Обзор развития, современное состояние и значение метрологии

Вероятностный подход к описанию погрешности. Основы теории мостовых схем. Метрологические характеристики средств измерений. Классификация измерительных мостов. Электромеханические приборы и преобразователи. Электронные аналоговые измерительные приборы.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 10.09.2012
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Отдельным классом регистрирующих приборов прямого преобразования следует считать измерительные приборы, предназначенные для измерения и регистрации неэлектрических величин - температуры, давления и др.

На рис. 12.3 показана схема самопишущего манометра с многовитковой трубчатой пружиной. Благодаря большому числу витков перемещение свободного конца многовитковой трубчатой пружины и развиваемые ею усилия достигают значений, позволяющих осуществлять показания и запись измеряемого давления или разрежения. Измеряемое давление через штуцер 1 по капилляру 8 подается во внутреннюю полость многовитковой трубчатой пружины 7. Один конец пружины прикреплен к кронштейну 6, а другой -- соединен с осью 9. Под действием давления пружина раскручивается, что сопровождается вращением оси 9 и находящегося на ней рычага 10, вращение которого через тягу 13 передается рычагу 4, находящемуся на одной оси 5 со стрелкой 3. На конце стрелки укреплено перо 14, перемещающееся по дисковой диаграмме 2, вращение которой осуществляется электродвигателем или часовым механизмом. Для регулировки размаха стрелки предусмотрен ползун 11 с винтом 12.

Класс точности показывающих и самопишущих приборов с многовитковой трубчатой пружиной 1,0; 1,5.

Тема 13 Измерительные информационные системы

Измерительная информационная система (ИИС) в соответствии с ГОСТ 8.437-81 представляет собой совокупность функционально объединенных измерительных, вычислительных и других вспомогательных технических средств для получения измерительной информации, ее преобразования, обработки с целью представления потребителю (в том числе для АСУ) в требуемом виде, либо автоматического осуществления логических функций контроля, диагностики, идентификации.

В зависимости от выполняемых функций ИИС реализуются в виде измерительных систем (ИС), систем автоматического контроля (САК), технической диагностики (СТД), распознавания (идентификации) образов (СРО). В СТД, САК и СРО измерительная система входит как подсистема.

По характеру взаимодействия системы с объектом исследования и обмена информацией между ними ИИС могут быть разделены на активные и пассивные. Пассивные системы только воспринимают информацию от объекта, а активные, действуя на объект через устройство внешних воздействий, позволяют автоматически и наиболее полно за короткое время изучить его поведение. Такие структуры широко применяются при автоматизации научных исследований различных объектов.

В зависимости от характера обмена информацией между объектами и активными ИИС различают ИС без обратной связи и с обратной связью по воздействию. Воздействие на объект может осуществляться по заранее установленной жесткой программе либо по программе, учитывающей реакцию объекта. В первом случае реакция объекта не влияет на характер воздействия, а следовательно, и на ход эксперимента. Его результаты могут быть выданы оператору после окончания. Во втором случае результаты реакции отражаются на характере воздействия, поэтому обработка ведется в реальном времени. Такие системы должны иметь развитую вычислительную сеть. Кроме того, необходимо оперативное представление информации оператору в форме, удобной для восприятия, с тем чтобы он мог вмешиваться в ход процесса.

Эффективность научных исследований, испытательных, поверочных работ, организации управления технологическими процессами с применением ИИС в значительной мере определяется методами обработки измерительной информации.

Операции обработки измерительной информации выполняются в устройствах, в качестве которых используются специализированные либо универсальные ЭВМ. В некоторых случаях функции обработки результатов измерения могут осуществляться непосредственно в измерительном тракте, т. е. измерительными устройствами в реальном масштабе времени.

В системах, которые содержат вычислительные устройства, обработка информации может производиться как в реальном масштабе времени, так и с предварительным накоплением информации в памяти ЭВМ, т. е. со сдвигом по времени.

При исследовании сложных объектов или выполнении многофакторных экспериментов применяются измерительные системы, сочетающие высокое быстродействие с точностью. Такие ИИС характеризуются большими потоками информации на их выходе.

Значительно повысить эффективность ИИС при недостаточной априорной информации об объекте исследования можно за счет сокращения избыточности информации, т. е. сокращения интенсивности потоков измерительной информации. Исключение избыточной информации, несущественной с точки зрения ее потребителя, позволяет уменьшить емкость устройств памяти, загрузку устройств обработки данных, а следовательно, и время обработки информации, снижает требования к пропускной способности каналов связи.

При проектировании и создании ИИС большое внимание уделяется проблеме повышения достоверности выходной информации и снижения вероятностей возникновения (или даже исключения) нежелательных ситуаций. Этого можно достичь, если на ИИС возложить функции самоконтроля, в результате чего ИИС способна осуществлять тестовые проверки работоспособности средств системы и тем самым сохранять метрологические характеристики тракта прохождения входных сигналов, проверять достоверность результатов обработки информации, получаемой посредством измерительных преобразований, и ее представления.

Все более широкое развитие получают системы, предусматривающие автоматическую коррекцию своих характеристик - самонастраивающиеся (адаптивные) системы. Введение в такие системы свойств автоматического использования результатов самоконтроля - активного изучения состояния ИИС - и приспособляемости к изменению характеристик измеряемых сигналов или к изменению условий эксплуатации делает возможным обеспечение заданных параметров системы.

3. Рассмотренные выше измерительные информационные системы показывают, что почти для каждого типа ИИС используется цепочка из аппаратных модулей (измерительных, управляющих, интерфейсных, обрабатывающих).

Таким образом, обобщенная структурная схема ИИС (рис.13.1) содержит

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рисунок 13.1 - Обобщенная структурная схема ИИС

1) устройство измерения, включающее в себя первичные и вторичные измерительные преобразователи и собственно измерительное устройство, выполняющее операции сравнения с мерой, квантование, кодирование; в это же устройство может входить и коммутатор;

2) устройство обработки измерительной информации, выполняющее обработку измерительной информации по определенному алгоритму (сокращение избыточности, математические операции, модуляция и т.п.);

3) устройство хранения информации;

4) устройство представления информации в виде регистраторов и индикаторов;

5) устройство управления, служащее для организации взаимодействия всех узлов ИИС;

6) устройство воздействия на объект, включающее в себя генераторы стимулирующих воздействий

Информация от ИИС может выдаваться оператору или поступать в ЭВМ. Оператор и ЭВМ могут воздействовать на устройство управления ИИС, меняя соответственно программу ее работы. В ряде ИИС некоторые устройства и связи могут отсутствовать или видоизменяться. Так, могут отсутствовать устройства воздействия на объект, хранения и обработки информации. При наличии в составе ИИС ЭВМ информация к ЭВМ может поступать непосредственно от устройств обработки или (и) хранения.

Для каждой конкретной системы количество блоков, состав функций и связи между блоками устанавливаются условиями проектирования.

ИВК представляет собой совокупность программно-управляемых измерительных, вычислительных и вспомогательных технических средств, функционирующих на основе единого метрологического обеспечения и реализующих алгоритм получения, обработки и использования измерительной информации.

Комплексы при этом обеспечивают: первичную обработку результатов измерения; получение результатов косвенных, совокупных и совместных измерений, в том числе в темпе поступления данных; управление функционированием отдельных узлов в ходе эксперимента, включая организацию запросов, очередей, установление приоритетов, диалоговый режим с оператором; контроль работоспособности трактов комплексов, включая контроль метрологических характеристик; сервисную обработку получаемой информации (представление результатов в виде таблиц, графиков и т. п.); хранение получаемой информации; выработку управляющих воздействий на исследуемый объект в виде аналоговых и дискретных сигналов.

В ИВК измерительные и вычислительные средства взаимодействуют на основе единого алгоритма, обеспечивающего получение, обработку и использование измерительной информации. ИВК строятся на основе технических средств, имеющих блочно-модульный принцип исполнения, что обеспечивает возможность создания ИВК с перестраиваемой структурой. Такие ИВК предназначены для автоматизированных систем управления технологическими процессами (АСУ ТП), а также для управления такими сложными объектами, как космические корабли, морские суда и другие транспортные средства.

В зависимости от назначения различают следующие типы ИВК:

универсальные, предназначенные для создания АСНИ, а также для испытаний различных изделий и материалов; их характерной особенностью является наличие перестраиваемой структуры, а также развитого программно-алгоритмического обеспечения;

проблемно-ориентированные, предназначенные для ограниченного набора однотипных задач АСНИ или АСУ ТП;

уникальные, предназначенные для единичных (специфических) задач исследования или испытаний.

Программное управление ИВК осуществляется программируемым процессором, который обеспечивает реализацию алгоритма функционирования системы в соответствии с требуемой обработкой измерительной информации.

Работоспособность ИВК определяют техническое, математическое и метрологическое обеспечение. В состав технического обеспечения входят измерительные, вычислительные и вспомогательные устройства.

К измерительным средствам относят: цифровые и аналоговые измерительные приборы; нормирующие, линейные, функциональные измерительные преобразователи; коммутаторы измерительных цепей, калибраторы, измерительные источники питания и др.

В качестве вычислительных средств в ИВК могут быть использованы аналоговые, гибридные и цифровые вычислительные устройства микроЭВМ.

Основным содержанием математического обеспечения ИВК являются алгоритмы и программы. Алгоритмы предусматривают выполнение процедур, связанных с измерением физических величин, обработкой результатов измерения, выполнением плана эксперимента и т. п. Программы обеспечивают функционирование ИВК, поэтому содержат инструкции по самоорганизации комплекса и самоконтролю его узлов, подпрограммы для выполнения алгоритмов типовых процедур и решений типовых задач.

Метрологическое обеспечение предусматривает законодательно закрепленные процедуры нахождения оценок метрологических характеристик отдельных узлов, их самопроверки на основе соответствующих алгоритмов и программ.

Информационно-измерительные системы содержат ряд подсистем: измерительную, сбора, преобразования, предварительной обработки данных и подсистемы управления в целом. Все подсистемы в ИИС соединены между собой в единую систему. ИИС, как правило, проектируют на основе агрегатно-модульного принципа, по которому устройства, образующие систему, выполняются в виде отдельных, самостоятельных изделий (приборов, блоков). В составе ИИС эти устройства выполняют определенные операции и взаимодействуют друг с другом, передавая информационные и управляющие сигналы через систему сопряжения.

Для унифицированных систем сопряжения между устройствами, участвующими в обмене информации, стал общепринятым термин интерфейс. Под интерфейсом (или сопряжением) понимают совокупность схемотехнических средств, обеспечивающих непосредственное взаимодействие составных элементов ИИС. Устройства подсоединяются к системе сопряжения и объединяются в ИИС по определенным правилам, относящимся к физической реализации сопряжения. Конструктивное исполнение этих устройств, характеристики вырабатываемых и принимаемых блоками сигналов и последовательности выдаваемых сигналов во времени позволяют упорядочить обмен информацией между отдельными функциональными блоками.

Под интерфейсной системой понимают совокупность логических устройств, объединенных унифицированным набором связей и предназначенных для обеспечения информационной, электрической и конструктивной совместимости. Интерфейсная система также реализует алгоритмы взаимодействия функциональных модулей в соответствии с установленными нормами и правилами.

Возможны два подхода к организации взаимодействия элементов системы и построению материальных связей между ними:

жесткая унификация и стандартизация входных и выходных параметров элементов системы;

использование функциональных блоков с адаптивными характеристиками по входам-выходам.

На практике часто сочетают оба подхода.

Применение развитых стандартных интерфейсов при организации ИИС позволяет обеспечить быструю компоновку системы и разработку программ управления.

Интерфейс может быть общим для устройств разных типов, наиболее распространенные интерфейсы определены международными, государственными и отраслевыми стандартами. Стандарт (ГОСТ 26016--81) включает четыре признака классификации:

способ соединения комплектов системы (магистральный, радиальный, цепочечный, комбинированный);

способ передачи информации (параллельный, последовательный, параллельно-последовательный);

принцип обмена информацией (асинхронный, синхронный);

режим передачи информации (двусторонняя одновременная передача, двусторонняя поочередная передача, односторонняя передача).

Соединение отдельных приборов и блоков между собой осуществляется линиями связи или линиями интерфейса. Линии интерфейса могут объединяться в группы для выполнения одной из операций в программно-управляемом процессе передачи данных. Эти группы линий называются шинами интерфейса. Назначение отдельных линий и шин, их номенклатура и взаимное расположение в системе (топологии) являются базовыми при рассмотрении функционирования любого интерфейса.

В цепочечной структуре (рис.13.2, а) каждая пара источник-приемник соединена попарно линиями от выходов предыдущих функциональных блоков ко входам последующих, обмен данными происходит непосредственно между блоками или приборами. Функции управления распределены между этими устройствами. Цепочечную структуру интерфейсов используют, как правило, в несложных системах с несколькими функциональными устройствами.

В системе, выполненной по радиальной структуре (рис.13.2, б), имеется центральное устройство - контроллер, с которым каждая пара источник-приемник связана с помощью индивидуальной группы шин. Блоки и приборы, подключаемые к контроллеру, могут изменять свои места при соответствующем изменении программы работы контроллера. Под управлением контроллера происходит обмен данными между каждым устройством и контроллером. Связи между управляющим устройством и одним из устройств-источников или приемников сигналов могут осуществляться как по инициативе контроллера, так и по инициативе устройств-абонентов. В последнем случае одно из устройств вырабатывает сигнал запроса на обслуживание, а контроллер идентифицирует запрашиваемое устройство. Когда контроллер готов к обмену данными, логически подключаются цепи связи и начинается процесс обмена. Эти цепи остаются подключенными, пока не будет передана нужная порция информации.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рисунок 13.2

Контроллер может производить обмен данными только с одним из устройств. В случае одновременного поступления запросов от двух и более абонентов по системе приоритетов будет установлена связь с устройством, имеющим наивысший приоритет. Приоритет присваивается приборам и блокам в зависимости от их типа, технических характеристик и важности поступающей информации. В интерфейсах с радиальной структурой чаще всего приоритет зависит от места подключения кабеля, соединяющего абонента с контроллером.

Радиальное соединение функциональных блоков позволяет достаточно просто и быстро осуществлять адресацию и идентификацию требуемого функционального блока.

К недостаткам радиальной структуры можно отнести большую длину соединительных линий, а также сложность контроллера, что приводит к увеличению стоимости ИС.

В системах с магистральной структурой (рис.13.2, в) вместо группы индивидуальных шин имеются коллективные шины, к которым подсоединяются все источники и приемники информации и контроллер.

К основным характеристикам интерфейса относятся следующие: функциональное назначение; структура или тип организации связей; принцип обмена информацией; способ обмена данными; режим обмена данными; номенклатура шин и сигналов; количество линий; количество линий для передачи данных; количество адресов; количество команд; быстродействие; длина линий связи; число подключаемых устройств; тип линии связи.

По принципу обмена информацией интерфейсы подразделяют на параллельные, последовательные и параллельно-последовательные.

При параллельной передаче цифровых данных численное значение величины, содержащее k-битов, транслируют по k-информационным линиям. Это сообщение одновременно может быть введено в интерфейс, а также воспринято приемником. Интерфейсные устройства параллельного ввода-вывода информации позволяют согласовать во времени процесс обмена данными между ЭВМ и периферийным устройством.

Для связи датчиков информации, исполнительных элементов, территориально удаленных от процессора на десятки и сотни метров, в ИИС применяют интерфейсы периферийных устройств. В таких интерфейсах используются как параллельный, так и последовательный способы обмена информацией. При этом последний по причине существенного упрощения собственно линии связи, а следовательно, и снижения стоимости, наиболее предпочтителен, если при этом обеспечивается необходимая скорость передачи информации.

В последнее время в связи с развитием микро- и мультипроцессорных ИИС, отдельные микропроцессоры или устройства ввода-вывода которых могут отстоять друг от друга территориально на сотни метров (например, заводская или цеховая ИИС), все более широко применяются системные интерфейсы или интерфейсы локальных сетей. Системный интерфейс, как правило, имеет многоуровневую архитектуру (совокупность) аппаратных и программных средств. Широкое распространение получил цифровой протокол HART. Этот открытый стандартный гибридный протокол двунаправленной связи предусматривает передачу цифровой информации поверх стандартного аналогового сигнала 4...20 мА.

Бурно развивается системная интеграция первичных преобразователей с использованием различных разновидностей промышленных сетей Foundation Fieldbus, ModBus, Profibus и др. При этом используется полностью цифровой коммуникационный протокол для передачи информации в обоих направлениях между датчиками и системами управления, существенно облегчая взаимозаменяемость приборов разных мировых производителей.

В отечественных и зарубежных микропроцессорных измерительно-управляющих вычислительных системах распространены асинхронные мультиплексные интерфейсы с параллельным способом передачи информации 8-разрядные интерфейсы Microbus, 16-разрядные интерфейсы общая шина (Unibus, Microbus). В последние годы при реализации информационно-измерительных сетей преобладают цифровые интерфейсы последовательной передачи данных RS-232С и RS-485, а также интерфейс параллельной передачи IEEE-488. До сих пор используются выходящие из применения ДДПК (двоично-десятичный параллельный код) и ИРПС (интерфейс радиальный последовательный), разработанные в 1980-е годы.

Размещено на Allbest.ru


Подобные документы

  • Понятия и определения метрологии. Классификация видов, методов и средств измерений. Электромеханические, аналоговые электронные, цифровые измерительные приборы. Фазовая структура металлов и сплавов. Определение содержания ферритной фазы магнитным методом.

    курсовая работа [1,7 M], добавлен 29.10.2014

  • Общая характеристика объектов измерений в метрологии. Понятие видов и методов измерений. Классификация и характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений. Основы теории и методики измерений.

    реферат [49,4 K], добавлен 14.02.2011

  • Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.

    контрольная работа [28,8 K], добавлен 23.11.2010

  • Предпосылки для развития отрасли, выпускающей контрольно-измерительные приборы. Изобретения известных учёных в области измерительных приборов. Вольтметры и осциллографы, их назначение и области применения, классификация, принцип действия, конструкции.

    практическая работа [229,6 K], добавлен 05.10.2009

  • Физические основы преобразователей и метрологические термины. Характеристика измерительных преобразователей электрических величин, их классификация, принцип действия, электрические схемы, режим работы, метрологические характеристики и области применения.

    контрольная работа [776,1 K], добавлен 23.11.2010

  • Классификация контрольно-измерительных приборов. Основные понятия техники измерений. Основные виды автоматической сигнализации. Требование к приборам контроля и регулирования, их обслуживание. Приборы контроля температуры, частоты вращения, давления.

    презентация [238,0 K], добавлен 24.10.2014

  • Понятие об измерениях и их единицах. Выбор измерительных средств. Оценка метрологических показателей измерительных средств и методы измерений. Плоскопараллельные концевые меры длины, калибры, инструменты для измерения. Рычажно-механические приборы.

    учебное пособие [2,5 M], добавлен 11.12.2011

  • Вопросы теории измерений, средства обеспечения их единства и способов достижения необходимой точности как предмет изучения метрологии. Исследование изменений событий и их частоты. Цифровые измерительные приборы. Методы, средства и объекты измерений.

    курсовая работа [607,8 K], добавлен 30.06.2015

  • Основные термины и определения в области метрологии. Классификация измерений: прямое, косвенное, совокупное и др. Классификация средств и методов измерений. Погрешности средств измерений. Примеры обозначения класса точности. Виды измерительных приборов.

    презентация [189,5 K], добавлен 18.03.2019

  • Основные понятия и характеристики величин: угол, градус, минута, секунда, угловая минута, их применение для решения логистических задач в астрономии, физике, картографии, метрологии, в технической литературе. Приборы и способы измерения угловых размеров.

    контрольная работа [331,5 K], добавлен 30.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.