Система управления электроприводом БТУ 3601
Расчет и выбор элементов силовой части электропривода. Построение статических характеристик разомкнутого электропривода. Синтез и расчет параметров регуляторов, моделирование переходных процессов скорости и тока электропривода с помощью MATLAB 6.5.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 10.05.2011 |
Размер файла | 903,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Введение
Основная цель данного курсового проекта это разработка тиристорного электропривода на базе комплектного электропривода БТУ 3601, в процессе выполнения будет необходимо: рассчитать и выбрать элементы силовой части электропривода, построить статические характеристики разомкнутого электропривода, синтезировать и рассчитать параметры регуляторов и смоделировать переходных процессов скорости и тока электропривода с помощью программного пакета MATLAB 6.5. Это позволит приобрести навыки самостоятельного принятия инженерных решений на базе современной полупроводниковой техники при расчете и проектирование систем автоматического управления.
1. Система электропривода и его функциональная схема
По заданию на курсовой проект был выбрана система электропривода по схеме «тиристорный преобразователь - двигатель» которая, реализована комплектным тиристорным электроприводом БТУ-3601
2. Расчет и выбор элементов силовой части электропривода
2.1 Выбор силового трансформатора тиристорного преобразователя
Приведем сопротивление обмоток двигателя к нагретому состоянию учтя, что максимальная рабочая температура для изоляции класс B = 90 C:
Сопротивление обмотки возбуждения:
Сопротивление якорной цепи:
Рассчитаем номинальную скорость двигателя:
Трансформатор в управляемом вентильном электроприводе необходим для согласования напряжения сети с напряжением двигателя [1].
Фазное напряжение вторичной обмотки трансформатора определяется выражением:
где - коэффициент запаса по напряжению сети, - коэффициент запаса по напряжению, учитывающий неполное открытие вентилей при максимальном управляющем сигнале, - коэффициент запаса по напряжению, учитывающий падение напряжения в вентиле, в обмотках трансформатора, - коэффициент пропорциональности между средневыпрямленным напряжением и действующим значением фазного напряжения вторичной обмотки для трехфазной мостовой схемы выпрямления, - номинальное напряжение двигателя
Коэффициент трансформации трансформатора:
Так, как коэффициент трансформации равен единице воспользуемся бестрансформаторным варианте схемы, где силовые цепи преобразователя тиристорного электропривода подключаются к сети через анодный реактор. Анодный реактор выбирают по действующему значению номинального тока фазы преобразователя , где коэффициент b схемы выпрямления (b=0,817 для мостовой схемы), и номинальному напряжению сети.
Номинальный ток двигателя равен:
электропривод силовой регулятор matlab
где - номинальная мощность двигателя, - номинальное напряжение обмотки возбуждения, - номинальный КПД двигателя, - сопротивление обмотки возбуждения в нагретом состоянии.
Ток фазы первичной обмотки трансформатора:
Ток фазы вторичной обмотки трансформатора:
Выбираем анодный реактор типа РС 40/1,4 [2]. Его параметры, взятые из справочных данных:
.
2.2 Проверка и выбор тиристоров
Выбор и проверка тиристоров, принятых к установке в преобразователе, производятся, по трем параметрам: по среднему току, максимальному амплитудному значении напряжения на тиристоре и ударному току внутреннего короткого замыкания [2].
Среднее значение тока, протекающего через тиристор:
где: - допустимый ток двигателя, для общепромышленной серии машин - = , для серии двигателей 2ПФ; - для трехфазной мостовой схемы.
Значение тока, приведенное к классификационным параметрам тиристоров:
где - коэффициент запаса по току, - коэффициент, зависящий от схемы выпрямления, угла проводимости и от формы тока, - коэффициент, учитывающий условия охлаждения.
Найденный ток должен быть меньше действующего значения прямого тока:
Максимальное амплитудное напряжение на тиристоре:
где - коэффициент запаса по напряжению, учитывающий возможность перенапряжений на тиристорах; - линейное действующее значение напряжения вторичной обмотки трансформатора, . должно быть меньше повторяющегося напряжения тиристора.
Для нахождения ударного тока внутреннего короткого замыкания (КЗ на стороне постоянного тока, якорная цепь двигателя и реактора вне цепи) определяется амплитуда базового тока:
где - амплитуда фазного напряжения вторичной обмотки трансформатора.
Ударный ток внутреннего короткого замыкания находится по формуле:
где , определяется по кривым [3, рис. 1.128, с. 106] в зависимости от в зависимости от при .
Тиристор будет удовлетворять требованиям, если ток внутреннего короткого замыкания в преобразователе будет меньше ударного тока тиристора, то есть:
По выше найденным соотношениям выбираем тип тиристора [2], типа Т171-200 с техническими данными представленными в табл. 1.
Таблица 1
Тип |
Uпор, В |
Umax, В |
Imax cp, A |
Iyд, kA |
I2tтир, A2c |
(du/dt), мкс |
|
Т171-200 |
1,15 |
500…1200 |
200 |
5,2 |
135000 |
160 |
2.3 Выбор катодного дросселя
Так, как пульсации выпрямленного тока существенно ухудшают режим коммутации в двигателе и увеличивают его нагрев, для их сглаживания в схему добавляют катодный дроссель. Для этого необходимо найти амплитудные значения выпрямленного напряжения основной гармоники:
где - средневыпрямленное напряжение при угле регулирования, равном нулю; р = 6 - для трехфазной мостовой; k = 1 - кратность гармоники, т.е. отношение порядкового номера гармоники к числу пульсации. В симметричной мостовой и нулевых схемах наибольшую амплитуду имеет основная гармоника k = 1. Гармоники более высокой кратности имеют малую амплитуду, и действие дросселя на них эффективнее, поэтому расчет индуктивности дросселя ведется только по первой гармонике.
По известной амплитуде переменной составляющей и допустимому действующему значению основной гармоники тока н1 (1)% необходимая величина индуктивности цепи выпрямленного тока рассчитывается по формуле:
где - для машин без компенсационной обмотки; - номинальный ток двигателя.
Индуктивность сглаживающего ректора:
где - индуктивность анодного реактора,
Так, как по расчету получилась отрицательная величина , то это свидетельствует о том, что при принятом уровне пульсации тока катодный дроссель не нужен. Тогда действительный уровень пульсации тока первой гармоники с учетом приведенной индуктивности трансформатора или анодного реактора можно определить по формуле:
Значение гранично-непрерывного тока якоря двигателя в этом случае можно найти, используя соотношение:
где - граничное значение коэффициента:
Рассчитаем максимальный угол регулирования :
где - конструктивная постоянная на номинальный поток:
Рассчитаем скорость двигателя при максимальном угле управления:
При угле регулирования значение гранично-непрерывного тока больше, чем , значит влиянием прерывистого режима тока электроприводе нельзя пренебречь.
3. Расчет параметров силовой цепи электропривода
Эквивалентное сопротивление якорной цепи двигатель - преобразователь:
Эквивалентная индуктивность якорной цепи двигатель - преобразователь:
d - Коэффициент из табл. 1 [2].
Напряжение преобразователя при работе электропривода в номинальном режиме
Угол регулирования, соответствующий номинальному режиму работы:
Минимальный угол регулирования должен превышать для надежного включения вентиля, значит запас напряжения доступный преобразователю равен отношению:
Электромагнитная постоянная времени якорной цепи двигатель - преобразователь:
Электромеханическая постоянная времени электропривода:
где:-приведенное значение момента инерция привода;
4. Построение статических характеристик разомкнутого электропривода
4.1 Естественные характеристики двигателя
Найдем номинальное значение момента двигателя:
Естественная механическая характеристика двигателя постоянного тока описывается выражением [3]:
Естественную характеристику построим по двум точкам:
1. Точка идеального холостого хода при :
2. Точка работы при номинальной частоте вращения .
4.2 Основные характеристики электропривода
Основная механическая характеристика электропривода описывается уравнением:
Основную характеристику построим по двум точкам:
1. Точка идеального холостого хода при :
2. Точка работы при номинальной частоте вращения .
4.3 Характеристики, обеспечивающие минимальную скорость работы электропривода
Минимальную скорость работы электропривода будет обеспечивать
напряжение преобразователя равное:
1. Точка идеального холостого хода при :
2. Точка работы при минимальной частоте вращения .
4.4 Характеристики аварийного динамического торможения
Механическая характеристика динамического торможения описывается выражением:
где - добавочное сопротивление якоря двигателя при динамическом торможении.
Все полученные характеристики построены на рис. 2 и рис. 3.
Рис. 2
Рис. 3
5. Синтез и расчет параметров регуляторов в линеализованных системах управления частотой вращения электропривода
5.1 Структурная схема автоматизированного электропривода
При проектировании электропривода двухконтурной схемой с контурами регулирования скорости и тока, линеаризованная структурная схема двухконтурного автоматизированного электропривода регулирования частоты вращения представлена на рис. 4.
Рис. 4
Где передаточные функции звеньев двигателя: W1(р), W2(р), W3(р); преобразователя WП(p) и передаточные функции фильтров WОС(p), WОТ(p), положительная обратная связь с передаточной функцией W4(р) служит для компенсация внутренней обратной связи по ЭДС двигателя, передаточные функции регуляторов WРС(p), WРТ(p) и их параметры будут определен в процессе синтеза методом подчиненного регулирования.
Тиристорный преобразователь является звеном, передаточная функция которого:
где - коэффициент усиления управляемого вентильного преобразователя, который определяется выбранной точкой линеаризации; Тn = 0,009 с - постоянная времени системы управления преобразователем.
Коэффициент обратной связи по току:
где - напряжение насыщения выхода регулятора скорости.
Расчетное значение коэффициента обратной связи по скорости определяется выражением:
где - максимальное значение напряжения задания.
Синтез начинаем с внутреннего контура - контура тока.
5.2 Синтез контура регулирования тока (КРТ) якоря двигателя
Структурная схема контура тока представлена на рис. 5, на которой: kТ - коэффициент обратной связи по току; WРТ(р) - передаточная функция регулятора тока, которая подлежит определению.
Рис. 5
При синтезе прими следующие допущения:
· Пренебрежем влиянием ЭДС вращения в контуре тока якоря.
· Не учитывается влияние внутренней обратной связи по ЭДС двигателя
Настройку регулятора тока будем осуществлять на технический оптимум, следовательно, разомкнутый контур тока должен имеет передаточную функцию:
Следовательно, передаточная функция регулятора тока по схеме рис 4 определится из условия:
и при получим передаточную функцию регулятора тока:
где - коэффициент передачи пропорциональной части регулятора тока, - постоянная времени интегральной части регулятора тока.
5.3 Синтез контура регулирования скорости (КРС) электропривода
Контур скорости будем настраивать на симметричный оптимум для обеспечения астатизма САУ.
Контур скорости является внешним по отношению к контуру тока. Структурная схема контура скорости электропривода при тех же допущениях показана на риc. 6.
Рис. 6
Примем некомпенсируемую постоянную времени в контуре скорости:
При настройке на симметричный оптимум, разомкнутый контур скорости должен имеет передаточную функцию:
Следовательно, передаточная функция регулятора скорости определится из условия:
Следовательно, передаточная функция регулятора скорости при настройке контура скорости на симметричный оптимум:
где - коэффициент передачи пропорциональной части регулятора скорости при настройке контура скорости на симметричный оптимум, - постоянная времени интегральной части регулятора скорости при настройке контура скорости на симметричный оптимум
При настройке на симметричный оптимум для уменьшения перерегулирования на вход системы необходимо установить фильтр с передаточной функцией:
Частота пропускания системы подчиненного регулирования скорости электропривода при настройке его на симметричный оптимум и наличии фильтра на входе равна
6. Моделирование переходных процессов скорости и тока электропривода на ЭВМ с помощью пакета MATLAB
Для проверки расчетов регуляторов делаем моделирование системы электропривода в прикладном пакете программ MATLAB6.5.
Структурная схема электропривода представлена на рис. 7.
Рис. 7
Переходные процессы по скорости и току при пуске вхолостую, разгоне до минимальной скорости, с последующим разгоном до номинальной скорости, далее торможением до минимальной скорости и остановкой на рис. 8.
Рис. 8
Переходные процессы по скорости и току при пуске вхолостую с последующим реверсом и остановкой на рис. 9.
Рис. 9
Переходные процессы по скорости и току при разгоне до номинальной скорости с последующими набросом и сбросом нагрузки на рис. 10.
Рис. 10
7. Расчет параметров регуляторов тока, скорости, и выбор их элементов
Расчёт параметров регуляторов тока, скорости в системе подчиненного регулирования выполняется по расчетной схеме рис. 11 и передаточным функциям регуляторов. В расчётной схеме рис. 6.1 приняты следующие обозначения: ВА - датчик тока, (UВА=kВАI); BR - датчик скорости вращения (UBR=kBRщ); УП - управляемый преобразователь совместно с системой управления им; kВА, kBR - коэффициенты передачи датчиков тока и скорости; R'зс - сопротивление в обратной связи усилителя при реализации на нем П-регулятора скорости.
Рис. 11
Принимая величину сопротивления , и kba =1 [2], находим остальные величины:
Сопротивление по не инвертирующему входу усилителя выбирается из условия равенства нулю напряжения смещения на выходе от входных токов усилителя [2]:
По расчетным значениям выбираем типовые резисторы и конденсаторы [4]. Выбираем резистор С5-42В соответственно ряду Е96 на 4.99 кОм, 787 Ом, 69,8 кОм и 681 Ом. Выбираем конденсатор типа К73-1б емкостью 0.15 мкФ [5].
Полностью аналогично для регулятора скорости:
Принимая величину сопротивления , и kbr =1 [2], находим остальные величины:
Сопротивление по неинвертирующему входу усилителя выбирается из условия равенства нулю напряжения смещения на выходе от входных токов усилителя [2]:
По расчетным значениям выбираем типовые резисторы и конденсаторы [4]. Выбираем резистор С5-42В соответственно ряду Е96 на 4.99 кОм, 16,9 кОм, 78,7 кОм и 370 Ом. Выбираем конденсатор типа К73-1б емкостью 3,9 мкФ [5].
8. Описание датчика проводимости вентилей БТУ-3601
Поскольку в мостовой схеме выпрямления для протекания тока в проводящем состоянии должны находиться минимум два тиристора из разных групп (один из анодный и другой из катодный), достаточно контролировать проводящее состояние тиристоров какой либо группы. В преобразователе осуществляется контроль состояния тиристоров катодной группы комплекта «Н» (соответственно - анодной группы комплекта «В»). Принципиальная схема ДПВ приведена на рис. 12.
Рис. 12
В непроводящем состоянии на переходах анод - катод тиристоров существует переменное напряжение, равное фазному напряжению вторичной обмотки силового трансформатора. Параллельно тиристорам подключены RC-цепочки, выполняющие функцию защиты тиристоров от перенапряжений. Величина сопротивления RC-цепочки при указанных на схеме номиналах R и С составляет около 13 кОм на частоте сети, т.е. оказывается вполне достаточной, чтобы обеспечить входной ток оптрону. Напряжение каждой RC-цепочки через согласующие резисторы подается на диодные мосты V4, V5, V6, нагруженные на светодиоды оптронов V7, V8, V9. непроводящее состояние тиристоров соответствует засвеченному состоянию фотодиодов в оптронах, имеющих в этом случае малую величину сопротивления, достаточную для того, чтобы транзисторы V10, V11 находились в закрытом состоянии, т.е. ДПВ вырабатывает логический сигнал единичного уровня Uб.а.=1.
Если какой-либо из тиристоров находится в проводящем состоянии, падение напряжения на соответствующей RC-цепочке равно нулю, поэтому через светодиод одного из оптронов не будет проходить ток. Фотодиод этого оптрона будет иметь большую величину сопротивления, приводящую к открытию транзисторов V10 и V11. Таким образом, во время проводящего состояния какого-либо из тиристоров ДПВ формирует логический сигнал нулевого уровня Uб.в.=0.
В зависимости от номинального выпрямленного напряжения преобразователя (напряжения вторичной обмотки силового трансформатора) на сопротивлениях, согласующих силовое напряжение на тиристорах с входным токов оптронов, устанавливаются следующие перемычки: для номинального выпрямленного напряжения 115 В 3-9, 4-10, 5-11; для номинального выпрямленного напряжения 230 В 3-6, 4-7, 5-8.
Практически ДПВ имеет зону нечувствительности, проявляющуюся в виде провалов в сигнале Uб.в. в моменты перехода через нуль напряжений на RC-цепочках. Поэтому в случае, если ни один тиристор моста не проводит, в сигнале Uб.в все равно имеются короткие импульсы нулевого уровня [1].
Заключение
В процесс выполнения курсового проекта был разработан тиристорный электропривод на базе комплектного электропривода подачи БТУ-3601. Были рассчитаны и выбраны по справочной литературе силовые элементы привода. Осуществлен синтез регуляторов на основе метода подчиненного регулирования и выполнено проверочное моделирование. Проверка показала, что система отвечает заданным требованиям по диапазону регулирования и относительной погрешности регулирования на малой скорости. В заключении был описан процесс работы датчика проводимости вентилей.
Литература
1) Чернов Е.А., Кузьмин В, П., Синичкин С Г. Электроприводы подач станков с ЧПУ: Справочное пособие. - Горький: Волго-Вятское книжн. изд-во, 1986. - 234 с.
2) Симаков Г.М., Гринкевич Д.Я. Системы управления электроприводами: метод пособие. - Новосибирск: Изд-во НГТУ, 2001. - 78 с
3) Справочник по проектированию автоматизированного электропривода и систем управления технологическими процессами / Под ред. В.И. Круповича, Ю.Г. Барыбина, М.Л. Самовера. - 3-е изд., перераб. и доп. - М.: Энергоиздат, 1982 - 416 с.
4) Резисторы: Справочник / Ю.Н. Андреев. А.И, Антонян, Д.М. Иванов и др.; Под ред. И.И. Четверткова. - М.: Энергоиздат, 1981. -352 с.
5) Справочник по электрическим конденсаторам / М.Н. Дьяков, В.И. Каратанов, В.И. Присняков и др.; Под ред. И.И. Четверткова и В.Ф, Смирнова. - М.: Радио и связь, 1983. - 576 с.
Размещено на Allbest.ru
Подобные документы
Описание технологического процесса автоматизации. Выбор рода тока и типа электропривода толкателя печи. Приведение статических моментов к валу двигателя. Подбор основных элементов силовой цепи. Расчет схем пуска, торможения и переходных характеристик.
дипломная работа [2,5 M], добавлен 22.03.2018Функциональная и структурная схемы скалярного и векторного управления электроприводом. Определение статических и динамических параметров элементов силовой части и системы управления электроприводом. Определение параметров регуляторов тока и скорости.
курсовая работа [2,0 M], добавлен 06.01.2014Выбор типа электропривода, узлов его силовой части. Проверка электродвигателя, разработка принципиальной электрической схемы силовой части. Расчет параметров математической модели силовой части электропривода. Регулятор тока, задатчик интенсивности.
курсовая работа [2,1 M], добавлен 27.10.2008Выбор регуляторов системы автоматического управления электроприводом электродвигателя постоянного тока. Применение модального, симметричного оптимума, поконтурной оптимизации в процессе синтеза. Моделирование на базе программного пакета Simulink в Matlab.
курсовая работа [2,0 M], добавлен 04.04.2012Расчет системы стабилизации скорости электропривода постоянного тока. Нагрузочная диаграмма и тахограмма электропривода. Защита от перенапряжений, коммутационных перегрузок. Выбор автоматических выключателей. Анализ и синтез линеаризованных структур.
курсовая работа [162,0 K], добавлен 03.03.2010Условия работы и требования, предъявляемые к электроприводу ленточного конвейера. Расчет мощности и выбор двигателя, управляемого преобразователя. Определение структурной схемы электропривода. Синтез регуляторов системы управления электроприводом.
курсовая работа [823,2 K], добавлен 09.05.2013Технические характеристики экскаватора ЭKГ-10. Выбор элементов, изучение статических механических характеристик системы электропривода на постоянном токе. Расчет динамических процессов в электроприводе поворота. Составление принципиальной схемы.
дипломная работа [1,2 M], добавлен 19.12.2013Общетехнический расчет ленточного конвейера 2ЛУ-120. Обзор и анализ систем электропривода и ступенчатого регулирования скорости. Расчет структурной схемы электропривода и синтез регуляторов системы управления. Параметры электрической схемы двигателя.
курсовая работа [725,1 K], добавлен 07.10.2011Синтез регуляторов системы управления для электропривода постоянного тока. Модели двигателя и преобразователя. Расчет и настройка системы классического токового векторного управления с использованием регуляторов скорости и тока для асинхронного двигателя.
курсовая работа [3,3 M], добавлен 21.01.2014Выбор электродвигателя и элементов системы управления автоматизированного привода, обеспечивающего при заданной нагрузочной диаграмме искомый диапазон регулирования скорости вращения. Составление принципиальной схемы и расчет статических характеристик.
курсовая работа [521,6 K], добавлен 24.05.2009