, на местных гидравлических сопротивлениях и в гидроаппаратах:

С учётом суммарных гидравлических потерь в гидросистеме и перепада давлений на гидродвигателе или , определяют потребное давление насоса т.к. в системе аппараты работают поочередно, то для расчета номинального давления принимаем наибольший перепад давления в гидродвигателе:

Если полученное давление не превышает номинального , то параметры , , и , считаются окончательными для данного расчётного случая. При потребном давлении насоса, большем максимально допустимого для выбранного насоса, следует применять другой насос, расcчитанный на более высокое давление, и уточнить проверочный расчёт.

Расчетное давление не превышает номинального давления насоса, следовательно насос подобран верно.

Усилия и скорости рабочих органов

Параметры выбранного насоса считаются приемлемыми, если они обеспечивают достижение заданных усилий и скоростей гидродвигателей при расчётных значениях потерь в гидросистеме.

Фактические максимальные усилия на рабочих органах:

- для гидромоторов:

(70)

-для гидроцилиндров:

- с поршневой рабочей полостью:

(71)

где и - потери давления, соответственно, в напорной и сливной магистралях гидропривода.

Фактические максимальные скорости рабочих органов гидродвигателей:

- для гидромоторов:

(72)

- для гидроцилиндров:

- с поршневой рабочей полостью:

(73)

привод теплообменник гидроаппарат

5. Расчет мощности гидропривода

Полезную мощность привода определяют по фактическим максимальным нагрузкам и скоростям гидродвигателей:

- для привода с гидромотором:

(74)

- для привода с гидроцилиндром:

(75)

Затрачиваемая мощность привода насоса определяется по фактическим параметрам насоса Qн и Pн:

(76)

где - общий КПД насоса при расчётных значениях давления, расхода, вязкости рабочей жидкости и частоты вращения приводного вала; принимается по его теоретической характеристики.

Общий КПД гидропривода:

(77)

6. Тепловой расчёт гидропривода и выбор теплообменника

Вся энергия, затраченная на преодоление различного рода сопротивлений в гидроприводе, в конечном итоге превращается в теплоту, поглощаемую маслом, что вызывает его нагрев и нежелательное уменьшение вязкости.

Потери мощности в гидроприводе, переходящие в тепло:

(78)

Количество тепла , выделяемое в гидроприводе в единицу времени, эквивалентно теряемой мощности:

Приближенно считается, что полученная маслом теплота отводится в окружающую среду в основном через поверхность стенок гидробака. Если площадь стенок гидробака оказывается недостаточной, то устанавливается маслоохладитель.

Если масло охлаждается и в гидробаке и в кондиционере, то уравнение теплового баланса теплоотдачи записывается в виде:

(79)

где - охлаждаемая поверхность гидробака;

- площадь поверхности охлаждения кондиционера;

- коэффициент теплопередачи от масла в гидробаке к окружающему воздуху;

- коэффициент теплопередачи от масла к воздуху в кондиционере;

- установившаяся максимальная рабочая температура масла (дана в задании к курсовой работе);

- температура окружающего воздуха.

Площадь поверхности охлаждения гидробака (м2) связана с его объёмом (вместимостью) (л) объем гидробак примем равным минутной подаче насоса следующим соотношением:

(80)

Требуемая для поддерживания заданного теплового режима гидропривода площадь поверхности кондиционера равна:

(81)

Если в результате по формуле ?0 (то есть установка кондиционера не требуется), то рассчитать установившуюся температуру масла в гидросистеме:

(82)

Выбираем теплообменник Г44 - 25 по ТУ2 - 053 - 1535 - 80

Таблица №10 - технические характеристики теплообменника Г44 - 25 по ТУ2 - 053 - 1535 - 80

Максимальное давление Pmax, МПа

Максимальный расход Qmax, л/мин

Мощность N, кВт

0,7

100

4,5

7. Описание спроектированного гидроблока управления и проектирование монтажной плиты

Проектирование гидравлической плиты производилось при непосредственной поддержки программного обеспечения (Компас - 3DV13) и ПК. Была спроектирована плита которая выполнена из цельного отрезного кубика металла. В ней рассверлены отверстия, по которым жидкость будет попадать в гидроаппаратуру. Так же в плите имеются так называемые технологические отверстия, предназначенные для соединения нескольких каналов между собой, которые в последующем заглушаются (закрываются наглухо). Сама же гидроаппаратура непосредственно крепиться к плите при помощи винтов. Соединение имеет штуцерные переходники, которые используются при переходе от трубы к гидравлической плите.

Вся гидроаппаратура располагается на двух перпендикулярных гранях плиты, последовательно, по направлению движения рабочей жидкости, в один ряд. С правой стороны крепятся 3 предохранительных клапана КП(ПГ 54 - 34М по ТУ 2 - 053 - 1628 - 83) за ним манометр М (МО - 11203 по ТУ 25.02.181071 - 78), следом дроссель Др (ПГ 77 - 14 по ТУ 2 - 053 - 1790 - 86), затем установлен редукционный клапан КР(Г - 54-32 по ТУ 2 - 053 - 1711 - 83). С другого боку крепятся гидрораспределители Р1 и Р2 (ГидрораспределительВЕХ 16 44 Г24 НЕТР), затем установлен гидрораспределитель Р3(ВЕХ 16 64 Г24 НЕТР), ними располагаются выходы для подключения напорного фильтра.

Гидравлические плиты вместе с гидравлической аппаратурой легко крепится и встраивается в любую систему, они могут находиться непосредственно в корпусе мобильной машины или станка в последнем случаи могут быть закреплены на полу.

8. Описание потерь в гидроаппаратах и гидроприводе в целом, описание схемы соединения

Потери в гидроаппаратах происходят по различным причинам. Данные причины наступают и зависят от условий работы. Наибольшие потери в гидроаапоратах происходят при малой вязкости рабочей жидкости и высоких давлений в гидросистеме. Так же на потери влияют методы соединение и объединения гидроаппаратов в группы и гидросхемы. Наибольшие потери имеют, обычное, соединение трубное или шланговое, меньшие потери же у систем стыкового расположения, крепления гидроаппаратов. Наилучшие показатели по уменьшению потерь имеет модульный способ установки гидроаппаратуры.

Потери мощности в гидросистеме составили 1.014 кВт от всей затраченной энергии а, следовательно потери энергии на тепло значительны.КПД привода составил 75.6 %, что указывает на достаточно хорошую работоспособность гидропривода.

Жидкость всасывается из бака и направляется к насосам по линии всасывания, которая делится на две ветви. Один насос работает на гидроматор, задавая ему вращательное движение. Другой же, работает на цилиндры, задавая им возвратно-поступательное движение. По каналам трубопровода рабочая жидкость поступает в гидравлическую плиту 1. После чего через определённый проме6жуток времени жидкость поступает в гидравлическую плиту 2. Где она проходит черезраспределители и регулятор расхода. После чего жидкость поступает непосредственно к исполнительным механизма. Истечение жидкости происходит так же черезраспределители и сливной трубопровод в бак.

Соединение всей системы состоит из трех этапов:

Соединение аппаратов межу собой, используя при этом стыковой метод, и их связь.

Проектирование плит, на которых расположены сами аппараты.

Соединение плит, как систем управления и регулирования, с основной системой.

Аппараты расположены на гидравлических плитах непосредственно прикрепленных к ним винтами в потай. Каждый аппарат расположен на своем месте. Характеризуемое присоединительными размерами на самом гидроаппарате и плите.

Рисунок - 14 Схема закрепления гидроаппаратов на плите.

Проектирование плит осуществлялось непосредственно при помощи программного обеспечения ПК КОМПАС-3DV13. Основные размеры плит были предрешены габаритами гидроаппаратов, то есть ширина и длинна. Высота же в свою очередь выбиралась произвольно, но с расчетом прочностных, экономических и функциональных зависимостей. Это указывает на то, что был проведен расчет, толщен стенок, каналов, были учтены, длинны присоединительных винтов гидроаппаратов к плите. Так же были выполнены технологические отверстия, которые в свою очередь предназначены для соединении отверстий под подвод и отвод рабочей жидкости межу аппаратами и плитой.

Плиты имеют отверстия для присоединения их к любой поверхности, будь то бак или специально отведённый под это шкаф. Между собой каналы различных гидравлических плит соединяются при помощи либо РВД или обычных гибких труб, все зависит от давления и скоростей движения жидкости. В нашем случае соединение происходит по средствам гибких туб с использованием комплектующих средств, таких как накидная гайка штуцера и т.п.

Цикл движения рабочей жидкости.

Б-Н1-ГП-Ф1-ГП-Р1-ГП-Ц1\Ц1- ГП-Р1-ГП-АТ-Б

Б-Н1-ГП-Ф1-ГП-Р2-ГП-Ц2\Ц2- ГП-Р2-ГП-АТ-Б

Б-Н2-ГП-Ф2-ГП-КР-ГП-Р3-ГП-М\М- ГП-ДР-ГП-Р3-ГП-АТ-Б

9. Описание ремонтопригодности спроектированного гидроблока

Гидроблок не прихотлив в ремонте, поскольку все аппараты легкодоступны, имеют отдельное крепление и могут извлекаться связками, так и группами по одному аппарату. Можно устанавливать гидроаппаратуру, работающую на более высоком давлении и скоростях. Поскольку основное движение жидкости протекает в гидравлической плите, которая имеет достаточно толстые стенки, чтоб выдержать данные характеристики. Аппараты, установленные на гидравлической плите, могут проходить проверку на работоспособность как отдельно, так и вместе с плитой. Замена гидроаппарата занимает от 5 до 10 минут. Если же требуется замена гидроблока управления, то открутив 4 винта можно произвести замену всего блока.

Модульный метод прост в обслуживании, но при этом сложен в изготовлении и энерго затрачен.

Стыковой метод занимает среднее положение в обслуживании, плюс ко всему его можно отнести к энерго сберегаемому методу. В данный момент он получил наибольшее распространение как в сложных гидросистемах так и в простейших.

10. Стандартизация и контроль качества

Выполнение чертежа схемы соединений и сборочного чертежа гидроблока управления проводится после тщательного изучения технических параметров и устройств функциональных блоков.

При этом следует отметить, что возрастающее требование по сокращению сроков и затрат на проектирование гидроблоков управления (ГУ) различных машин и механизмов ставят задачу создания методов формализованного синтеза ГУ. Блочно-модульный метод агрегатирования ГУ является одним из наиболее перспективных методов построения гидросхем. В его основу положен принцип использования функциональных унифицированных узлов, серийно выпускаемых специализированными предприятиями, что позволяет значительно сократить сроки разработки и внедрения гидросистем управления оборудованием, обеспечить простоту ремонта, обслуживания и изменения схемы работы при модернизации путём замены одних унифицированных узлов другими.

Контроль качества осуществляется на всех этапах сборки привода от проектирования конструкторской документации до ввода в эксплуатацию привода. Все входящие узлы в данный гидропривод подлежат обязательному испытанию по программе квалификационных испытаний, допускается, не проводит испытания в полном объеме программы, а лишь проверить прочность и наружную герметичность при наличии сертификата качества выданного соответствующим органом госстандарта. Во время эксплуатации проводить контроль качества рабочей жидкости. Не реже чем через три месяца эксплуатации необходимо производить физико-химический анализ рабочей жидкости в отсеках гидробака, при проведении которого следует определять кинематическую вязкость при температуре плюс 50С, содержание воды, класс чистоты и кислотное число, при работе в запыленном помещении каждый месяц во избежание повреждения и выхода из строя гидропривода и его составных частей. А также:

Ежедневно перед началом работы следует проверять:

Уровень рабочей жидкости в гидробаке, при необходимости долить рабочую жидкость:

Рабочее давление в гидросистеме;

Состояние фильтров;

Герметичность соединений и уплотнений;

Состояние манометров.

Перед запуском гидропривода в эксплуатацию рекомендуется проводить промывку гидросистемы. Заполненную рабочей жидкостью гидросистему включить в работу на 8 часов, после чего необходимо:

Слить рабочую жидкость из отсеков гидробака и гидросистемы; очистить отсеки гидробака от грязи, промыть керосином и насухо протереть;

Сменить фильтроэлементы напорных фильтров;

Залить отфильтрованную не грубее 12-го класса чистоты по ГОСТ 17216-71 рабочую жидкость в отсеки гидробака.

В последующем смену рабочей жидкости и очистку гидробака производить через каждые шесть месяцев.

После ввода системы в эксплуатацию очистка или замена фильтроэлементов производится первый раз через один час, затем дважды через пять часов работы гидросистемы.

Напорные фильтры обслуживаются после срабатывания индикаторов загрязненности.

Не реже одного раза в три месяца необходимо снимать и очищать фильтроэлемент воздушного фильтра. Фильтроэлемент промывается чистым керосином.

Рабочая жидкость, попадающая на верхнюю плиту гидробака, отводится в сборник утечек, и оттуда сливается через сливныебонки. Не допускается заливать обратно рабочую жидкость вылившуюся из гидробака.

Рабочая жидкость подлежит замене при выходе хотя бы одного из следующих показателей за указанные пределы:

Вязкость изменилась более чем на 20;

Содержание воды составляет более 0,2;

Класс чистоты грубее 12-го по ГОСТ 17216-71 и не устраняется очисткой при помощи станции обслуживания гидросистемы;

Кислотное число изменилось более чем на +30.

+При появлении течи из-под маслоуказателей, стыковых соединений или соединений трубопроводов необходимо подтянуть крепежные винты, накидные гайки, маслоуказатели. Если это не помогает, следует заменить резиновые кольца или уплотнительные прокладки.

11. Описание вопросов охраны труда и экологии

Многие машины и агрегаты в процессе работы характеризуются высоким уровнем шума и вибрации. Шум делится на механический и аэродинамический.

Шум механического происхождения возникает в результате соударения твердых тел, упругих деформаций деталей машин, вибраций узлов или агрегатов в целом. Аэродинамический шум возникает при больших скоростях движения газов, тел в воздухе, в результате взрывных процессов.

Снижения уровней шума и вибрации можно достигнуть различными путями. Прежде всего, необходимо уменьшить их в самом источнике образования, уменьшая поверхность соударяющихся частей, применяя безредукционные передачи и т. д. Если смонтированное производственное оборудование создает повышенные вибрации и шум, то его изолируют от строительных конструкций установкой на специальные фундаменты. Для устранения жесткой связи оборудования с фундаментом, между ними располагают амортизаторы.

Если шум на рабочих местах невозможно устранить всеми известными способами, то в таких случаях применяют, либо дистанционное управление производственным процессом из специальных кабин с необходимой изоляцией звука, либо применяют индивидуальные средства защиты органов слуха.

Под вибрацией понимают механические колебания упругих тел или колебательные движения механических систем.

Нормируемыми параметрами общей вибрации является среднеквадратичное значение колебательной скорости в октавных полосах частот или амплитуды перемещений, возбуждаемые работой оборудования (машин, электродвигателей, вентиляторов, станков и других) и передаваемые на рабочие места в производственных помещениях (пол, рабочие площадки, сиденье).

Санитарными нормами введены регламентируемые параметры СН245-71. Нормируемыми параметрами шума являются предельно допустимые уровни звукового давления в октавных полосах частот, уровни звука и эквивалентные уровни звука.

Предельные нормы шума и вибраций для среднегеометрической октавной полосы 1000Гц: шума 80дБ, действующее значение допустимой колебательной скорости 0,63·10-2м/с. Проектируемый механический участок содержит станки, при работе которых шум и вибрация не превышают допустимых уровней.

С целью уменьшения вредного воздействия вибрации наработающих предусматривают систему технических мероприятий, которые должны учитываться при разработке нового, эксплуатации и модернизации существующего оборудования, машин, механизмов и инструментов.

Основными мероприятиями по устранению вредного воздействия вибрации являются:

Снижение вредных вибраций в самом источнике, используя конструктивные, технологические и эксплуатационные способы и приёмы;

Установка технологического оборудования с динамическими нагрузками на фундаменты;

Ограничение или устранение вибрации по пути распространения ее средствами виброизоляции и вибропоглощения;

Устранение неблагоприятных факторов производственной среды, сопутствующих возникновению вибрационной болезни;

Использование средств индивидуальной защиты (виброизоляционная обувь и рукавицы);

Введение комплекса санитарно-гигиенических и лечебно-профилактических мероприятий, направленных на снижение вредного воздействия вибрации на организм человека.

Из перечисленных мер, виброизоляция является наиболее доступным и достаточно эффективным решением, позволяющим обеспечивать нормальные условия для обслуживания персонала.

Указания порядка и мер безопасности при первом пуске и наладке гидросистемы:

Перед пуском станции тщательно проверить соответствие монтажных схем соединения станции.

В полость бака залить тщательно отфильтрованное масло. Заполнение гидробака контролируется по верхнему маслоуказателю, расположенному на передней стенке бака станции.

Проверить наличие заземления станции.

Регулировочными винтами максимально расслабить пружину гидроклапана КП.

Кратковременно (на 2-3 секунды) включить приводной электродвигатель насосной установки и проверить правильность направления его вращения, которая должна быть по часовой стрелке, если смотреть на крыльчатку охлаждения двигателя.

После проверки правильности подключения приводного электродвигателя включить его для заполнения гидросистемы маслом.

Настроить предохранительный клапан на давление 16МПа, используя показания манометра при этом все распределители должны находиться в нейтральном положении.

Указание мер безопасности:

Эксплуатация гидростанции должна производиться в соответствии с правилами пожарной безопасности, требованиями ГОСТ 12.1.019 - 79, ГОСТ 12.2.009 - 80, ГОСТ 12.2.040 - 79 и руководства по эксплуатации гидросистемы.

Общие требования безопасности к монтажу , испытаниям и эксплуатации должны соответствовать ГОСТ 12.2.086 - 83.

Не допускать к обслуживанию персонал, предварительно не ознакомив его с общими правилами техники безопасности, руководствами по эксплуатации на комплектующие изделия .

Перед эксплуатацией станцию заземлить.

Между головками винтов или болтов, используемых для заземления , и заземляющими частями не должно быть электроизолирующего слоя лака, краски, эмали. При наличии указанного слоя он должен быть удалён.

Подключение энергоисточников должно производиться только после окончания сборочно - монтажных работ.

Периодически, во время профилактических осмотров, проверять правильность работы блокировочных и контрольно - измерительных устройств. При обнаружении каких - либо отклонений от нормальной работы немедленно отключить станцию от энергоисточников.

Перед демонтажем станции отключить все энергоисточники и принять меры против их случайного включения.

Обслуживание приводных электродвигателей производить только отключения их от сети и полной остановки вращающихся частей.

Перед пуском приводных электродвигателей убедиться в отсутствии у вращающихся частей посторонних предметов.

Запрещается:

Оставлять работающие станции без надзора;

Подтягивать болты, винты, гайки и другие соединения во время пуска и работы станции;

Производить пуск станции без необходимого количества рабочей жидкости в гидробаке;

Работа станции на режимах, превышающих значения, установленные руководством по эксплуатации;

Запуск станции при температуре масла менее + 10єС.

Экология:

Проблема защиты окружающей среды - одна из важнейших задач современности. Выбросы промышленных предприятий, энергетических систем и транспорта в атмосферу, водоемы и недра на современном этапе развития достигли таких размеров, что в ряде районов земного шара, особенно в крупных промышленных центрах, уровни загрязнений существенно превышают допустимые санитарные нормы.

Важными направлениями защиты окружающей среды следует считать:

Создание и повсеместное внедрение безотходных технологий;

Совершенствование технологических процессов и разработку нового оборудования с меньшим уровнем выбросов примесей и отходов в окружающую среду;

Замена токсичных отходов на нетоксичные;

Замена неутилизируемых отходов на утилизируемые;

Применение пассивных методов защиты окружающей среды.

Важная роль в защите окружающей среды отводится мероприятиям по рациональному размещению источников загрязнений. К ним относятся:

Вынесение промышленных предприятий из крупных городов и сооружение новых в малонаселенных районах с непригодными и малопригодными для сельскохозяйственного использования землями;

Оптимальное расположение промышленных предприятий с учетом топографии местности и розы ветров;

Установление санитарных охранных зон вокруг промышленных предприятий;

Рациональная планировка городской застройки, обеспечивающая оптимальные экологические условия для человека и растений.

Заключение

В курсовом проекте по курсу “Элементы управления и регулирования гидропневмосистем” произвели проектирование типового гидропривода дроссельного регулирования скорости.

Исходными данными для курсового проекта явились номинальное давление и номинальный расход на участках гидросистемы.

В курсовом проекте было определено назначение объёмного гидропривода, его достоинства и недостатки, произведен краткий анализ технической и патентной литературы и изучены вопросы экологии и охраны труда. Также был проведен предварительный расчет привода, выбор насосов и двигателей и трубопроводов. Рассчитали мощности привода, определили основные параметры и типоразмеры применяемых гидроаппаратов. Также провели уточненный расчет и выбор конструктивных особенностей гидроаппаратов. Провели тепловой расчет привода.

Курсовым проектом было предусмотрено выполнение графической части проекта, которая содержит:

1. Гидравлическая схема привода;

2. Принципиальная монтажная гидравлическая схема;

3. Сборочные чертежи спроектированных гидроаппаратов;

4. Сборочный чертеж блока управления.

Список литературы

1 Васильченко В.А. Гидравлическое оборудование мобильных машин. Справочник. М., Машиностроение, 1983г.

2 Свешинков В.К., Усов А.А.Станочные гидроприводы. Справочник. М., «Машиностроение», 1988г.

3 Свешников В.К., «Станочные гидроприводы», Справочник, М; Мш, 2004г.

4 Юшкин В.В. Основы расчета объемного гидропривода. Минск, «Вышэйшая школа», 1982г.

5 Пинчук В.В. Синтез гидроблоков управления на основе унифицированной элементной базы. - Мн.: Технопринт,2001.

6 Пинчук В.В. Элементы управления и регулирования гидропневмосистем: Практическое руководство по курсовому проектированию для студентов специальности Т.05.11 «Гидропневмосистемы транспортных и технологических машин». - Гомель: Учреждение образования «ГГТУ им. П.О. Сухого», 2002.

7 Михневич А.В., Бутько В.А., Асан-Джалов А.Г. Методические указания №1834 к курсовой работе по курсу «Гидравлика, гидропневмоприводы и гидропневмоавтоматика», Гомель, 1994г.

8 Михневич А.В., Ершов Б.И., Полонский В.А.Методические указания №1976 к курсовой работе по курсу «Гидравлика, гидропневмоприводы и гидропневмоавтоматика», Гомель, 1995г.

Размещено на Allbest.ru


Подобные документы

  • Расчет и подбор основных параметров гидродвигателей. Определение полезных перепадов давления и расходов рабочей жидкости. Вычисление гидравлических потерь в напорной и сливной магистралях. Выбор насоса и расчет мощности приводного электродвигателя.

    курсовая работа [318,3 K], добавлен 26.10.2011

  • Подбор центробежного насоса и определение режима его работы. Определение величины потребного напора для заданной подачи. Расчет всасывающей способности, подбор подпорного насоса. Регулирование напорных характеристик дросселированием и байпасированием.

    курсовая работа [1,8 M], добавлен 03.04.2018

  • Работа гидравлической схемы. Силы, действующие на гидродвигатели. Полезный расход рабочей жидкости, обоснование и выбор ее марки. Гидравлические потери в напорной и сливной магистралях. Выбор насоса и расчет мощности приводного электродвигателя.

    курсовая работа [213,8 K], добавлен 26.10.2011

  • Определение общего КПД привода. Расчет мощности и выбор электродвигателя. Определение передаточного числа редуктора, конструктивных особенностей зубчатых колес и деталей редуктора. Расчет тихоходной и быстроходной передач. Ориентировочный расчет валов.

    курсовая работа [366,1 K], добавлен 07.04.2013

  • Вычисление параметров гидродвигателя, насоса, гидроаппаратов, кондиционеров и трубопроводов. Выбор рабочей жидкости, определение ее расхода. Расчет потерь давления. Анализ скорости рабочих органов, мощности и теплового режима объемного гидропривода.

    курсовая работа [988,0 K], добавлен 16.12.2013

  • Классификация центробежных насосов, скорость жидкости в рабочем колесе. Расчет центробежного насоса: выбор диаметра трубопровода, определение потерь напора во всасывающей и нагнетательной линии, полезной мощности и мощности, потребляемой двигателем.

    курсовая работа [120,8 K], добавлен 24.11.2009

  • Предварительный расчет теплообменного аппарата и определение площадей теплообмена. Выбор геометрии трубы и определение конструктивных параметров АВОМ. Поверочный тепловой и гидравлический расчет аппарата. Расчет конструктивных элементов теплообменника.

    курсовая работа [578,0 K], добавлен 15.02.2012

  • Расчет гидравлических двигателей и регулирующей аппаратуры. Варианты комплектации привода продольного перемещения буровых головок. Выбор гидромотора для привода шестерни комбайна. Подбор насоса и гидробака. Расчет потребляемой электрической мощности.

    курсовая работа [1,4 M], добавлен 28.12.2016

  • Принципиальная схема и состав гидросистемы привода конвейера каналокопателя. Расчет и выбор гидродвигателя, насоса, трубопровода. Подбор предохранительного клапана, фильтра и манометра. Вычисление КПД гидропередачи, определение теплового баланса системы.

    курсовая работа [883,5 K], добавлен 30.04.2013

  • Анализ аналога пластинчатого подогревателя, описание его достоинств и недостатков. Определение гидравлических и прочностных показателей, расчет тепловых и конструктивных параметров выбранного кожухотрубного подогревателя для пастеризации молока.

    курсовая работа [638,3 K], добавлен 02.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.