Проектирование автоматизированных систем
Сущность систем автоматики и их классификация по признаку сложности. Этапы жизни системы и степень влияния условий их эксплуатации на процесс проектирования системы. Структура и сферы применения основных автоматизированных и функциональных систем.
Рубрика | Производство и технологии |
Вид | курс лекций |
Язык | русский |
Дата добавления | 20.10.2009 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
При использовании проводных связей, система управления такого комплексного объекта, построенная по одноуровневой централизованной системе получается достаточно сложной, в виду усложнения коммуникаций, кроме того, резко возрастают затраты на изготовление такой системы управления и ее эксплуатации. Центральный пункт управления, без применения SCADA-систем (построении мнемосхем на панелях щитов и пультов, с помощью цветной проволоки, или краски, и стрелочных или самопишущих приборов) получается очень громоздким. Переработка информации, большая часть которой является ненужной для непосредственного ведения технологического процесса, представляла ранее достаточно большие затруднения. Удаленность пункта управления от того или иного вспомогательного подобъекта затрудняла принятие оперативных мер по устранению тех или иных неполадок. Поэтому ранее, в основном, на сложных комплексных объектах управления, применялась одноуровневая децентрализованная система управления.
С появлением SCADA-систем, CALS-технологий, развитием аппаратной части электронно-вычислительных машин и появлением достаточно надежных беспроводных систем передачи информации, при автоматизации сложных комплексных объектов управления, вновь стали применяться централизованные системы управления. Основная концепция систем управления, построенных по принципам CALS-технологий и факт использования возможностей SCADA-систем, диктует необходимость централизации систем управления (за счет применения единой базы данных, куда стекается вся информация об объекте управления, управляющих и измеряемых возмущающих воздействиях).
Разработанные, в последнее десятилетие, линейные и нелинейные устройства управления позволяют успешно управлять локальными низкоуровневыми объектами сложного производственного процесса, и, кроме того, приспособлены к передаче информации об объекте управления, управляющих и измеряемых возмущающих воздействиях в единую базу данных предприятия, с использованием стандартных сетевых протоколов. Этот факт диктует необходимость создания многоуровневых (минимально - двухуровневых) систем управления. Нижним уровнем в таких системах являются локальные регуляторы, а верхним - SCADA-система, с помощью которых диспетчеры контролируют работу систем нижнего уровня и задают управляющие воздействия на локальные регуляторы, а также различные системы, осуществляющие анализ производственного процесса и позволяющие определять оптимальные или рациональные режимы работы оборудования. В идеале, в будущем, должны быть созданы автоматические, адаптирующиеся (саморегулирующиеся) системы управления, роль человека в которых должна быть сведена только к контролю за ее работой.
В качестве примера абстрактной многоуровневой системы управления на рисунке 8 представлена трехуровневая система управления сложным объектом с разветвленными технологическими связями между установками. Отдельные технологические установки управляются децентрализовано с пунктов управления 1…7. Это первый уровень управления. С пунктов 1…7 соответственно управляются объекты, имеющие существенную технологическую взаимосвязь. В связи с этим наиболее ответственные регулируемые параметры установок передаются на пункты управления 8…10 второго уровня управления. Основные параметры, определяющие технологический процесс объекта в целом, могут управляться и контролироваться с пункта управления 11 третьего уровня.
Рисунок 8 - Пример трехуровневой системы управления:
I…III уровни управления.
Для первого уровня при проектировании целесообразно предусматривать три режима управления:
1) командами, поступающими от уровня более высокого ранга;
2) командами, формирующимися непосредственно на первом уровне;
3) командами, поступающими как с уровня более высокого ранга, так и формирующимися непосредственно на первом уровне.
Для уровня второго ранга и выше возможны четыре режима работы:
1) аппаратура данного i-го ранга принимает и реализует в управляющие воздействия команды (i + 1) - го ранга;
2) команды формируются непосредственно на аппаратуре i-го ранга;
3) все функции управления с i-го ранга передаются на аппаратуру (i - 1) - го ранга;
4) часть команд на аппаратуру i-го ранга поступает с (i + 1) - го ранга, часть команд формируется на i-м ранге, часть функций управления передана на аппаратуру (i - 1) - го ранга.
Аппаратура i-го ранга соответственно должна иметь переключатели режимов на четыре положения с четкой сигнализацией положений.
Перевод аппаратуры с режима 1 на режим 2 осуществляется по команде или с разрешения оператора системы вышестоящего ранга.
Передача функций управления тем или иным параметром на нижестоящий ранг осуществляется только после приема команды о передаче и подтверждения оператора системы нижестоящего ранга о готовности к принятию на себя тех или иных функций управления (формирования команд).
Многоуровневая структура системы управления обеспечивает ее надежность, оперативность, ремонтопригодность. При этом легко решается оптимальный уровень централизации управления с минимальным количеством средств технологического контроля, управления и линий связи между ними.
АСУ ТП классифицируются на уровни классов 1, 2 и 3.
К классу 1 (АСУ ТП нижнего уровня) относятся АСУ ТП, управляющие агрегатами, установками, участками производства, не имеющие в своем составе других АСУ ТП (характерный пример - регуляторы).
К классу 2 (АСУ ТП верхнего уровня) относятся АСУ ТП, управляющие группами установок, цехами, производствами, в которых отдельные агрегаты (установки) имеют свои локальные системы управления, не оснащенные АСУ ТП класса 1.
К классу 3 (АСУ ТП многоуровневые) относятся АСУ ТП, объединяющие в своем составе АСУ ТП классов 1, 2 и реализующие согласованное управление отдельными технологическими установками или их совокупностью (цехом, производством).
Построение систем автоматизации по уровням управления определяется как требованиями снижения трудозатрат на их реализацию, так и целями (критериями) управления технологическими объектами.
В общем случае любая система может быть представлена конструктивной, функциональной или алгоритмической структурой. В конструктивной структуре системы каждая ее часть представляет собой самостоятельное конструктивное целое. Примерами изображения конструктивных структурных схем системы автоматизации могут служить рисунки 6…8.
В функциональной структуре каждая часть предназначена для выполнения определенной функции, в алгоритмической - для выполнения определенного алгоритма преобразования входной величины, являющегося частью алгоритма функционирования системы в целом.
В проектах автоматизации изображают конструктивные структурные схемы с элементами функциональных признаков.
Полные сведения о функциональной структуре с указанием локальных контуров регулирования, каналов управления и технологического контроля приводятся в функциональных схемах.
Алгоритмические структурные схемы по контурам регулирования крайне необходимы при производстве наладочных работ систем автоматизации.
3.2 Структурные схемы измерения и управления
На структурной схеме отображаются в общем виде основные решения проекта по функциональной, организационной и технической структурам АСУ ТП с соблюдением иерархии системы и взаимосвязей между пунктами контроля и управления, оперативным персоналом и технологическим объектом управления. Принятые при выполнении структурной схемы принципы организации оперативного управления технологическим объектом, состав и обозначения отдельных элементов структурной схемы должны сохраняться во всех проектных документах на АСУ ТП, в которых они конкретизируются и детализируются в: функциональных схемах автоматизации, структурной схеме комплекса технических средств (КТС) системы, принципиальных схемах контроля и управления, а также в проектных документах, касающихся организации оперативной связи и организационного обеспечения АСУ ТП.
Исходными материалами для разработки структурных схем являются:
а) задание на проектирование АСУ ТП;
б) принципиальные технологические схемы основного и вспомогательных производств автоматизируемого технологического объекта;
в) задание на проектирование оперативной связи подразделений автоматизируемого технологического объекта;
г) генплан и титульный список автоматизируемого технологического объекта.
Структурная схема разрабатывается на стадиях «проект» и «рабочий проект». На стадии «рабочая документация» при двухстадийном проектировании структурная схема разрабатывается только в случае изменений технологической части проекта или изменения решений по АСУ ТП, принятых при утверждении проекта автоматизации.
В качестве примера на рисунке 9 приведена структурная схема управления сернокислотным производством (автоматизированная система).
На структурной схеме показывают:
а) технологические подразделения автоматизируемого объекта (отделения, участки, цехи, производства);
Рисунок 9 - Фрагмент структурной схемы управления и контроля сернокислотным производством:
1 - линия связи с цеховой химической лабораторией; 2 - линия связи с пунктами контроля и управления кислотным участком; 3 - линия связи с пунктом контроля и управления III и IV технологическими линиями.
б) пункты контроля и управления (местные щиты, операторские и диспетчерские пункты и т.п.), в том числе не входящие в состав разрабатываемого проекта, но имеющие связь с проектируемыми системами контроля и управления;
в) технологический (эксплуатационный) персонал и специализированные службы, обеспечивающие оперативное управление и нормальное функционирование автоматизируемого технологического объекта;
г) основные функции и технические средства (устройства), обеспечивающие их реализацию в каждом пункте контроля и управления;
д) взаимосвязь подразделений автоматизируемого технологического объекта, пунктов контроля и управления и технологического персонала между собой и с вышестоящей автоматизированной системой управления (АСУ).
Элементы структурной схемы изображаются, как правило, в виде прямоугольников. Отдельные функциональные службы [отдел главного энергетика (ОГЭ), отдел главного механика (ОГМ), отдел технического контроля (ОТК) и т.п.] и должностные лица (директор, главный инженер, начальник цеха, начальник смены, мастер и т.п.) допускается изображать на структурной схеме в виде кружков с буквенным обозначением внутри.
Внутри прямоугольников, изображающих участки (подразделения) автоматизируемого объекта, раскрывается их производственная структура. При этом выделяются цехи, участки, технологические линии либо группы агрегатов для выполнения законченного этапа технологического процесса, которые являются существенными для раскрытия в документах проекта всех взаимосвязей между управляемой (технологическим объектом управления) и управляющей системами.
На схеме функции АСУ ТП могут указываться в виде условных обозначений, расшифровка которых дается в таблице на поле чертежа (табл. 1).
Таблица 1 - Функция АСУ ТП и их условные обозначения на рисунке 8
Условное обозначение |
Наименование |
|
1 |
Контроль параметров |
|
2 |
Дистанционное управление технологическим оборудованием и исполнительными устройствами |
|
3 |
Измерительное преобразование |
|
4 |
Контроль и сигнализация состояния оборудования и отклонения параметров |
|
5 |
Стабилизирующее регулирование |
|
6 |
Выбор режима работы регуляторов и ручное управление задатчиками |
|
7 |
Ручной ввод данных |
|
8 |
Регистрация параметров |
|
9 |
Расчет технико-экономических показателей |
|
10 |
Учет производства и составления данных за смену |
|
11 |
Диагностика технологических линий (агрегатов) |
|
12 |
Распределение нагрузок технологических линий (агрегатов) |
|
13 |
Оптимизация отдельных технологических процессов |
|
14 |
Анализ состояния технологического процесса |
|
15 |
Прогнозирование основных показателей производства |
|
16 |
Оценка работы смены |
|
17 |
Контроль выполнения плановых заданий |
|
18 |
Контроль проведения ремонтов |
|
19 |
Подготовка и выдача оперативной информации в АСУП |
|
20 |
Получение производственных ограничений и заданий от АСУП |
Наименование элементов производственной структуры должны соответствовать технологической части проекта и наименованиям, используемым при выполнении других документов проекта АСУ ТП.
Взаимосвязь между пунктами контроля и управления, технологическим персоналом и объектом управления изображается на схеме сплошными линиями. Слияние и разветвление линий показываются на чертеже линиями с изломом (рис. 9).
При наличии аналогичных технологических объектов (цехов, отделений, участков и т.д.) допускается раскрывать на схеме структуру управления только для одного объекта. Об этом на схеме даются необходимые пояснения.
Из структурной схемы на рисунке 9 следует, что система управления основными технологическими процессами сернокислотного производства четырехуровневая:
1. первый уровень - местное управление агрегатами, осуществляемое аппаратчиками с рабочих постов;
2. второй уровень - централизованное управление несколькими агрегатами, входящими в тот или иной технологический участок, осуществляемое старшим аппаратчиком;
3. третий уровень - централизованное управление несколькими участками, входящими в I и II (или III и IV) технологические линии сернокислотного производства;
4. четвертый уровень - управление с диспетчерского пункта всеми технологическими линиями сернокислотного производства, осуществляемое диспетчером.
Структурные схемы выполняются, как правило, на одном листе. Таблица с условными обозначениями (табл. 1) располагается на поле чертежа схемы над основной надписью. При большом числе условных обозначений продолжение таблицы помещают слева от основной надписи с тем же порядком заполнения.
Текстовую часть, помещенную на поле чертежа, располагают над основной надписью. Между текстовой и основной надписями не допускается помещать изображения, таблицы и т.п. Пункты пояснительного текста должны иметь сквозную нумерацию. Каждый пункт записывают с красной строки. Заголовок «Примечание» не пишут. В тексте и надписях не допускаются сокращения слов, за исключением общепринятых.
Размеры всех условных изображений не регламентируются и выбираются по усмотрению исполнителя с соблюдением одинаковых размеров для однотипных изображений.
В настоящее время для технологического контроля и автоматического управления широкое применение находят агрегатированные системы средств телемеханики, комплексы технических средств локальных измерительных и управляющих систем, агрегатированные системы контроля и регулирования, цифровые централизованные (SCADA-системы) и др. Такие комплексы выполняются на базе электронной вычислительной машины в специальном защищенном исполнении, как правило, имеющие «на борту» встроенные средства хранения данных, видео- и аудио-выходы, стандартный набор средств обмена цифровыми данными (USB, COM, LPT, RS-232, LAN-контроллеры, модемы и т.п.), а также небольшое количество каналов аналого-цифровых и цифро-аналоговых преобразователей и дискретных входов и выходов. Эти устройства позволяют реализовать практически любой закон управления, алгоритмы всевозможных преобразований и алгоритмы формирования управляющих воздействий.
Комплексные системы позволяют реализовать следующие основные информационно-вычислительные функции АСУ ТП:
- сбор, первичную обработку и хранение информации;
- косвенные измерения параметров процесса и состояния технологического оборудования;
- сигнализацию состояния параметров технологического процесса и оборудования;
- расчет технико-экономических и эксплуатационных показателей технологического процесса и технологического оборудования;
- подготовку информации для вышестоящих и смежных систем и уровней управления;
- регистрацию параметров технологического процесса, состояний оборудования и результатов расчета;
- контроль и регистрацию отклонений параметров процесса и состояния оборудования от заданных;
- анализ срабатывания блокировок и защит технологического оборудования;
- диагностику и прогнозирование хода технологического процесса и состояния технологического оборудования;
- оперативное отображение информации и рекомендаций ведения технологического процесса и управления технологическим оборудованием;
- выполнение процедур автоматического обмена информацией с вышестоящими и смежными системами управления.
На базе мини-ЭВМ реализуются управляющие вычислительные комплексы (УВК), выполняющие различные функции, в том числе:
- регулирование отдельных параметров технологического процесса;
- однотактное логическое управление;
- каскадное регулирование;
- многосвязанное регулирование;
- программные и логические операции дискретного управления процессом и оборудованием;
- оптимальное управление установившимся режимом технологического процесса и работы оборудования;
- оптимальное управление переходным процессом;
- оптимальное управление технологическим объектом в целом.
В проекте автоматизации необходимо произвести выбор и компоновку агрегатированных комплексов технических средств и средств автоматизации, т.е. на базе типовых технических средств разработать структурную схему технологического контроля и управления определенными параметрами данного объекта автоматизации.
На структурной схеме агрегатированные и модульные элементы комплекса технических средств и средств автоматизации изображают в виде прямоугольников с указанием в них условных обозначений. Расшифровка этих обозначений с указанием их функций производится в таблице, помещенной на чертеже схемы. Связь между элементами схемы изображается линиями со стрелками, показывающими направление прохождения сигналов.
В качестве примера на рисунке 10 приведена упрощенная структурная схема технического обеспечения АСУ ТП доменной печи №9 Криворожского металлургического завода, построенная с использованием средств УВК. Доменная печь имеет конвейерную систему подачи материалов на колосник. Сбор информации о работе доменной печи, конвейерной системы, шихтоподачи и других систем осуществляется датчиками уровня (ДУ) в шихтовых и датчиками вида материала (ДВМ) в промежуточных бункерах, сигнализаторами (С) наличия и вида материалов на конвейерах переполнения печек и промежуточных воронок, датчиками давления и перепада давления (ДДПД) в отдельных полостях загрузочного устройства, датчиками утла поворота (ДУП) лотка загрузочного устройства, датчиками температуры (ДТ), датчиками расхода (ДР) и др.
Рисунок 10 - Упрощенная структурная схема АСУ ТП доменной печи №9 Криворожского металлургического завода:
ДНМ - датчики наличия материалов; ДУ - датчики уровня; ДВ - датчики массы; АШиК - анализаторы шихты и кокса; ВК - влагомер кокса; ДВМ - датчики вида материалов; ДРЛК - датчики разрыва лент конвейеров; ПВМБ - питатели для выдачи материалов из бункеров; ИМ - исполнительные механизмы; ДТ - датчики температуры; ДДПД - датчики давления или перепада давлений; ДР - датчики расхода; ДВл - датчики влажности; АДиГ - анализаторы дутья и газа; ДУП - датчики угла поворота; ТК - телекамеры; СТ - сигнальное табло; ВП - вторичные приборы; МС - мнемосхемы; КУ - ключи управления; РЗВД - ручные задатчики массы дозы; ЛСДМ - локальные системы дозирования материалов; ЛСР - локальные системы регулирования; БЦИЧ - блок цифровой индикации с частотными вводами; РДЗ - ручные дистанционные задатчики; ЦИ - цифровые индикаторы; ИПМ - индикаторы положения механизмов; ТВ - телевизоры; ЭВМ ШП - электронная вычислительная машина шихтоподачи (управляющая взвешиванием материалов и производительностью тракта ШП), ЦВУ СЦК - цифровое вычислительное устройство системы централизованного контроля (осуществляющее сбор и обработку первичной информации, расчет комплексных и удельных показателей работы печи, автоматическое заполнение отчетных документов); БЦР - блок цифровой регистрации; БЦИД - блок цифровой индикации с дискретными вводами; ЭВМ УХДП - электронная вычислительная машина, управляющая тепловым состоянием и ходом печи; ИТ - информационные табло; I - первый этап внедрения (пусковойкомплекс); II и III - соответственно второй и третий этапы внедрения.
Обработка и предоставление информации, стабилизация или изменение по заданной программе технологических параметров, ввод информации в УВМ и вывод рекомендаций по управлению ходом доменной печи и другие операции осуществляются с помощью технических средств централизованного контроля и управления работой доменной печи.
При разработке проектов автоматизации сложных технологических процессов с использованием агрегатированных комплексов вычислительной техники, требующих предварительного проведения научно-исследовательских экспериментальных работ в условиях действующего оборудования в период освоения проектных мощностей, следует предусматривать поэтапное выполнение монтажных работ и включение УВК в работу.
В общем случае можно рекомендовать следующее поэтапное включение УВК в работу:
1) пуск объекта с технологическим контролем и автоматическим управлением от локальных систем регулирования; в этот период уточняются динамические и статические характеристики объекта, устраняются ошибки монтажа и проекта, возможные дефекты технологического оборудования, стабилизируется технологический процесс и т.п. Отрабатываются программы и алгоритмы на УВМ без их подключения к действующему технологическому оборудованию;
2) подключение УВМ к действующему технологическому оборудованию и включение ее в режим «советчика» с выдачей эксплуатационному персоналу рекомендаций по управлению ходом работы доменной печи;
3) включение УВМ в режим автоматического управления объектом через системы локального регулирования.
При необходимости в проектах автоматизации приводятся структурные схемы отдельных комплексов технических средств и средств автоматизации.
4. Функциональная схемная проектная документация
4.1 Назначение функциональных схем, методика и общие принципы их выполнения
Функциональные схемы являются основным техническим документом, определяющим функционально-блочную структуру отдельных узлов автоматического контроля, управления и регулирования технологического процесса и оснащение объекта управления приборами и средствами автоматизации (в том числе средствами телемеханики и вычислительной техники).
Объектом управления в системах автоматизации технологических процессов является совокупность основного и вспомогательного оборудования вместе со встроенными в него запорными и регулирующими органами, а также энергии, сырья и других материалов, определяемых особенностями используемой технологии.
Задачи автоматизации решаются наиболее эффективно тогда, когда они прорабатываются в процессе разработки технологического процесса.
В этот период нередко выявляется необходимость изменения технологических схем с целью приспособления их к требованиям автоматизации, установленным на основании технико-экономического анализа проекта.
Создание эффективных систем автоматизации предопределяет необходимость глубокого изучения технологического процесса не только проектировщиками, но и специалистами монтажных, наладочных и эксплуатационных организаций.
При разработке функциональных схем автоматизации технологических процессов необходимо уточнить следующие вопросы:
1) какие способы и средства получения первичной информации о состоянии технологического процесса и оборудования будут применяться? (определяет номенклатуру датчиков);
2) каким образом будет осуществляться непосредственное воздействие на технологический процесс для управления им? (определяет номенклатуру исполнительных механизмов);
3) какие технологические параметры автоматизируемых процессов необходимо стабилизировать и в каких значениях? (номенклатура регулируемых параметров);
4) есть ли необходимость программного или зависимого управления? (номенклатура программ управления и управляющих зависимостей);
5) какие технологические параметры рабочих процессов и какие состояния технологического оборудования должны контролироваться и регистрироваться в обязательном порядке? (формирование единой базы данных).
Указанные задачи решаются на основании анализа условий работы технологического оборудования, выявленных законов и критериев управления объектом, а также требований, предъявляемых к точности стабилизации, контроля и регистрации технологических параметров, к качеству регулирования и надежности.
Функциональные задачи автоматизации, как правило, реализуются с помощью технических средств, включающих в себя: отборные устройства, средства получения первичной информации, средства преобразования и переработки информации, средства представления и выдачи информации обслуживающему персоналу, комбинированные, комплектные и вспомогательные устройства. Результатом составления функциональных схем являются:
1) выбор методов измерения технологических параметров;
2) выбор основных технических средств автоматизации, наиболее полно отвечающих предъявляемым требованиям и условиям работы автоматизируемого объекта;
3) определение приводов исполнительных механизмов регулирующих и запорных органов технологического оборудования, управляемого автоматически или дистанционно;
4) размещение средств автоматизации на щитах, пультах, технологическом оборудовании и трубопроводах и т.п. и определение способов представления информации о состоянии технологического процесса и оборудования.
Современное развитие всех отраслей промышленности характеризуется большим разнообразием используемых в них технологических процессов.
Практически не ограничены и условия их функционирования и требования по управлению и автоматизации. Однако базируясь на опыте проектирования систем управления и автоматизации, можно сформулировать некоторые общие принципы, которыми следует руководствоваться при разработке функциональных схем автоматизации:
1) уровень автоматизации технологического процесса в каждый период времени должен определяться не только целесообразностью внедрения определенного комплекса технических средств и достигнутым уровнем научно-технических разработок, но и перспективой модернизации и развития технологических процессов. Должна сохраняться возможность наращивания функций управления;
2) при разработке функциональных и других видов схем автоматизации и выборе технических средств должны учитываться: вид и характер технологического процесса, условия пожаро- и взрывоопасности, агрессивность и токсичность окружающей среды и т.д.; параметры и физико-химические свойства измеряемой среды; расстояние от мест установки датчиков, вспомогательных устройств, исполнительных механизмов, приводов машин и запорных органов до пунктов управления и контроля; требуемая точность и быстродействие средств автоматизации;
3) система автоматизации технологических процессов должна строиться, как правило, на базе серийно выпускаемых средств автоматизации и вычислительной техники. Необходимо стремиться к применению однотипных средств автоматизации и предпочтительно унифицированных систем, характеризуемых простотой сочетания, взаимозаменяемостью и удобством компоновки на щитах управления. Использование однотипной аппаратуры дает значительные преимущества при монтаже, наладке, эксплуатации, обеспечении запасными частями и т.п.
4) в качестве локальных средств сбора и накопления первичной информации (автоматических датчиков), вторичных приборов, регулирующих и исполнительных устройств следует использовать преимущественно приборы и средства автоматизации Государственной системы промышленных приборов (ГСП);
6) в случаях, когда функциональные схемы автоматизации не могут быть построены на базе только серийной аппаратуры, в процессе проектирования выдаются соответствующие технические задания на разработку новых средств автоматизации;
7) выбор средств автоматизации, использующих вспомогательную энергию (электрическую, пневматическую и гидравлическую), определяется условиями пожаро- и взрывоопасности автоматизируемого объекта, агрессивности окружающей среды, требованиями к быстродействию, дальности передачи сигналов информации и управления и т.д.;
8) количество приборов, аппаратуры управления и сигнализации, устанавливаемой на оперативных щитах и пультах, должно быть ограничено. Избыток аппаратуры усложняет эксплуатацию, отвлекает внимание обслуживающего персонала от наблюдения за основными приборами, определяющими ход технологического процесса, увеличивает стоимость установки и сроки монтажных и наладочных работ. Приборы и средства автоматизации вспомогательного назначения целесообразнее размещать на отдельных щитах, располагаемых в производственных помещениях вблизи технологического оборудования.
Перечисленные принципы являются общими, но не исчерпывающими для всех случаев, которые могут встретиться в практике проектирования систем автоматизации технологических процессов. Однако для каждого конкретного случая их следует иметь в виду при реализации технического задания на автоматизацию проектируемого объекта.
4.2 Правила изображения технологического оборудования и коммуникаций
Технологическое оборудование и коммуникации при разработке функциональных схем должны изображаться, как правило, упрощенно, без указания отдельных технологических аппаратов и трубопроводов вспомогательного назначения. Однако изображенная таким образом технологическая схема должна давать ясное представление о принципе ее работы и взаимодействии со средствами автоматизации.
На технологических трубопроводах обычно показывают ту регулирующую и запорную арматуру, которая непосредственно участвует в контроле и управлении процессом, а также запорные и регулирующие органы, необходимые для определения относительного расположения мест отбора импульсов или поясняющие необходимость измерений.
Технологические аппараты и трубопроводы вспомогательного назначения показывают только в случаях, когда они механически соединяются или взаимодействуют со средствами автоматизации. В отдельных случаях некоторые элементы технологического оборудования допускается изображать на функциональных схемах в виде прямоугольников с указанием наименования этих элементов или не показывать вообще.
Около датчиков, отборных, приемных и других подобных по назначению устройств следует указывать наименование того технологического оборудования, к которому они относятся.
Технологические коммуникации и трубопроводы жидкости и газа изображают условными обозначениями в соответствии с ГОСТ 2.784-70, приведенными в таблице 2.
Таблица 2 - Условные цифровые обозначения трубопроводов
для жидкостей и газов по ГОСТ 2.784-70
Наименование среды, транспортируемой трубопроводом |
Обозначение |
|
Вода |
-1-1- |
|
Пар |
-2-2- |
|
Воздух |
-3-3- |
|
Азот |
-4-4- |
|
Кислород |
-5-5- |
|
Инертные газы |
||
аргон |
-6-6- |
|
неон |
-7-7- |
|
гелий |
-8-8- |
|
криптон |
-9-9- |
|
ксенон |
-10-10- |
|
Аммиак |
-11-11- |
|
Кислота (окислитель) |
-12-12- |
|
Щелочь |
-13-13- |
|
Масло |
-14-14- |
|
Жидкое горючее |
-15-15- |
|
Горючие и взрывоопасные газы: |
||
водород |
-16-16- |
|
ацетилен |
-17-17- |
|
фреон |
-18-18- |
|
метан |
-19-19- |
|
этан |
-20-20- |
|
этилен |
-21-21- |
|
пропан |
-22-22- |
|
пропилен |
-23-23- |
|
бутан |
-24-24- |
|
бутилен |
-25-25- |
|
Противопожарный трубопровод |
-26-26- |
|
Вакуум |
-27-27- |
Для более детального указания характера среды к цифровому обозначению может добавляться буквенный индекс, например вода чистая -1 ч-, пар перегретый -2п-, пар насыщенный -2н- и т.п. Условные числовые обозначения трубопроводов следует проставлять через расстояния не менее 50 мм.
Детали трубопроводов, арматура, теплотехнические и санитарно-технические устройства и аппаратура показываются условными обозначениями по ГОСТ 2.785-70 и стандартам СПДС.
Для жидкостей и газов, не предусмотренных таблицей 2, допускается использовать для обозначения другие цифры, но обязательно с необходимыми пояснениями новых условных обозначений в таблице условных обозначений, располагаемой над основной надписью. В этой же таблице приводятся расшифровки уточняющих обозначений (например вода чистая -1 ч-, пар перегретый -2п-, пар насыщенный -2н- и т.п.).
Если обозначения трубопроводов на технологических чертежах не стандартизированы, то на функциональных схемах автоматизации следует применять условные обозначения, принятые в технологических схемах.
У изображения технологического оборудования, отдельных его элементов и трубопроводов следует давать соответствующие поясняющие надписи (наименование технологического оборудования, его номер, если таковой имеется, и др.), а также указывать стрелками направление потоков. Отдельные агрегаты и установки технологического оборудования можно изображать оторвано друг от друга с соответствующими указаниями на их взаимосвязь
На трубопроводах, на которых предусматривается установка отборных устройств и регулирующих органов, указывают диаметры условных проходов.
4.3 Правила изображения средств измерения и автоматизации
Приборы, средства автоматизации, электрические устройства и элементы вычислительной техники на функциональных схемах автоматизации показываются в соответствии с ГОСТ 21.404-85 и отраслевыми нормативными документами.
При отсутствии в стандартах необходимых изображений разрешается применять нестандартные изображения, которые следует выполнять на основании характерных признаков изображаемых устройств.
ГОСТ 21.404-85 предусматривает систему построения графических и буквенных условных обозначений по функциональным признакам, выполняемым приборами (табл. 3).
В стандарте установлены два способа построения условных обозначений: упрощенный и развернутый.
Для упрощенного способа построения достаточно основных условных обозначений, приведенных в табл. 3, и буквенных обозначений, приведенных в таблице 4.
Развернутый способ построения условных графических обозначений может быть выполнен путем комбинированного применения основных (табл. 3 и 4) и дополнительных обозначений, приведенных в таблицах 5 и 6.
Сложные приборы, выполняющие несколько функций, допускается изображать несколькими окружностями, примыкающими друг к другу.
Методика построения графических условных обозначений для упрощенного и развернутого способов является общей.
В верхней части окружности наносятся буквенные обозначения измеряемой величины и функционального признака прибора.
Таблица 3 - Основные условные обозначения приборов и средств автоматизации по ГОСТ 21.404-85
Наименование |
Обозначение |
Первичный измерительный преобразователь (датчик), прибор, устанавливаемый по месту |
2
Прибор, устанавливаемый на щите |
2
Отборное устройство без постоянно подключенного прибора (служит для эпизодического подключения приборов во время наладки, снятия характеристик и т.п.) |
2
Исполнительный механизм. Общее обозначение. (Положение регулирующего органа при прекращении подачи энергии или управляющего сигнала не регламентируется) |
2
Исполнительный механизм, открывающий регулирующий орган при прекращении подачи энергии или управляющего сигнала |
2
Исполнительный механизм, закрывающий регулирующий орган при прекращении подачи энергии или управляющего сигнала |
2
Исполнительный механизм, который при прекращении подачи энергии или управляющего сигнала оставляет регулирующий орган в неизменном положении |
2
Исполнительный механизм с дополнительным ручным приводом (обозначение может применяться в сочетании с любым из дополнительных знаков, характеризующих положение регулирующего органа при прекращении подачи энергии или управляющего сигнала) |
2
Регулирующий орган |
2
Линия связи |
2
Пересечение линий связи без соединения друг с другом |
2
Пересечение линий связи с соединением между собой |
2
В нижней части окружности наносится позиционное обозначение (цифровое или буквенно-цифровое), служащее для нумерации комплекта измерения или регулирования (при упрощенном способе построения условных обозначений) или отдельных элементов комплекта (при развернутом способе построения условных обозначений).
Таблица 4 - Буквенные условные обозначения по ГОСТ 21.404-85
Обозначение |
Измеряемая величина |
Функции, выполняемые прибором |
||||
Основное назначение первой буквы |
Дополнительное назначение, уточняющее назначение первой буквы |
Отображение информации |
Формирование выходного сигнала |
Дополнительное назначение |
||
A |
- |
- |
Сигнализация |
|||
B |
- |
- |
- |
- |
- |
|
C |
- |
- |
- |
Регулирование, управление |
- |
|
D |
Плотность |
Разность, перепад |
- |
- |
- |
|
E |
Любая электрическая величина |
- |
- |
- |
- |
|
F |
Расход |
Соотношение, доля, дробь |
- |
- |
- |
|
G |
Размер, положение, перемещение |
- |
- |
- |
- |
|
H |
Ручное воздействие |
- |
- |
- |
Верхний предел измеряемой величины |
|
I |
- |
- |
Показание |
- |
- |
|
J |
- |
Автоматическое переключение, обегание |
- |
- |
- |
|
K |
Время, временная программа |
- |
- |
- |
- |
|
L |
Уровень |
- |
- |
- |
Нижний предел измеряемой величины |
|
M |
Влажность |
- |
- |
- |
- |
|
N |
Резервная буква |
- |
- |
- |
- |
|
O |
Резервная буква |
- |
- |
- |
- |
|
P |
Давление, вакуум |
- |
- |
- |
- |
|
Q |
Величина, характеризующая качество, состав, концентрацию и т.п. |
Интегрирование, суммирование по времени |
- |
- |
- |
|
R |
Радиоактивность |
- |
Регистрация |
- |
- |
|
S |
Скорость, частота |
- |
- |
Включение, отключение, переключение, сигнализация |
- |
|
T |
Температура |
- |
- |
- |
- |
|
U |
Несколько разнородных измеряемых величин |
- |
- |
- |
- |
|
V |
Вязкость |
- |
- |
- |
- |
|
W |
Масса |
- |
- |
- |
- |
|
X |
Нерекомендуемая резервная буква |
Таблица 5 - Дополнительные буквенные обозначения, отражающие
функциональные признаки приборов по ГОСТ 21.404-85
Наименование |
Обозначение |
|
Чувствительный элемент (первичное преобразование) |
E |
|
Дистанционная передача (промежуточное преобразование) |
T |
|
Станция управления |
K |
|
Преобразование, вычислительные функции |
Y |
Таблица 6 - Дополнительные обозначения, отражающие функциональные признаки преобразователей сигналов и вычислительных устройств по ГОСТ 21.404-85
Наименование |
Обозначение |
|
Род сигнала: |
||
электрический |
E |
|
пневматический |
P |
|
гидравлический |
G |
|
Виды сигнала: |
||
аналоговый |
A |
|
дискретный |
D |
|
Операции, выполняемые вычислительным устройством: |
||
суммирование |
||
умножение сигнала на постоянный |
K |
|
перемножение двух и более сигналов |
? |
|
деление сигналов друг на друга |
: |
|
возведение сигнала f в степень n |
||
извлечение из сигнала f корня степени n |
||
логарифмирование |
lg |
|
дифференцирование |
dx / dt |
|
интегрирование |
||
изменение знака сигнала |
? (-1) |
|
ограничение верхнего значения сигнала |
max |
|
ограничение нижнего значения сигнала |
min |
Порядок расположения буквенных обозначений в верхней части (слева направо) должен быть следующим: обозначение основной измеряемой величины; обозначение, уточняющее (если необходимо) основную измеряемую величину; обозначение функционального признака прибора.
Функциональные признаки (если их несколько в одном приборе) также располагаются в определенном порядке.
Пример построения условного обозначения прибора для измерения, регистрации и автоматического регулирования перепада давления приведен на рисунке 11.
Рисунок 11 - Пример построения условного обозначения прибора для измерения, регистрации и автоматического регулирования перепада давления
При построении условных обозначений приборов следует указывать не все функциональные признаки прибора, а лишь те, которые используются в данной схеме. Так, при обозначении показывающих и самопишущих приборов (если функция «показание» не используется) следует писать TR вместо TIR, PR вместо PIR и т.п.
При построении условного обозначения сигнализатора уровня, блок сигнализации которого является бесшкальным прибором и снабжен контактным устройством и встроенными сигнальными лампами, следует писать:
а) LS - если прибор используется только для дистанционной сигнализации отклонения уровня, включения, выключения насоса, блокировок и т.д.;
б) LA - если используются только сигнальные лампочки самого прибора;
в) LSA - если используются обе функции в соответствии с а) и б);
Размеры графических условных обозначений по ГОСТ 21.404-85 приведены в таблице 7.
Таблица 7 - Размеры графических условных обозначений приборов
и средств автоматизации по ГОСТ 21.404-85
Наименование |
Обозначение |
|
Первичный измерительный преобразователь (датчик), прибор (контролирующий, регулирующий): |
базовое обозначение |
2
допускаемое обозначение |
2
Отборное устройство |
2
Исполнительный механизм |
2
Регулирующий орган |
2
г) LC - если прибор используется для позиционного регулирования уровня.
Условные графические обозначения на схемах должны выполняться линиями толщиной 0,5…0,6 мм.
Горизонтальная разделительная черта внутри обозначения и линии связи должны выполняться линиями толщиной 0,2…0,3 мм.
В обоснованных случаях (например, при позиционных обозначениях, состоящих из большого числа знаков) для обозначения первичных преобразователей и приборов допускается вместо окружности применять обозначения в виде эллипса.
Примеры построения условных обозначений, устанавливаемых ГОСТ 21.404-85, приведены в таблице 8.
При использовании условных обозначений по ГОСТ 21.404-85 необходимо руководствоваться следующими правилами:
1) буква А (см. табл. 4) применяется для обозначения функции сигнализации при упрощенном способе построения условных обозначений, а также при развернутом способе, когда для сигнализации используются лампы, встроенные в сам прибор. Во всех остальных случаях для обозначения контактного устройства прибора применяется буква S и при необходимости символ ламп, гудка, звонка.
Сигнализируемые предельные значения измеряемых величин следует конкретизировать добавлением букв Н и L. Эти буквы наносятся вне графического обозначения, справа от него (см. табл. 8, п.п. 31, 32).
Букву S не следует применять для обозначения функции регулирования (в том числе позиционного);
2) для конкретизации измеряемой величины около изображения прибора (справа от него) необходимо указывать наименование или символ измеряемой величины, например «напряжение», «ток», рН, О2 и т.д.
(см. табл. 8, п.п. 41…43);
3) в случаях необходимости около изображения прибора допускается указывать вид радиоактивности, например а-, Р- или у-излучение (см. табл. 3.7, п. 44);
4) буква U может быть использована для обозначения прибора, измеряющего несколько разнородных величин. Подробная расшифровка измеряемых величин должна быть приведена около прибора или на поле чертежа (см. табл. 8, п.п. 46);
5) для обозначения величин, не предусмотренных данным стандартом, могут быть использованы резервные буквы. Многократно применяемые величины следует обозначать одной и той же резервной буквой.
Для одноразового или редкого применения может быть использована буква X. При необходимости применения резервных буквенных обозначений они должны быть расшифрованы на схеме. Не допускается в одной и той же документации применение одной резервной буквы для обозначения различных величин;
6) для обозначения дополнительных значений прописные буквы D, F, Q допускается заменять строчными d, f, q;
7) в отдельных случаях, когда позиционное обозначение прибора не помещается в окружность, допускается нанесение его вне окружности;
8) буква Е (см. табл. 8) применяется для обозначения чувствительных элементов, т.е. устройств, выполняющих первичное преобразование. Примерами первичных преобразователей являются термометры термоэлектрические (термопары), термометры сопротивления, датчики пирометров, сужающие устройства расходомеров, датчики индукционных расходомеров и т.п.;
9) буква T означает промежуточное преобразование - дистанционную передачу сигнала. Ее рекомендуется применять для обозначения приборов с дистанционной передачей показаний, например бесшкальных манометров (дифманометров), манометрических термометров с дистанционной передачей и т.п.;
10) буква К применяется для обозначения приборов, имеющих станцию управления, т.е. переключатель выбора вида управления (автоматическое, ручное);
11) буква Y рекомендуется для построения обозначений преобразователей сигналов и вычислительных устройств;
12) порядок построения условных обозначений с применением дополнительных букв следующий: на первом месте ставится буква, обозначающая измеряемую величину, на втором - одна из дополнительных букв Е, Т, К или У.
Например, первичные измерительные преобразователи температуры (термометры термоэлектрические, термометры сопротивления и др.) обозначаются ТЕ, первичные измерительные преобразователи расхода (сужающие устройства расходомеров, датчики индукционных расходомеров и др.) - FE; бесшкальные манометры с дистанционной передачей показаний - РТ; бесшкальные расходомеры с дистанционной передачей - FT и т.д.;
13) при применении обозначений из таблицы 6 надписи, расшифровывающие вид преобразования или операции, выполняемые вычислительным устройством, наносятся справа от графического изображения прибора;
14) в обоснованных случаях во избежание неправильного понимания схемы допускается вместо условных обозначений приводить полное наименование преобразуемых сигналов. Также рекомендуется обозначать некоторые редко применяемые или специфические сигналы, например кодовый, времяимпульсный, числоимпульсный и т.д.;
15) при построении обозначений комплектов средств автоматизации первая буква в обозначении каждого прибора, входящего в комплект, является наименованием измеряемой комплектом величины. Например, в комплекте для измерения и регулирования температуры первичный измерительный преобразователь следует обозначать ТЕ, вторичный регистрирующий прибор - TR, регулирующий блок - ТС и т.п.
При построении условных обозначений по ГОСТ 21.404-85 предусматриваются следующие исключения:
1) все устройства, выполненные в виде отдельных блоков и предназначенные для ручных операций, должны иметь на первом месте в обозначении букву H независимо от того, в состав какого измерительного комплекта они входят, например, переключатели электрических цепей измерения (управления), переключатели газовых (воздушных) линий обозначаются HS, байпасные панели дистанционного управления - НС, кнопки (ключи) для дистанционного управления, задатчики - H и т.п.;
2) при обозначении комплекта, предназначенного для измерения нескольких разнородных величин, первичные измерительные преобразователи (датчики) следует обозначать в соответствии с измеряемой величиной, вторичный прибор - UP;
3) в отдельных случаях при построении обозначений комплектов, предназначенных для измерения качества косвенным методом, первая буква в обозначении датчика может отличаться от первой буквы в обозначении вторичного прибора (например, для измерения качества продукта пользуются методом температурной депрессии). Датчиками температуры при этом являются термометры сопротивления, вторичным прибором - автоматический мост. Обозначение такого комплекта при развернутом способе будет следующим: датчики - ТЕ, вторичный прибор - QR (см. табл. 8, п.п. 43).
Щиты, стативы, пульты управления на функциональных схемах изображаются условно в виде прямоугольников произвольных размеров, достаточных для нанесения графических условных обозначений устанавливаемых на них приборов, средств автоматизации, аппаратуры управления и сигнализации по ГОСТ 21.404-85.
Комплектные устройства (машины централизованного контроля, управляющие машины, полукомплекты телемеханики и др.) обозначаются на функциональных схемах также в виде прямоугольников.
Функциональные связи между технологическим оборудованием и установленными на нем первичными преобразователями, а также со средствами автоматизации, установленными на щитах и пультах, на схемах показываются тонкими сплошными линиями. Каждая связь обозначается одной линией независимо от фактического числа проводов или труб, осуществляющих эту связь. К условным обозначениям приборов и средств автоматизации для входных и выходных сигналов линии связи допускается подводить с любой стороны, в том числе сбоку и под углом. Линии связи должны наноситься на чертежи по кратчайшему расстоянию и проводиться с минимальным числом пересечений.
Допускается пересечение линиями связи изображений технологического оборудования и коммуникаций. Пересечение линиями связи условных обозначений приборов и средств автоматизации не допускается.
Таблица 8 - Примеры построения условных обозначений по ГОСТ 21.404-85
№ п.п. |
Наименование |
Обозначение |
1 |
Первичный измерительный преобразователь (чувствительный элемент) для измерения температуры, установленный по месту (термометр термоэлектрический, термометр сопротивления, термобаллон манометрического термометра, датчик пирометра и т.п.) |
2
2 |
Прибор для измерения температуры, показывающий, установленный по месту (термометр ртутный, термометр манометрический и т.п.) |
2
3 |
Прибор для измерения температуры, показывающий, установленный на щите (милливольтметр, логометр, потенциометр, мост автоматический и т.п.) |
2
4 |
Прибор для измерения температуры, бесшкальный, с дистанционной передачей показаний, установленный по месту (термометр манометрический бесшкальный с пневмо- или электропередачей) |
2
5 |
Прибор для измерения температуры, одноточечный, регистрирующий, установленный на щите (милливольтметр самопишущий, логометр, потенциометр, мост автоматический и т.п.) |
2
6 |
Прибор для измерения температуры с автоматическим обегающим устройством, регистрирующий, установленный на щите (потенциометр многоточечный самопишущий, мост автоматический и т.п.) |
2
7 |
Прибор для измерения температуры, регистрирующий, установленный на щите (термометр манометрический, милливольтметр, логометр, потенциометр, мост автоматический и т.п.) |
2
8 |
Регулятор температуры, бесшкальный, установленный по месту (например, дилатометрический регулятор температуры) |
2
9 |
Комплект для измерения температуры, регистрирующий, регулирующий, снабженный станцией управления, установленный на щите (например, вторичный прибор и регулирующий блок системы «Старт») |
2
10 |
Прибор для измерения температуры, бесшкальный, с контактным устройством, установленный по месту (например, реле температурное) |
2
11 |
Байпасная панель дистанционного управления, установленная на щите |
2
12 |
Переключатель электрических цепей измерения (управления), переключатель для газовых воздушных линий, установленных на щите |
2
13 |
Прибор для измерения давления (разрежение), показывающий, установленный по месту (любой показывающий манометр, дифманометр, тягомер, напоромер, вакуумметр и т.п.) |
2
14 |
Прибор для измерения перепада давления, показывающий, установленный по месту (например, дифманометр показывающий) |
2
15 |
Прибор для измерения давления (разрежения), бесшкальный, с дистанционной передачей показаний, установленный по месту (например, манометр, дифманометр бесшкальный с пневмо- или электропередачей) |
2
16 |
Прибор для измерения давления (разрежения), регистрирующий, установленный на щите (например, самопишущий манометр или любой вторичный прибор для регистрации давления) |
2
17 |
Прибор для измерения давления с контактным устройством, установленный по месту (например, реле давления) |
2
18 |
Прибор для измерения давления (разрежения), показывающий, с контактным устройством, установленный по месту (электроконтактный манометр, вакуумметр и т.п.) |
2
19 |
Регулятор давления, работающий без использования постороннего источника энергии (регулятор давления прямого действия), «до себя» |
2
20 |
Первичный измерительный преобразователь (чувствительный элемент) для измерения расхода, установленный по месту (диафрагма, сопло, труба Вентури, датчик индукционного расходомера и т.п.) |
2
21 |
Прибор для измерения расхода, бесшкальный, с дистанционной передачей показаний, установленный по месту (например, бесшкальный дифманометр или ротаметр с пневмо- или электропередачей) |
Подобные документы
Методические и технологические аспекты проблемы разработки автоматизированных систем обучения, предназначаемых для подготовки специалистов по эксплуатации и применению сложных АТК. Назначение, цели, ожидаемый эффект применения АСО и пути их достижения.
статья [154,7 K], добавлен 21.07.2011Сущность, предназначение, признаки, функции и виды автоматизированных складских систем (АСС) м автоматизированных транспортных систем (АТС). Составные элементы и оборудование АСС И АТС, его характеристика и предназначение. Система управления АСС И АТС.
реферат [71,5 K], добавлен 05.06.2010Обзор основных функций автоматизированных систем управления технологическими процессами (АСУ ТП), способы их реализации. Виды обеспечения АСУ ТП: информационное, аппаратное, математическое, программное, организационное, метрологическое, эргономическое.
презентация [33,7 K], добавлен 10.02.2014Классификация автоматизированных информационных систем по сфере функционирования объекта управления, видам процессов. Производственно-хозяйственные, социально-экономические, функциональные процессы, реализуемые в управлении экономикой, как объекты систем.
реферат [27,5 K], добавлен 18.02.2009Исследование сущности матричного метода расчета надежности автоматизированных систем. Определение вероятности отсутствия отказов элементов. Практическая реализация оптимального резервирования. Анализ различных подходов и классификаций ошибок персонала.
контрольная работа [1008,0 K], добавлен 02.04.2016Сущность и структура гибкого автоматизированного механизма. Характеристика основного технологического оборудования. Сущность и главное назначение автоматизированных транспортно-складских систем. Автоматизированные системы инструментального обеспечения.
контрольная работа [43,7 K], добавлен 27.07.2010Понятие модели системы. Принцип системности моделирования. Основные этапы моделирования производственных систем. Аксиомы в теории модели. Особенности моделирования частей систем. Требования умения работать в системе. Процесс и структура системы.
презентация [1,6 M], добавлен 17.05.2017Основные определения процесса проектирования, его системы, стадии и этапы. Системы автоматизации подготовки производства, управления производством, технической подготовки производства, оценка их практической эффективности. Структура и разновидности САПР.
курсовая работа [109,4 K], добавлен 21.12.2010Анализ конструкций блок-контейнеров и применяемых систем автоматизированного проектирования. Разработка модификации, технологического процесса производства в рамках автоматизированных систем. Внутренняя планировка блок-контейнеров модульного городка.
дипломная работа [1,6 M], добавлен 27.10.2017Этапы развития автоматизации производства. История создания и усовершенствования средств для измерения и контроля. Понятие и структурная схема систем автоматического контроля, их компоненты. Особенности и области использования микропроцессорных устройств.
курсовая работа [271,5 K], добавлен 09.01.2013