Разработка технологии сварки корпуса водила II ступени

Характеристика водила II ступени, его назначение и принцип работы, структура и основные компоненты. Анализ вариантов и выбор способа изготовления с учетом особенностей свариваемости титанового сплава ПТ-3В. Выбор сварочного оборудования его описание.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 14.03.2010
Размер файла 727,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

51

Введение

Целью данного проекта является разработка технологии сварки корпуса водила II ступени. Конструкция является ответственной, поэтому при ее изготовлении применяются только материалы высокого качества. Необходимо выбрать такой способ сварки и сварочные материалы, которые бы обеспечили требуемые свойства сварного соединения.

1. Характеристика изделия

Водило II ступени состоит из пяти стоек, пяти верхних и пяти нижних лепестков, выполненных из титанового сплава ПТ-3В и сваренных между собой электронно-лучевой сваркой на установке ЭЛУ-21.

Применяется для компенсации энергетических установок в атомных подводных лодках и в авиации для передачи момента от быстроходной ступени на центральную шестерню тихоходной ступени.

2. Анализ вариантов и выбор способа изготовления с учетом особенностей свариваемости данного материала

2.1 Характеристика титанового сплава ПТ-3В

Широкое применении титановых сплавов для сварных конструкций обусловлено важными их преимуществами перед сталями и сплавами на основе алюминия - низкой теплопроводностью и узким интервалом кристаллизации. Указанные преимущества существенно снижают энергетические затраты и способствуют получению однородного по химическому составу металла при сварке. Перспективным для применения считается сплав ПТ-3В.

Сплав ПТ-3В относится к псевдо-?-сплавам, которые содержат ?-стабилизаторы (алюминий и кислород) и небольшое количество ?-стабилизирующего элемента, в частности, ванадия. Благодаря наличию ?-фазы сплавы обладают хорошей технологической пластичностью при сохранении достоинств ?-сплавов.

Сплавы этого класса имеют ряд технологических преимуществ: они не чувствительны к скорости охлаждения после сварки, не требуют обязательной термической обработки, имеют малый прирост твердости сварного шва, а значит не склонны к охрупчиванию шва и околошовной зоны.

Сплав ПТ-3В - сплав высокой прочности при температуре 20-250С, обладает высоким сопротивлением разрушению при повышенных (350-5000С) и криогенных температурах.

Сплав хорошо штампуется, гнется, обрабатывается резанием, имеет хорошую свариваемость. Содержание алюминия и кислорода (до 0,15%) повышает прочностные свойства сплавов.

Таблица 1. Химический состав титанового сплава ПТ-3В (ГОСТ 19807-74) ([1], с. 34)

Al

V

C

Fe

Si

Zr

O

N

H

3,5-5

1,2-2,5

0,1

-

-

-

0,15

0,04

0,008

Таблица 2. Механические свойства сплава ПТ-3В ([1], с. 34)

?В, МПа

?0,2, МПа

?, %

?, %

?-1, МПа

KCU, Дж/м3

700-726

609-667

11

18-27,5

282

0,6-0,7

Таблица 3. Физические свойства сплава ПТ-3В([1], с. 34)

Свойства

Плотность ?, кг/м3

Температура плавления, 0С

Кипения, 0С

Удельное электрическое сопротивление ?, Ом·м·104

Коэффициент линейного расширения ?, 1/0С·106

Коэффициент теплопроводности ?, Вт/м·0С

Удельная теплоемкость С?, кал/г·0С

Модуль упругости Е, МПа

4500

1668

3400

55,6

8,2

16

0,13

1125

По сравнению с техническим титаном титановые сплавы имеют при достаточно хорошей пластичности, высокой коррозионной стойкости и малой плотности более высокую прочность при 20-25 0С и повышенных температурах. По сравнению с бериллием они более пластичны и технологичны, меньше стоят, безопасны для здоровья при обработке. По сравнению с алюминиевыми и магниевыми сплавами обладают более высокой удельной прочностью, жаропрочностью и коррозионной стойкостью.

Высокая температура плавления титана требует применения при сварке более концентрированных источников тепла. Однако поскольку титан имеет более низкий коэффициент теплопроводности (ниже, чем у стали в 4 раза) и высокое электрическое сопротивление (выше, чем у стали в 5 раз), для сварки титана тратится меньше электрической энергии, чем для сварки стали.

Низкий модуль упругости (ниже, чем у стали в 2 раза) позволяет выполнять правку сварных изделий при меньших усилиях по сравнению со сталью.

Обязательным условием получения качественного сварного соединения является надежная защита нагреваемого до высоких температур металла от газов атмосферы. Насыщение металла шва кислородом, азотом и водородом происходит при температурах более 3500С, что снижает пластичность металла шва и вызывает образование пор и трещин, как следствие этого происходит снижение прочности сварных конструкций. Поэтому сварку титана необходимо производить в среде защитных газов (аргона или гелия) высокой чистоты, под специальными флюсами или в вакууме. Защитные средства должны обеспечить защиту зоны сварки, ограниченной изотермой более 6000С.

Необходимо также тщательно защищать и обратную сторону шва даже в том случае, если слои металла не расплавлялись, а только нагревались выше этой температуры.

Чувствительность к сварочному термическому циклу выражается в протекании полиморфного превращения ? - ?, в резком росте размеров зерна ?-фазы и перегрева на стадии нагрева, в образовании хрупких фаз при охлаждении и старении, неоднородности свойств сварных соединений, зависящих от химического и фазового состава сплава. Перегрев шва и ОШЗ связан с низкой теплопроводностью титана. Устранить указанные трудности удается за счет снижения погонной энергии для псевдо-?-сплавов.

Низколегированные титановые сплавы с псевдо-?-структурой удовлетворительно свариваются различными способами сварки плавлением, что выражается в стабильном формировании шва, отсутствии трещин и хороших механических свойств сварных соединений.

Для обеспечения высокого уровня пластичности швов и получения швов равнопрочных основному металлу используют присадочные проволоки, отличающиеся от основного металла по химическому составу и имеющие по сравнению с ним пониженное содержание легирующих элементов и вредных газов. При сварке низколегированных титановых сплавов для металла шва характерна игольчатая, мартенситоподобная структура ?-фазы. Аналогичную структуру имеет и ЗТВ. Поэтому несмотря на пониженное содержание легирующих элементов в металле шва, его прочность будет близка к прочности основного металла со структурой ?-титана.

С целью снятия собственных остаточных напряжений конструкции подвергают отжигу, который приводит к уменьшению остаточных сварочных напряжений и, как следствие, к увеличению сопротивляемости образованию трещин. Нагрев сварных конструкций производится в электрических печах.

При возникновении альфированного слоя (слоя, насыщенного кислородом и азотом) его необходимо убирать механическими способами.

2.2 Выбор способа сварки

Титановый сплав ПТ-3В в расплавленном и твердом состоянии при температурах выше 6000С в условиях сварочного цикла обладает высокой химической активностью по отношению к вредным примесям: кислороду, азоту, водороду и углероду, что значительно затрудняет его сварку.

Высокая химическая активность в сочетании с низкой теплопроводностью и высоким электросопротивлением и температурой плавления, а также склонность к росту зерна в околошовной зоне определяют особенности сварки титана и его сплавов. Вследствие высокой химической активности нельзя применять для сварки титана и его сплавов дуговую сварку с использованием флюсов и покрытий, содержащих окислы и другие элементы, загрязняющие шов, кислородно-ацетиленовую сварку, аргонодуговую сварку с односторонней защитой сварного соединения.

Непременным условием для получения качественного соединения при сварке плавлением титана является полная двусторонняя защита сварного соединения от взаимодействия с воздухом и вредными примесями не только сварочной ванны, но и нагретого выше 6000С основного металла и металла шва. Необходимо также тщательно защищать и обратную сторону шва, если она нагревается выше 6000С.

Для обеспечения наилучшей защиты металла шва от внешней среды и обеспечения глубокого проплавления и мелкозернистой структуры применяют электронно-лучевую сварку (ЭЛС). Это обусловлено также высокой температурой плавления титанового сплава, что требует применения при сварке плавлением концентрированных источников тепла. Высокая тепловая концентрация энергии позволяет вести сварку с малой энергоемкостью процесса.

ЭЛС позволяет получать сварные соединения с высоким качеством сварного шва, практически без неустранимых дефектов, обеспечивая полную механизацию сварочного процесса и повышение производительности труда в 15-20 раз по сравнению с ручными дуговыми способами сварки.

Высокое качество сварных соединений из титанового сплава ПТ-3В обеспечивает только ЭЛС. Этот эффективный способ соединения металлов основан на использовании кинетической энергии электронов, движущихся с большой скоростью в вакууме. Являясь разновидностью наиболее распространенного способа сварки плавлением, электронно-лучевая сварка вместе с тем имеет качественные отличия от всех ранее известных методов сварки. Эти отличия обусловлены двумя главными факторами: применением нового мощного концентрированного источника тепла и практически полным отсутствием газов, окружающих зону сварки. Большая концентрация энергии в малом пятне делает возможной сварку с необычным для электронно-дуговых методов соотношением глубины к ширине проплавления (до 20:1 и более), а также при малых значениях погонной энергии (не более 20% от дуговой сварки). ЭЛС выполняется, как правило, в вакуумных камерах при давлении остаточных газов порядка 1·10-3 Па. Такая среда намного чище, чем в аргоне. При сварке в вакууме исключается загрязнение шва газами и обеспечивается максимальная пластичность и вязкость сварных соединений.

Технологический диапазон для целей нагрева, плавления, испарения составляет 104-5·108 Вт/см2. Сварка металлов малых толщин (до 3-х мм) ведется с удельной мощностью 104 Вт/см2, когда испарение с поверхности сварочной ванны незначительно. Однопроходная сварка металлов больших толщин (до 200-300 мм) требует удельной мощности 105-106 Вт/см2. В этом случае проникновение электронного луча на большую глубину сопровождается испарением металла и формированием канала проплавления, на стенках которого рассеивается практически вся мощность электронного луча. Канал проплавления, поверхность которого сильно перегрета, относительно температуры плавления металла и может достигать температуры кипения, движется через толщу металла, образуя по всей глубине канала область расплава металла, которая перемещается в хвостовую часть ванны и там кристаллизуется.

Высокая концентрация энергии в луче позволяет получать при больших скоростях ЭЛС узкие и глубокие сварные швы с минимальной зоной термического влияния и высокими механическими свойствами металла шва и околошовной зоны.

Эффективный КПД ?и изменяется в пределах от 70 до 90% и практически не зависит от энергии первичных электронов; он зависит только от атомного номера обрабатываемого материала; для Ti, например, он равен 0,842.

Как правило, при ЭЛС не нужны присадочные материалы, разделки кромок, а следовательно уменьшается перевод металла в стружку и затраты на механическую обработку. Повышаются качество и механические свойства металла шва за счет дегазации в вакууме и мелкозернистой структуры в металле шва и зоне термического влияния, которая примерно в несколько раз уже, чем при дуговых способах сварки.

Высокая концентрация энергии в луче обеспечивает получение швов не только с минимальной зоной расплавления металла, но и соединений, металл которых в околошовной зоне не претерпевает значительных изменений вследствие ввода минимального количества тепла и значительных скоростей охлаждения. Отсутствие значительной протяженности зоны термического влияния исключает недостатки, возникающие при эксплуатации конструкций, вызванные изменением физико-механических свойств металла в околошовной зоне.

При сварке электронным лучом проплавление имеет форму конуса (рис. 1.). Плавление металла происходит на передней стенке кратера, а расплавляемый металл перемещается по боковым стенкам к задней стенке, где он и кристаллизуется.

Рис. 1. Схема переноса жидкого металла при электронно-лучевой сварке: 1-электронный луч; 2 - передняя стенка кратера; 3 - зона кристаллизации; 4 - путь движения жидкого металла

Глубокое проплавление металла при малой погонной энергии, имеющее место при сварке электронным лучом, обуславливает значительно большую скорость отвода тепла от зоны сварки, что обеспечивает увеличение скорости кристаллизации малой по объему сварочной ванны с получением мелкозернистого строения металла шва, по своим свойствам мало отличающегося от основного металла. Ввод значительно меньшего количества тепла, имеющего место при ЭЛС, дает возможность во много раз уменьшить деформации изделий по сравнению с дуговым способом сварки.

Электронный луч является легко управляемым источником тепла при сварке, что позволяет в широких пределах и очень точно регулировать температуру нагрева изделия, легко перемещать зону нагрева по изделию и переносить энергию на значительные расстояния.

Установлено, что при использовании вакуума в качестве защитной среды при сварке имеется принципиальная возможность уменьшить содержание газов в некоторых металлах за счет процессов дислокации окислов, нитридов и гибридов. Наиболее легко из металлов удаляется водород, даже в том случае, если он находится в связанном состоянии. Большинство соединений металла с водородом уже при относительно низких температурах нагрева разлагается. Таким образом, в условиях сварки в вакууме большая часть водорода, содержащегося в металле, может быть удалена из металла.

Резко уменьшаются сварочные деформации и напряжения первого рода, что зачастую позволяет изготавливать изделия без правки и дополнительной механической обработки. Появляется возможность местной термической обработки, в том числе и сварных соединений, одновременно со сваркой.

В последнее время в связи с созданием мощных установок для электронно-лучевой сварки расширяется применение сварки электронным лучом для соединения элементов из титановых сплавов толщиной до 300 мм. Сварка толстостенных конструкций электронным лучом является наиболее экономичной по сравнению с любым видом сварки. Скорость сварки электронным лучом для толщин более 100 мм составляет 2, 5-5, 0 м/ч, что превосходит скорость сварки при электрошлаковом процессе более, чем в 5 раз и в 10-15 раз при автоматической многослойной сварке под флюсом. Особенно эффективно применение электронного луча для сварки толстостенных конструкций из титановых сплавов из-за низкой теплопроводности титана, благодаря чему удается получать узкие швы при больших толщинах свариваемых деталей, кроме того, очень благоприятно для титана отсутствие вредных газов при сварке в вакууме.

Исследования ученых показали, что при электронно-лучевой сварке титанового сплава ПТ-3В толщиной до 200 мм структура шва мелкозернистая, зона термического влияния узкая (1-2,5 мм), а статические характеристики при растяжении сварного соединения не ниже соответствующих характеристик основного материала. Соединения, полученные сваркой высококонцентрированными источниками энергии, разрушаются по основному металлу. В псевдо-?-сплавах остаточные напряжения наиболее высоки. Научные исследования также показали, что при ЭЛС образуются соединения с более высоким пределом выносливости, чем при аргонодуговой сварке. При немногочисленных усталостных испытаниях сварных соединений, выполненных электронно-лучевой сваркой, разрушение сварных соединений по основному металлу объясняются высокими напряжениями или перераспределением водорода при сварке, вызывающем охрупчивание металла в зоне разрушения.

2.3 Описание электронно-лучевой сварки. Общая характеристика

Электронный луч как технологический инструмент позволяет осуществлять нагрев, плавку и испарение практически всех материалов, сварку и размерную обработку, нанесение покрытий.

Формирование электронного луча и управление им осуществляется рядом специальных устройств, называемых 2 электронными пушками».

Источником электронов в электронных пушках обычно служит термоэмиссионный катод 1, который выполняется из вольфрама, тантала или гексаборида лантана, обладающих высокими эмиссионными характеристиками. В зависимости от материала катода его рабочая температура может достигать 2400-2800 К. Подогрев катода чаще всего осуществляется при помощи накаливаемого электрическим током элемента, причем в некоторых случаях сам этот элемент может выполнять функции катода (катод прямого накала).

На некотором расстоянии от катода находится анод 2, выполненный в виде массивной детали с отверстием по оси. Между катодом и анодом от специального высоковольтного источника питания 3 прикладывается ускоряющее напряжение (30-150 кВ), причем анод обычно соединяется с корпусом установки, а катодный узел крепится на высоковольтном изоляторе. Вследствие разности потенциалов между катодом и анодом электроны ускоряются до значительных скоростей, большая часть их походит через отверстие в аноде и затем продолжает в заанодном пространстве движение по инерции. Этот движущийся электронный поток обладает еще сравнительно невысокими удельными энергетическими показателями и для формирования из него электронного луча с необходимыми характеристиками обычно требуется дополнительная операция - фокусирование луча.

Следует отметить, что в рабочем пространстве электронной пушки необходим вакуум, так как при большом количестве молекул остаточных газов они препятствуют свободному прохождению электронов из-за их взаимных столкновений. Кроме того, условия работы подогревного катода также требуют защиты его от взаимодействия с атмосферными газами. Рабочий вакуум в электронной пушке должен быть не хуже 1·10-3 - 1·10-4 Па. При уменьшении вакуума происходит пробой между катодом и анодом электронной пушки, что может привести к выходу из строя высоковольтного выпрямителя.

Для фокусирования электронного луча в электронной пушке обычно используется система диафрагм и магнитных линз. Магнитная линза 4 представляет собой соленоид с магнитопроводом, создающий специальной формы магнитное поле, которое при взаимодействии с электроном изменяет его траекторию и искривляет ее в направлении к оси системы. При этом можно добиться «сходимости» электронов на достаточно малой площади поверхности и в фокусе электронный луч может обладать весьма высокой плотностью энергии, достигающей 5·106 Вт/мм2. Такая плотность энергии достаточна для осуществления целого ряда технологических процессов, причем в результате изменения фокусировки она может быть плавно изменена до минимальных значений.

В конструкцию электронной пушки обычно входит также «отклоняющая система» 5, служащая для перемещения электронного луча по обрабатываемой поверхности. Перемещение луча осуществляется вследствие его взаимодействия с поперечным магнитным полем, создаваемым отклоняющей системой. Обычно для этой цели электронная пушка имеет две пары отклоняющих катушек, обеспечивающих перемещение луча по двум взаимно перпендикулярным направлениям. При питании отклоняющих катушек током определенной частоты и амплитуды можно получить практически любую траекторию перемещения электронного луча по обрабатываемой поверхности, что широко используется в электронно-лучевой технологии.

Электронная пушка обычно выполняется в виде одного функционального блока, который или неподвижно крепится к вакуумной камере 6, или перемещается внутри камеры при помощи специальных механизмов.

Обрабатываемое изделие 7 помещают в вакуумную камеру, снабженную. Загрузочными крышками и иллюминаторами для наблюдения за процессами обработки. При большой протяженности зоны обработки изделие обычно перемещается или вращается в вакуумной камере при помощи специальных механизмов.

Следует отметить, что по мере увеличения удельной мощности электронного луча наряду с процессами плавления начинается интенсивное испарение металла с поверхности сварочной ванны. Так получаются швы с глубоким проплавлением, которое называется «кинжальным». Оно дает возможность за один проход без разделки кромок сварить детали толщиной до 150 мм.

Преимущества сварки электронным лучом:

1. Высокая концентрация ввода теплоты в изделие, которая выделяется не только на поверхности изделия, но и на некоторой глубине в объеме основного металла. Фокусировкой электронного луча можно получить пятно нагрева диаметром 0,0002… 5 мм, что позволяет за один проход сваривать металлы толщиной от десятых долей миллиметра до 200 мм. В результате можно получить швы, в которых соотношение глубины провара к ширине до 20:1 и более. Появляется возможность сварки тугоплавких металлов (вольфрама, тантала и др.), керамики и т.д. Уменьшение протяженности зоны термического влияния снижает вероятность рекристаллизации основного металла в этой зоне.

2. Малое количество вводимой теплоты. Как правило, для получения равной глубины проплавления при электронно-лучевой сварке требуется вводить теплоты в 4-5 раз меньше, чем при дуговой сварке. В результате резко снижается коробление детали.

3. Отсутствие насыщения расплавленного и нагретого металла газами.

В результате дегазации металла шва повышаются его пластические свойства и достигается высокое качество сварного соединения.

Недостатки электронно-лучевой сварки:

1. Возможность образования несплавлений и полостей в корне шва на металлах с большой теплопроводностью и швах с большим отношением глубины к ширине шва.

2. Для создания вакуума в рабочей камере после загрузки изделия требуется длительное время.

Из всего вышеперечисленного можно сделать выводы, что выбор ЭЛС для сварки водила II ступени из титанового сплава ПТ-3В обусловлен следующим:

1. Большими трудностями сварки титановых сплавов, которые заключаются в поглощении расплавленным или нагретым металлом газов, склонностью вследствие этого к порообразованию, склонностью к задержанному разрушению и образованию холодных трещин. Поэтому для получения качественного сварного соединения используют мощные вакуумные установки для ЭЛС с целью предупреждения насыщения металла шва и околошовной зоны газами и загрязнения их примесями, а также регулирование структурных изменений выбором необходимого термического цикла.

2. Высокая температура плавления титанового сплава и необходимость получения сварного соединения с большим проплавлением (145 мм) и малой шириной шва требует применение при сварке плавлением концентрированных источников тепла, позволяющих вести сварку на высоких скоростях и при малой энергоемкости.

3. Сварка проводится в автоматическом режиме. Человек защищен от излучения, он лишь наблюдает и ведет контроль за ходом процесса сварки. Это повышает качество и точность изделия, а также приводит к повышению экологии и уровня культуры производства.

3. Разработка пооперационной технологии

№ опер.

Наименование операции

Содержание операции и используемое оборудование

005

Заготовительная

Заготовка элементов водила: 5 стоек, 5 верхних и 5 нижних лепестков

010

Технический контроль

Контроль внешним осмотром и измерениями. Используется мерительный инструмент (линейка, угольник)

015

Слесарная (Подготовка для прихватки)

Перед началом сборочно-сварочных работ необходимо очистить детали от загрязнений и обезжирить органическим растворителем. Технология обезжиривания рекомендуется следующая: 1. зачистить околощовную зону на расстоянии 10 мм; 2. протереть детали водила бязью, смоченной в ацетоне и отжатой, места сварки и околошовную зону на расстоянии 20 мм протереть бязью, смоченной в спирте и отжатой

020

Технический контроль

Проверить качество обезжиривания

025

Сборочно-сварочная (Под ЭЛС)

Оборудование: сварочный пост ПРС-3М.

1. Установить лепестки (поз. 2) и стойки (поз. 1) на разметочную плиту толщиной 40 мм. Собрать на прихватках детали позиции 1, 2.

2. Прихватить детали позиции 1, 2 в местах стыка ручной аргонодуговой сваркой. Прихватки располагать в диаметрально - противоположных направлениях. Зазор в стыке не более 0,15 мм.

3. Выступление свариваемых кромок не допускается.

4. Установить 10 технологических планок 30х70 и 5 технологических планок 70х40. При установке обеспечить плотное прилегание между планкой и собираемыми деталями. Длина прихваток Lпр=40-50 мм.

Параметры:

Сварочная проволока ПТ-3В O2 мм;

Iсв=95 А; U=32 В;

обратная полярность тока;

положение шва - нижнее;

аргон марки А ГОСТ 10157-73;

расход аргона 15 л/мин.

030

Кантовочная

Оборудование: кран-балка

035

Сборочно-сварочная

Оборудование: сварочный пост ПРС-3М

1. На разметочной плите собрать вторую секцию из 5-ти лепестков позиции 3.

2. Ручной аргонодуговой сваркой сварить 2 секции. Прихватки располагать в диаметральнопротивоположных направлениях. Зазор в стыке не более 0,15 мм.

3. Выступание свариваемых кромок не допускается.

4. Установить 10 технологических планок 30х70 и 5 технологических планок 70х40. При установке обеспечить плотное прилегание между планкой и собираемыми деталями.

040

Технический контроль (Контроль сборки под ЭЛС)

Оборудование: набор щупов №2 ТУ2-034-225-87

Проверить зазор в стыке. Допускаемый зазор не более 0.15 мм. Выступание свариваемых кромок не допускается.

045

Сварочная

Оборудование: установка для ЭЛС ЭЛУ-21, кран-балка

1. Установить водило в приспособление с помощью кран-балки и закрепить.

2. Завести приспособление в вакуумную камеру установки, закрыть ее и создать необходимый вакуум.

3. Выполнить сварные швы электронным лучом, поочередно настраиваясь на каждый стык (шов).

4. Перед сваркой проверить технологический режим на технологическом образце.

5. Развакуумировать камеру, перекантовать водило с помощью кран-балки и повторить п. 1-3 для выполнения сварки швов с другой стороны.

Параметры: глубина проплавления - 145 мм;

Iсв=700 мА; Uуск=60 кВ; Vсв=30 см/мин;

Круговая развертка электронного луча O2 мм.

050

Технический контроль

Контроль качества швов капиллярной дефектоскопией.

055

Токарно-карусельная

Оборудование: токарно-карусельный станок мод. 1508.

1. Установить заготовку, выверить и закрепить.

2. Расточить плоскость водила, снять усиление сварного шва под УЗД, глубина 4 мм.

060

Сварочная

Оборудование: сварочный пост ПРС-3М

Подварить отдельные подрезы глубиной 2-3 мм ручной аргонодуговой сваркой.

065

Слесарная

Оборудование: газовый резак Руа-70

Удаление технологических планок

070

Технический контроль (УЗК)

Оборудование: УД2-12

Произвести 75%-ный ультразвуковой контроль наклонным пьезопреобразователем

075

Термическая

Оборудование: термическая печь Н-3005053

Произвести термообработку водила при Т=6750С для снятия сварочных напряжений

080

Технический контроль размеров

Приспособление: линейка, штангенциркуль.

Проверить геометрические размеры по чертежу на пригодность механической обработки.

4. Выбор сварочных материалов и расчет ном их расхода

Проведем выбор сварочных материалов и расчет норм их расхода для сборочно-сварочной операции, т.е. для ручной аргонодуговой сварки.

1. Защитный газ.

Титан является химически активным материалом и охотно растворяет атмосферные газы (кислород, азот, водород), находясь как в жидком, так и в твердом состоянии. В результате взаимодействия с указанными газами образуются нитриды, оксиды и гидриды. Образование этих соединений сопровождается изменением структуры и пластических свойств. Следовательно, чтобы избежать образования этих соединений и предотвратить ухудшение свойств соединения необходимо обеспечить защиту зоны сварки от атмосферного воздуха.

Углекислый газ СО2 не подходит в качестве защитного, так как он взаимодействует с титаном. Наиболее подходящими для защиты титанового сплава от атмосферного воздуха являются инертные газы (гелий, аргон), поскольку они не вступают во взаимодействие с титаном. Однако, учитывая более высокую стоимость гелия по сравнению с аргоном, в качестве защитного газа будем использовать аргон.

Аргон высшего сорта (чистота ?99,993%) по ГОСТ 10157-79.

Норма расхода защитного газа на изделие (л) определяется по формуле

,

где - удельная норма расхода газа на 1 м шва данного типоразмера, л;

- длина шва, м; ;

- дополнительный расход газа на подготовительно-заключительные операции: продувку газовых коммуникаций перед началом сварки; защиту вольфрамового электрода от окисления после окончания сварки при сварке неплавящимся электродом, настройку режимов сварки; .

Удельная норма расхода газа определяется по формуле

,

где - оптимальный расход защитного газа по ротаметру, л/мин; ([2], с. 112);

- машинное (основное) время сварки 1 м шва, мин.

Основное время при сварке неплавящимся электродом определяется по формуле

2. Электрод.

Хотя чистый вольфрам относится к группе тугоплавких металлов (Тпл=3300-36000С) и при горении дуги он не расплавляется, однако его применение в качестве электрода ограничивается возможностью его частичного разрушения (выкрашивания) и засорения металла шва частицами вольфрама. Это связано с тем, что эмиссионная способность чистого вольфрама мала и поэтому требуется сильный нагрев для стабильного горения дуги. Для улучшения эмиссии электронов с поверхности вольфрамового электрода в него добавляют окись иттрия Y2О3 или окись лантана Lа2О3, а так же некоторые другие элементы. Добавка окиси иттрия или окиси лантана приводит к понижению температуры стабильного горения дуги, а следовательно способствует повышению стойкости вольфрамового электрода.

В качестве неплавящегося электрода будем использовать вольфрамовый электрод ЭВИ-2 O2 мм ГОСТ 23949-80, он содержит 2-3% Y2О3.

Норма расхода () электрода на изделие определяется исходя из длины швов () и удельной нормы расхода электрода на 1 м шва:

Удельная норма расхода рассчитывается по формуле

,

где - расчетная масса наплавленного металла, кг/м;

- коэффициент расхода, учитывающий неизбежные потери электрода, ([2], c. 27);

- плотность наплавленного металла, , ([2], с. 22);

- площадь поперечного сечения наплавленного металла шва,

3. Присадочная проволока.

Для сварки корпуса водила II ступени в связи с ответственностью конструкции будем использовать проволоку того же состава, что и основной металл.

Проволока ПТ-3В по ТУ-1-9-922-82 диаметром 2 мм.

5. Выбор сварочного оборудования и краткая его характеристика

5.1 Описание и техническая характеристика установки ЭЛУ-21

Исходя из габаритных размеров проектируемого корпуса (длина 1660 мм, наружный диаметр 1198 мм), выбираем установку ЭЛУ-21. Установка для электронно-лучевой сварки ЭЛУ-21 предназначена для сварки плоских и объемных узлов в вакууме (остаточное давление в вакуумной камере 5-8·10-5 мм рт. ст.).

5.2 Технические данные

Рабочее размещение сварочной пушки вдоль осей X, Y, Z, мм: 5000?2000?1600

Мощность пушки, кВт: 60

Ускоряющее напряжение, кВ: 60

Рабочее давление в вакуумной камере, мм рт. ст.: 5-8·10-5

Достижение рабочего давления, мин: 25

Скорость сварки кольцевым швом при диаметре больше 100 мм, м/час: 8-60

Скорость перемещения сварочной пушки вдоль и поперек рабочей камеры по вертикали, м/час: 10-80, 5-30

Внутренний размер вакуумной камеры, мм: 7000?3200?3600

Объем вакуумной камеры, м3: 82

Площадь, занимаемая установкой, м2: 23,5?11=258,5

Масса установки, кг: 160000

5.3 Устройство установки

Установка питается от трехфазной сети с нулем, ~ 50 Гц, 380 В. Присоединение сети производится через силовую сборку цеха. Установочная мощность установки 110 кВт.

Основной составной частью установки является вакуумная камера, которая предназначена для осуществления процесса электронно-лучевой сварки изделия в вакууме. Камера состоит из трех сварочных секций, герметично соединенных между собой. Между стыками секций проложен замкнутый резиновый вакуумный шнур.

С торцов вакуумная камера герметизируется двумя крышками. На каждой секции имеются смотровые окна.

На левой стороне камеры расположены: площадка оператора, два пульта управления следующими движениями: перемещение крышек камеры, опускание и подъем перекладных направляющих; вакуумметр ВИТ-3.

Площадка оператора имеет возможность продольного и вертикального перемещения от приводов, которые закреплены на них.

С другой стороны вакуумной камеры расположено вакуумное оборудование. Вакуумная станция состоит из трех основных частей:

1. форвакуумный насос НВ3-300 с затворами Ду-260КЭ;

2. вакуумные агрегаты АВ3Д-40/800 УВН с затворами Ду90СП;

3. приборы контроля вакуума, сигнализация состояния агрегатов.

Управление вакуумной станцией может производиться в двух режимах:

1. рабочий (наладочный);

2. автоматический.

На пульте смонтированы также блокировочные вакуумметры типа ВЭМБ-1:

1. высоковольтного источника питания;

2. освещение зоны сварки и наоборот, отключает высоковольтный источник питания, и освещение зоны сварки при недопустимом понижении вакуума в вакуумной камере.

Вакуумная станция состоит из нескольких групп откачки.

Форвакуумная группа состоит из 4-х станций форвакуумных СФ-1, с помощью которых достигается остаточное давление 5-6·10-3 мм р.ст. Два вакуумных агрегата АВП-400/1600, предназначенные для уменьшения остаточного давления до 8·10-5 мм рт. ст., после чего они выключаются. Три вакуумных агрегата АВЭД-40/800 включаются в работу при остаточном давлении в вакуумной камере порядка 10-3 мм рт. ст.

Внутри вакуумной камеры установлена и закреплена станина, на которой имеются направляющие для перемещения каретки для плоских и цилиндрических изделий, а также портала. Электрическое питание к кареткам, пушкам, порталу подводится через цепи энергоподачи, которые также расположены внутри вакуумной камеры.

Крышка камеры предназначена для герметизации вакуумной камеры. Крышка перекрывается из одного крайнего положения в другое от привода крышки. Крышка выполнена из листовой нержавеющей стали с ребрами жесткости. Скорость перемещения крышки V=2 м/мин.

Портал предназначен для крепления и перемещения электронных пушек мощностью 30 и 60 кВт. Пушки перемещаются в трех координатах, а также имеют возможность вращаться в горизонтальном и вертикальном положениях. Портал состоит из 2-х опорных кареток, двух стоек с поперечной балкой, привода перемещения портала, траверсы, каретки траверсы.

Траверса предназначена для крепления и перемещения каретки траверсы. Траверса совершает вертикальное перемещение. Траверса выполнена из сварной балки коробчатой формы из нержавеющей стали.

Каретка траверсы предназначена для возвратно-поступательного перемещения вдоль траверсы пушки, механизма подачи присадочной проволоки от приводного винта, который имеется в траверсе. Каретка состоит из сварного корпуса, на котором закреплены опорные и центрирующие ролики.

Пневмопитание предназначено для подачи сжатого воздуха в один из 4-х воздухораспределителей (4 пневмоцилиндра). Воздушная панель состоит из панели, на которой закреплены вентиль, фильтр, редуктор давления, отстойник и коллектор на 4 воздухораспределителя.

Привод каретки предназначен для перемещения кареток для плоских или цилиндрических изделий в зону сварки или на позиции загрузки-выгрузки.

Каретка цилиндрических изделий предназначена для сварки тел вращения в горизонтальной и вертикальной осях. Каретка состоит из следующих узлов: коробки распределительной, вращателя горизонтального, вращателя вертикального, каретки. Вращатель состоит из электродвигателя типа ПБСТ-33 и редуктора. Вращатель горизонтальный предназначен для закрепления и вращения изделия в горизонтальной плоскости. Вращатель состоит из шпиндельного узла с планшайбой и корпуса. Корпус выполнен из нержавеющей стали. На корпусу крепится три тормоза, на которые должны гасить дисбаланс изделия.

Вращатель вертикальный предназначен для закрепления и вращения свариваемого изделия в вертикальной плоскости. Вращатель состоит из шпиндельного узла и привода.

Люнет предназначен для центровки длинных изделий, которые расположены в горизонтальной плоскости. Люнет состоит из корпуса с направляющими и панели. Длина продольного перемещения люнета 1000 мм. Панель перемещается от ручного привода на величину 200 мм.

Каретка предназначена для крепления всех узлов, входящих в комплекс каретки цилиндрических изделий и привод каретки с помощью которого каретка закатывается в вакуумную камеру или на позицию загрузки-выгрузки. Корпус каретки сварной из нержавеющей стали.

Станина является местом, куда выезжает каретка и производится загрузка-разгрузка кареток. Станина выполнена сварной из стали Ст3.

5.4 Принцип работы установки

Сборочно-сварочная оснастка с изделием устанавливается на каретке и крепится к ней. Движение каретки происходит от привода каретки. Энергопитание привод получает от энергоцепи, с которой каретка соединена через кронштейн и штепсельный разъем. На каретке для крепления оснастки с изделием находятся опорные ролики (10 шт.), приводной вал с шестерней, бортовые (центрирующие) ролики (4 шт.), ложементы для крепления оснастки, линейка (база) для выставления свариваемого стыка в плоскости сварки, кронштейн для нажатия на конечный выключатель ВК-200Б в конце хода тележки, которая представляет собой сварную конструкцию из листовой нержавеющей стали Х18Н10Т. Каретка цилиндрических изделий предназначена для сварки тел вращения в горизонтальной и вертикальной осях. Она состоит из распределительной коробки и горизонтального и вертикального вращателей.

С пульта управления №1, расположенного с правой рабочей части вакуумной камеры, дается команда на опускание перекидных направляющих в горизонтальное положение (вакуумная камера открыта) до упора на раму камеры.

От кнопки пульта №1 дается команда на перемещение каретки с изделием в вакуумную камеру на позицию сварки. После - остановка каретки в вакуумной камере от срабатывания конечных выключателей ВК-200Б.

С пульта управления №1 дается команда на подъем перекидных направляющих в вертикальное исходное положение. При верхнем положении перекидных направляющих с пульта №1 дается команда на привод крышки вакуумной камеры. Крышка перемещается в крайнее положение «Закрыто» и останавливается. С пульта №1 дается команда на прижим крышки вакуумной камеры к торцу вакуумной камеры.

Закрывается электромагнитный натекатель ДУ-160. Включается автоматическая система откачки вакуумной камеры до остаточного давления 5·10-5 мм рт. ст. При остаточном давлении 5·10-5 мм рт. ст. производится вывод электронной пушки на позицию сварки. На холостом режиме производится контрольный проход электронным лучом вдоль свариваемого стыка. После контрольного прохода производится сварка стыка.

Визуальное наблюдение и управление процессом сварки производится с пультов, расположенных на площадке оператора, а также через смотровые окна крышки вакуумной камеры диаметром 300 мм. Площадка оператора имеет возможность продольного и вертикального перемещения по лицевой стороне камеры.

После окончания процесса сварки с пульта вакуумной станции дается команда на закрывание шиберных затворов СПЛП-900 и открывается натекатель ДУ-160. Производится напуск воздуха в вакуумную камеру до атмосферного давления.

С пульта №1 дается команда на открывание вакуумной камеры. Затем дается команда на опускание перекидных направляющих станины в вакуумную камеру и команда на выезд каретки с изделием из камеры. В крайнем исходном положении на станине каретка останавливается от конечного выключателя ВК-200Б.

Производится снятие изделия с каретки. Цикл сварки для плоских изделий повторяется снова.

При сварке цилиндрических изделий порядок работы такой же, как и при сварке плоских изделий.

Свариваемое изделие закрепляется на каретке цилиндрических изделий. Управление движением каретки, опусканием направляющих и управление движением второй крышки вакуумной камеры руководится со второго пульта №2, расположенного с левой лицевой стороны вакуумной камеры.

5.5. Принцип действия приспособления для сварки водила II ступени

Перед установкой изделия на приспособлении отвинчивается болт позиции 27, снимается планка позиции 15, отодвигается подвижная стойка позиции 2.

На оправку позиции 1 с помощью кран-балки одевается водило II ступени, собранное на прихватках. С одной стороны оно крепится, упираясь на цилиндрическое кольцо, и прижимается восьмью болтами (позиции 29) для обеспечения точного фиксирования и избежания отклонений от вертикальности боковых торцев детали. С другой стороны, водило фиксируется с помощью насадки на коническое кольцо оправки.

Затем снова на хвостовую часть оправки одевается подвижная опора позиции 2 и планка позиции 15, которая привинчивается четырьмя болтами (позиции 27).

Для сварки водила II ступени необходимо поочередно настраивать электронную пушку на каждый стык внутри вакуумной камеры. Это обеспечивается соединением оправки позиции 1 через планку позиции 15, втулку позиции 8 и поводок позиции 4, соединенных с помощью двух болтов позиции 26 и гаек позиции 31 с поворачивающей системой звездочка - редуктор - электродвигатель. При этом оправка с изделием поворачивается при помощи роликов, расположенных в подвижных опорах позиции 2.

6. Выбор параметров режима сварки

6.1 Параметры режима ручной аргонодуговой сварки.

Сила сварочного тока - Iсв=95 А

Напряжение на дуге - Uд=32 В

Обратная полярность тока

Положение шва - нижнее

6.2 Параметры режима электронно-лучевой сварки

Мощность - 30 кВт

Ускоряющее напряжение - Uуск=60 кВ

Сила сварочного тока - Iсв=700 мА

Скорость сварки - Vсв=30 см/мин

Круговая развертка электронного луча - O2 мм

7. Расчет норм времени на сварочные операции

7.1 Расчет норм времени для сборочно-сварочной операции (ручная аргонодуговая сварка неплавящимся электродом)

1. Расчет основного времени

,

где - скорость сварки,

2. Расчет вспомогательного времени, зависящего от дины шва

Принимаем ([3], с. 130) нормы времени на все элементы вспомогательной работы при сварке стыкового шва

на шва

3. Расчет вспомогательного времени, связанного с изделием и работой оборудования

Всего норма вспомогательного времени составит

4. Расчет подготовительно-заключительного времени

5. Определение коэффициента к оперативному времени. Для единичного производства коэффициент, учитывающий затраты времени на обслуживание рабочего места, на отдых и естественные надобности, будет ([3], с. 137)

6. Определение нормы штучного времени.

7.2 Расчет норм времени для электронно-лучевой сварки

1. Скорость сварки

Длина шва

Время сварки одного шва

2. Общее время сварки

3. Время на вакуумирование

4. Общее время изготовления корпуса водила II ступени

8. Выбор метода контроля

8.1 Характеристика характерных дефектов

Для сварных соединений всех титановых сплавов в той или иной степени характерны две проблемы: замедленное разрушение и пористость шва.

Замедленное разрушение объясняется образованием в сварном соединении так называемых пиков концентрации водорода, которые совпадают с пиками концентрации сварочных напряжений, расположенными вблизи линии сплавления.

Со временем водород превращается в гидриды с увеличением объема, что способствует образованию трещин в околошовной зоне, вызывая замедленное разрушение. Негативное влияние водорода усиливается остаточными сварочными напряжениями.

Основными мерами борьбы с замедленным разрушением сварных соединений титановых сплавов являются уменьшение содержания водорода в основном металле и отжиг после сварки.

При электронно-лучевой сварке можно, не вынимая изделия из камеры, выполнить так называемый локальный отжиг, прогревая зону термического влияния пучком, сканирующим по растровой развертке. Это снижает концентрацию водорода, перераспределяет остаточные напряжения и уменьшает склонность сварного соединения к замедленному разрушению.

Наиболее распространенными дефектами для сплава ПТ-3В являются поры и холодные трещины.

Поры в сварном шве - это дефекты сварного шва в виде полости округлой формы, заполненной газом. Поры в сварных соединениях чаще всего располагаются в виде цепочки пор по зоне сплавления. Они снижают статическую и динамическую прочность соединений.

В отношении пористости при сварке титановых сплавов существуют две основные точки зрения.

Согласно первой, пористость определяется поступлением в сварочную ванну готовых газовых зародышей, возникших вследствие пиролиза загрязнений и разложения влаги на плотно сжатых поверхностях стыка. Те, кто придерживается этой точки зрения, рекомендуют уменьшать шероховатость кромок путем шабрения и полирования, использовать травление и «тепловую» очистку кромок, а также применять гарантированный зазор в стыке и выполнять газоотводящие каналы на торцевых поверхностях стыка.

Согласно второй точке зрения, непременным условием пористости является перенасыщение металла всей сварочной ванны газами, и в первую очередь водородом, или локальное перенасыщение жидкого металла ванны непосредственно меняя растворимость водорода в металле.

С этой позиции основными способами борьбы с пористостью можно считать снижение концентрации водорода в сварной ванне и обеспечение оптимальных условий кристаллизации, а в качестве технологических мер уменьшения пористости в швах рекомендуются изменение погонной энергии, применение повторных проходов, использование импульсных режимов и осцилляции пучка.

Для получения беспористых швов необходимо обеспечить требуемую чистоту основного металла и сварочных материалов, сварку выполнять на оптимальных режимах с соблюдением всех требований технологических процессов.

Холодные трещины возникают в результате повышенного содержания кислорода, азота и водорода в сварном соединении в сочетании с растягивающими напряжениями первого рода (остаточными сварочными от внешней нагрузки).

Трещины такого типа могут возникать сразу же после сварки, а также после вылеживания сварных соединений до нескольких лет (процесс замедленного разрушения в результате выпадения гидридов титана).

При повышенном содержании водорода трещины возникают от напряжений второго рода и распространяются под действием напряжений первого рода.

Радикальными мерами борьбы с холодными трещинами являются:

1. Снижение содержания газов в основном и присадочном металле: Н2<0,008%, О2<0,1-0,15%, N2<0,04%;

2. Соблюдение технологии сварки для предотвращения попадания паров воды и вредных газов в зону сварки;

3. Снятие остаточных сварочных напряжений;

4. Предотвращение наводораживания металла в процессе изготовления деталей.

Основные виды дефектов, встречающиеся при ЭЛС титановых сплавов приведены на рис. 3, а причины их возникновения в таблице 4.

Таблица 4

Наименование дефекта

Причины возникновения дефекта

Непровар (рис. 3, а)

1. Недостаточная мощность луча

2. Погрешность совмещения луча с плоскостью стыка

3. Намагничиваемость детали

Неполномерность (1) и провисание (2) (рис. 3, б)

1. Завышена мощность луча

2. Занижена скорость сварки

3. Металлургическая нестабильность ванны

Кратер в месте окончания шва (1) и высоковольтного пробоя (2) (рис. 3, в)

1. Резкое изменение мощности и плоскости луча (пробой, аварийное отклонение)

2. Выброс металла ванны в результате металлургической нестабильности ванны

Поры (1) и раковины (2) (рис. 3, г)

1. Плохая очистка свариваемой поверхности от влаги и органических загрязнений.

2. Высокая газонасыщенность металла

3. Высокая скорость сварки

4. Неблагоприятная форма шва

Трещины в шве (1) и околошовной зоне (2) (рис. 3, д)

1. Малая деформационная способность металла в температурном интервале хрупкости

2. Неправильно подобранный режим по погонной энергии и току фокусировки

3. Нетехнологичность конструкционного узла

4. Большие внутренние напряжения

8.2 Способы устранения дефектов при ЭЛС

Большинство поверхностных дефектов, возникающих при ЭЛС, могут быть исправлены дуговыми способами сварки. Иногда и внутренние дефекты шва исправляются выборкой дефектного места механическими способами и последующей их дуговой подваркой с присадочным материалом.

Однако в ряде случаев, особенно при ЭЛС тугоплавких и химически активных металлов, возникшие дефекты целесообразно устранять с помощью электронного пучка.

Поверхностные дефекты целесообразно устранять повторными так называемыми косметическими проходами. Они осуществляются на минимально необходимую глубину на мягких режимах, т.е. с большими степенями недофокусировки или перефокусировки, когда швы не имеют корневой пилы (рис. 4).

Рис. 4. Заварка поверхностного дефекта

1-основной проход;

2-непровар

3-подварочный проход

Рис. 5. Схема разметки центра шва по контрольным рискам

1-дефект шва;

2 - технологический припуск;

3-контрольные риски

4-риска разметки центра шва

Часть внутренних дефектов исправляют на рабочем режиме. Для этого линию стыка определяют, ориентируясь на контрольные риски (рис. 5) или какие-то базы не самой детали.

Можно переплавлять не всю длину шва, если дефект точечный, а лишь небольшой участок.

Если глубина дефекта небольшая, то заварку осуществляют на больших степенях расфокусировки исключающих образование корневой пилы.

При большой глубине залегания дефектов повторный проход осуществляют на полной мощности с установкой технологических подкладок для выведения в неё корневых дефектов. Ввод мощности осуществляют либо при неподвижном луче, либо при малой скорости, потом включают рабочую скорость. Аналогичным образом поступают и при окончании: сначала необходимо остановить движение или снизить скорость сварки, а потом уменьшать мощность пучка.

В место окончания подварки можно ввести дополнительный материал в виде пластины (рис. 6), а после окончания подварки расплавить его, чтобы заполнить кратер.

Рис. 6. Устранение дефектов повторной переваркой шва на всю глубину


Подобные документы

  • Разработка технологии сварки обечайки корпуса теплообменного аппарата для атомных электростанций. Анализ и выбор способа изготовления с учетом особенностей свариваемости стали 09Х18Н10Т. Описание электронно-лучевой сварки. Выбор сварочного оборудования.

    курсовая работа [615,9 K], добавлен 14.03.2010

  • Анализ вариантов и выбор способа изготовления с учётом свариваемости. Характеристика изделия. Технологическая карта. Выбор сварочных материалов и сварочного оборудования. Расчёты расхода сварочных материалов. Расчёты и выбор параметров режима сварки.

    курсовая работа [27,0 K], добавлен 10.01.2009

  • Разработка маршрутного технологического процесса изготовления детали "корпус водила нижнего". Описание технологической операции для фрезерования пазов. Выбор оборудования и режущего инструмента для данной операции. Расчет параметров режима резания.

    курсовая работа [2,3 M], добавлен 15.12.2014

  • Назначение, конструкция и условие эксплуатации газгольдера. Оценка свариваемости основного металла. Выбор способа сварки, сварочной проволоки и флюса. Расчет режима электрошлаковой сварки. Выбор сварочного оборудования общего или специального назначения.

    курсовая работа [4,6 M], добавлен 01.12.2012

  • Описание действующей технологии изготовления изделия, анализ вариантов сварки. Расчет режимов, выбор и обоснование используемого оборудования и приспособлений. Разработка технологического процесса сборки и сварки изделия, контроль качества материалов.

    дипломная работа [678,7 K], добавлен 15.02.2015

  • Конструкция корпуса редуктора, его назначение. Характеристика материала конструкции. Обоснованный выбор способа сварки. Выбор сварочного оборудования и инструментов. Технологический процесс сварки, контроль качества. Организация рабочего места сварщика.

    курсовая работа [3,1 M], добавлен 29.05.2013

  • Исследование существующих технологий изготовления трубопроводов. Назначение, описание, техническая характеристика и условия работы трубопровода. Выбор рода тока, источников питания, сборочно-сварочного оборудования. Контроль качества сборки и сварки.

    курсовая работа [272,4 K], добавлен 21.02.2016

  • Анализ свариваемости трубы из углеродистой стали. Выбор вида автоматической сварки для изготовления шва с заданными свойствами. Разработка технологического процесса согласно расчетам и операциям по ЕСТД. Выбор оборудования и методов оптимизации сварки.

    дипломная работа [936,9 K], добавлен 27.11.2014

  • Методика изготовления диафрагменной лопатки, выбор и обоснование материала, условия работы изделия и требования к нему. Оценка свариваемости стали 12Х13. Выбор способа сварки и его основные параметры, влияние на форму шва и качество сварного соединения.

    курсовая работа [88,6 K], добавлен 08.03.2010

  • Изготовление сварных конструкций. Проектирование технологии и организации сборочно-сварочных работ. Основной материал для изготовления корпуса, оценка его свариваемости. Выбор способа сварки и сварочных материалов. Определение параметров режима сварки.

    курсовая работа [447,5 K], добавлен 26.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.