Кристаллизация сплавов системы железо-углерод

Первичная кристаллизация сплавов системы железо-углерод. Расшифровка марки стали У12А, температура полного и неполного отжига, закалки, нормализации. Влияние легирующих элементов на линии диаграммы Fe-Fe3C, на термическую обработку и свойства стали.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 16.05.2015
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Тверской государственный технический университет»

Кафедра «Технологии металлов и материаловедение»

Дисциплина: «Материаловедение»

Курсовая работа вариант №11

Выполнил:

Давыдов Дмитрий Сергеевич

Студент 1 курса группы ЭЛЕ-110

Проверил

Беликов Александр Владимирович

Тверь 2015

Задание 1

Вычертите диаграмму состояния железо - карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 5,0% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линиюAHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в б-железе (д-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием б (д)-твердого раствора. На линии HJBпротекает перитектическое превращение, в результате которого образуется твердый раствор углерода в г-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах,содержащих от 4,3 % до 6,67 % углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических -- аустенит + ледебурит, эвтектических -- ледебурит и заэвтектических -- цементит (первичный)+ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении г-железа в б-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавысостоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшениярастворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,03+Ц6,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точка Q), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% - структуру феррит + цементит третичный и называются техническим железом.

Доэвтектоидные стали при температуре ниже 727єС имеют структуру феррит + перлит и заэвтектоидные - перлит + цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147-727єС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода (линия ES). По достижении температуры 727єС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).

Структура эвтектических чугунов при температурах ниже 727єС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727єС состоит из ледебурита превращенного и цементита первичного.

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

C = K + 1 - Ф,

где С - число степеней свободы системы;

К - число компонентов, образующих систему;

1 - число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

Ф - число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 5,0%С, называется заэвтектическим чугуном. Его структура при комнатной температуре - цементит (первичный) + ледебурит (перлит + цементит).

а) б)

Рисунок 1: а-диаграмма железо-цементит,

б-кривая охлаждения для сплава, содержащего 5,0% углерода.

Задание 2

Вычертите участок диаграммы Fe-Fe3C для стали и нанесите на нем линии температур нагрева сталей для термической обработки.

1) Расшифруйте марку стали У12А, определите группу пo назначению, назовите изготавливаемые из этой стали детали.

2) Пo диаграмме Fe-Fe3C определите температуры полного и неполного отжига, полной и неполной закалки, нормализации для указанной стали.

3) Назовите охлаждающие cpеды и опишите цель, структуру и свойства стали после каждого вида термообработки.

4) Какой вид термообработки и почему рационально применять для заданной стали.

Ответ:

У12А - инструментальная углеродистая сталь высокого качества, с содержанием углерода 1,2% (заэвтектоидная). Применяется: для изготовления сердечников; ручных метчиков, напильников, слесарных шаберов; деталей штампов холодной штамповки обрезных и вырубных небольших размеров и без переходов по сечению; холодновысадочных пуансонов и штемпелей мелких размеров; калибров простой формы и пониженных классов точности; инструментов с пониженной износостойкостью при умеренных и значительных удельных давлениях (без разогрева режущей кромки): напильников, бритвенных лезвий и ножей, острых хирургических инструментов, шаберов, гравировальных инструментов; холоднокатаной термообработанной ленты толщиной 0,05-1,30 мм и плющеной термообработанной ленты толщиной 0,15-2,00 мм для изготовления пружинящих деталей и пружин, за исключением заводных.

Нанесем на диаграмму Fe-Fe3C линию, соответствующую У12А (рис. 3):

Рис. 3. «Стальной угол» диаграммы «Железо-цементит»

А1 A3, Аcm - общепринятые обозначения критических линий

Как видим, температура критических точек для стали У12А: А1 = 727С и Асm = 830C.

Отжигом, называют процесс термической обработки, заключающийся в нагреве стали до определенной температуры и последующем, как правило, медленном охлаждении (с печью) для получения более равновесной структуры.

Также отжиг делится на полный и неполный.

- при полном отжиге сталь нагревают на 30-50 °С выше верхней критической точки, в нашем случае Асm = 830C. При этом структура стали превращается в аустенит - структурную составляющую углеродистых и легированных сталей и чугунов, возникающую при термической обработке сплавов в соответствии с диаграммой состояния железо-углерод. Далее идет медленное охлаждение до 500-600°С, это необходимо для образования феррита и перлита. Углеродистые стали охлаждаются со скоростью 50-100°С/ч.

Заэвтектоидную сталь полному отжигу не подвергают по следующим причинам. Для полного отжига заэвтектоидной стали ее нужно нагревать до температуры на 30-50°C выше критической точки Асm (870С), т.е. на 30-50°С выше линии SE диаграммы железо-цементит. При нагреве до такой температуры будет происходить превращение исходной структуры цементит + перлит в структуру аустенита. При последующем медленном охлаждении цементит будет выделяться по границам зерен аустенита и после превращения аустенита в перлит при температурах, соответствующих критической точке Аr1 в результате образуется структура цементит + перлит, но цементит будет расположен в виде сетки по границам зерен перлита. Сталь с такой структурой обладает низкими механическими свойствами. В случае охлаждения стали на воздухе произойдет нормализация. Нормализация заэвтектоидных сталей ведется с нагревом выше Асm с целью устранения сетки цементита.

- при неполном отжиге сталь нагревают до температур между верхней и нижней критической точками, Ас1 + 30-50С, в нашем случае 760-780С. Далее медленно охлаждают. При неполном отжиге в аустенит превращается лишь перлит и незначительная часть вторичного цементита. Бoльшая часть цементита сохраняется и препятствует росту аустенитного зерна. При последующем охлаждении вместе с печью аустенит превращается в перлит. Таким образом, заэвтектоидная сталь после неполного отжига имеет структуру перлита и вторичного цементита, которая характеризуется достаточно высокой пластичностью, низкой твердостью и удовлетворительной обрабатываемостью на станках.

Неполный отжиг проводят практически для инструментальных заэвтектоидных сталей, только в том случае, если в структуре нет цементита по границам зерен (сетка цементита). Если есть сетка цементита, то для ее устранения применяют нормализацию (охлаждение от GSE + 30-50C на воздухе).

Закалкой называется нагрев стали выше критических точек, изотермическую выдержку и охлаждение с высокой скоростью в специальной среде - охладителе ( вода, водные растворы солей или щелочей, индустриальное масло ). Цель закалки - получение максимальной прочности и твердости.

Различают полную и неполную закалку. Температура нагрева доэвтектоидной стали под закалку соответствует температуре полного отжига, а заэвтектоидной стали - температуре неполного отжига. В последнем случае сознательно оставляют в структуре нагретой стали цементит, как твердую фазу, конкурирующую по твердости с мартенситом (основной структурой закалки).

Таким образом, оптимальными режимами термической обработки для нашей стали будет: неполный отжиг, нормализация и неполная закалка.

Задание 3

Для некоторых деталей выбрана легированная сталь марки 15ХСНД.

Расшифруйте состав, определите группу стали по назначению, назовите детали, изготавливаемые из этой стали.

Назначьте и обоснуйте режим термической обработки, опишите структуру и свойства стали после термообработки.

Объясните влияние легирующих элементов на точки и линии диаграммы Fe-Fe3C, на термическую обработку и свойства стали.

Ответ: Для предложенных условий подходит конструкционная низколегированная сталь для сварных конструкций - 15ХСНД (в = 500 МПа), ферритно-перлитного класса.

Назначение: элементы сварных металлоконструкций и различные детали, к которым предъявляются требования повышенной прочности и коррозионной стойкости с ограничением массы и работающие при температуре от -70 до 450°С кристаллизация сплав сталь термический

Содержание углерода (15) - 0,15%. Содержание легирующих элементов: хром (Х), кремний (С) и никель (Н) до 1%, медь (Д) до 0,5%.

Никель, медь и хром оказывают положительное влияние на хладостойкость стали. Кремний оказывает вредное влияние на порог хладноломкости, но это начинает проявляться при содержании его в стали более 0,8 %. В данном случае кремний вводят для упрочнения стали, при этом мало изменяются пластические свойств, а ударная вязкость KCU снижается. Введение меди и никеля также повышает коррозионную стойкость стали в атмосферных условиях.

Все легирующие элементы улучшают прокаливаемость стали.

Сталь 15ХСНД как правило поступает после закалки и отпуска, что значительно повышает ее прочность, понижает порог хладноломкости и уменьшает склонность к старению.

Низколегированные стали, как и углеродистые, следует закаливать в воде (и лишь при малых размерах - в масле), так как малая устойчивость переохлажденного аустенита в районе перлитного распада (600 °С) требует быстрое охлаждение при закалке.

Закалка стали на мартенсит - это первый этап термической обработки конструкционной стали. Низкая пластичность, значительные внутренние напряжения не допускают применения конструкционной стали только в закаленном состоянии. Необходим отпуск, повышающий пластичность и вязкость и уменьшающий внутренние напряжения. Таким образом, отпуск - завершающая операция термической обработки конструкционной стали, окончательно формирующая ее свойства.

Температуры критических точек 15ХСНД: Ас1 = 730С, Ас3 = 885С. Исходная структура ферритно-перлитная.

Сталь доэвтектоидная поэтому проводим полную закалку Ас3 + 50С от температуры 900-930С в воде. В результате полученная структура легированного мартенсита + остаточный аустенит - отличается высокой твердостью, прочностью и малой пластичностью

После закалки проводим высокий отпуск при 550-650С. Структура стали после высокого отпуска представляет собой однородный легированный сорбит отпуска. Область применения высокого отпуска - конструкционные стали, детали из которых подвергают действию высоких напряжений и ударным нагрузкам.

Термическая обработка, состоящая из закалки с высоким отпуском, улучшающая общий комплекс механических свойств (высокий отпуск повышает вязкость стали; прочность и твердость ее немного снижаются, но остаются все же значительными), является основным видом термической обработки конструкционных сталей - называется улучшением стали.

Комплексно легированные элементы стали смещают вправо С-образные кривые, увеличивая тем самым область устойчивости аустенита. Хром как карбидообразующий элемент, снижает склонность аустенитного зерна к росту, измельчая его.

При закалке легирующие элементы, снижая линию мартенситного превращения, тем самым увеличивают количество остаточного аустенита в стали.

При отпуске легирующие элементы замеляют процесс распада мартенсита, особенно кремний, это связано с тем, что процессы при отпуске имеют диффузионный характер, а наши элементы замедляют карбидное превращение. Так как в легированных сталях сохраняется значительное количество остаточного аустенита, то превращение его в мартенсит отпуска способствует сохранению твердости до высоких температур. Таким образом, легированные стали при отпуске нагревают до более высоких температур или увеличивают выдержку.

Задание 4

Для изготовления деталей машин и приборов выбран сплав цветного металла ЛО90-1.

Расшифруйте состав, укажите, к какой группе относится сплав, приведите примеры деталей из него

Опишите влияние легирующих элементов.

Назовите термообработку, возможности упрочнения, режим, структуру и свойства сплава.

Ответ:

ЛО90-1 - оловянная «морская» сложная латунь, обрабатываемая давлением.

Применяется: для изготовления полосового проката, проволоки и лент; деталей различного промышленного назначения; конденсаторных труб, теплотехнической аппаратуры.

Химический состав в % ЛО90-1 (ГОСТ 15527 - 2004):

Fe

P

Cu

Pb

Zn

Sb

Bi

Sn

Прим.

до 0,1

до 0,01

88-91

до 0,03

8-11,7

до 0,005

до 0,002

до 0,2-0,7

всего 0,2

Литейно-технологические свойства материала ЛО90-1:

- температура плавления: 1015°C;

- температура горячей обработки: 700 - 800°C;

- температура отжига: 550 - 650°C;

ЛО90-1 относится к числу однофазных латуней (Zn < 39%) (б-латуней, где б-фаза является твердым раствором цинка в меди) и имеет кри-сталлическую решетку гранецентрированного куба. Однофазные б-латуни не имеют фазовых превращений, поэтому они не подвергаются термической обработке.

Содержание олова в количестве 0,5-1,5% повышает прочность и твердость латуни, но снижает пластичность и вязкость, т.к. уменьшает растворимость цинка в меди. Олово повышает коррозионную стойкость латуни в морской воде из-за изменения природы -фазы. С целью повышения прочности латунь подвергают наклепу. В связи с этим латунь подразделяется на твердую (подвергнута деформированию на 25-50%) и мягкую (после отжига при температуре 600-650С).

Механические свойства твердой латуни ЛО90-1:

ув = 480-560 МПа, д = 3-6%, твердость 140-155 НВ.

Задание 5

Выбран неметаллический материал стеклопластик.

Укажите состав и свойства, назначение материала, назовите изготавливаемые из него детали.

Опишите строение, применяемую обработку, рабочие характеристики материала, предъявляемые к нему требования, границы применимости.

Стеклопластик - композиционный материал, состоящий из стеклянного наполнителя и синтетического полимерного связующего. Наполнителем служат в основном стеклянные волокна в виде нитей, жгутов (роввингов), тканей, матов, рубленых волокон; связующим - полиэфирные, феноло-формальдегидные, эпоксидные, кремнийорганические смолы, полиимиды, алифатические полиамиды, поликарбонаты и др. Для стеклопластика характерно сочетание высоких прочностных, диэлектрических свойств, сравнительно низкой плотности и теплопроводности, высокой атмосферо-, водо- и химстойкости. Механические свойства стеклопластика определяются преимущественно характеристиками наполнителя и прочностью связи его со связующим, а температуры переработки и эксплуатации - связующим. Наибольшей прочностью и жёсткостью обладают стеклопластики, содержащие ориентированно расположенные непрерывные волокна. Такие стеклопластики подразделяются на однонаправленные и перекрёстные; у первых волокна расположены взаимно параллельно, у вторых - под заданным углом друг к другу, постоянным или переменным по изделию. Изменяя ориентацию волокон, можно в широких пределах регулировать механические свойства стеклопластиков.

Большей изотропией механических свойств обладают стеклопластики с неориентированным расположением волокон: материалы на основе рубленых волокон, нанесённых на форму методом напыления одновременно со связующим, и на основе холстов (матов). Диэлектрическая проницаемость стеклопластиков 4-14, тангенс угла диэлектрических потерь 0,01-0,05.

Изделия из стеклопластика с ориентированным расположением волокон изготавливают методами намотки, послойной выкладки или протяжки с последующим автоклавным, вакуумным или контактным формованием либо прессованием, из пресс-материалов - прессованием и литьём.

Примеры изделий из стеклопластика.

Стеклопластик применяют как конструкционный и теплозащитный материал при производстве корпусов лодок, катеров, судов и ракетных двигателей, кузовов автомобилей, цистерн, рефрижераторов, радиопрозрачных обтекателей, лопастей вертолётов, выхлопных труб, деталей машин и приборов, коррозионностойкого оборудования и трубопроводов, небольших зданий, бассейнов для плавания и др., а также как электроизоляционный материал в электро- и радиотехнике.

Свойства стеклопластика.

Стеклопластик обладает многими очень ценными свойствами, дающими ему право называться одним из материалов будущего. Ниже перечислены некоторые из них.

Малый вес. Удельный вес стеклопластиков колеблется от 0,4 до 1,8 и в среднем составляет 1,1 г/см3. Напомним, что удельный вес металлов значительно выше, например, стали - 7,8, а меди - 8,9 г/см3. Даже удельный вес одного из наиболее легкого сплава, применяемого в технике, - дуралюмина составляет 2,8 г/см3. Таким образом, удельный вес стеклопластика в среднем в пять-шесть раз меньше, чем у черных и цветных металлов, и в два раза меньше, чем у дуралюмина. Это делает стеклопластик особенно удобным для применения на транспорте. Экономия в весе на транспорте переходит в экономию энергии; кроме того, за счет уменьшения веса транспортных конструкций (самолетов, автомобилей, судов и т.п.) можно повысить их полезную нагрузку и за счет экономии топлива увеличить радиус действия.

Диэлектрические свойства. Стеклопластики являются прекрасными электроизоляционными материалам при использовании как переменного, так и постоянного тока.

Высокая коррозионная стойкость. Стеклопластики как диэлектрики совершенно не подвергаются электрохимической коррозии. Существует целый ряд смол (некоторые полиэфирные смолы, смолы Norpol DION), позволяющие получить стеклопластики стойкие к различным агрессивным средам, в том числе и к воздействию концентрированных кислот и щелочей.

Хороший внешний вид. Стеклопластики при изготовлении хорошо окрашиваются в любой цвет и при использовании стойких красителей могут сохранять его неограниченно долго. Прозрачность. На основе некоторых марок светопрозрачных смол можно изготовить стеклопластики, по оптическим свойствам немногим уступающим стеклу.

Высокие механические свойства. При своем небольшом удельном весе стеклопластик обладает высокими физико-механическими характеристиками. Используя некоторые смолы, например Norpol Dion, и определенные виды армирующих материалов, можно получить стеклопластик, по своим прочностным свойствам превосходящий некоторые сплавы цветных металлов и стали.

Теплоизоляционные свойства. Стеклопластик относится к материалам с низкой теплопроводностью. Кроме того, можно значительно повысить теплоизоляционные свойства путем изготовления стеклопластиковой конструкции типа “сэндвич”, используя между слоями стеклопластика пористые материалы, например пенопласт. Благодаря своей низкой теплопроводности, стеклопластиковые сэндвичевые конструкции с успехом применяются в качестве теплоизоляционных материалов в промышленном строительстве, в судостроении, в вагоностроении и т.д.

Простота в изготовлении. Существует много способов изготовления стеклопластиковых изделий, большинство из которых требует минимальных вложений в оборудование. Например, для ручного формования потребуются только матрица и небольшой набор ручных инструментов (прикаточные валики, кисти, мерные сосуды и т.д.). Матрица может быть изготовлена практически из любого материала, начиная с дерева и заканчивая металлом. В настоящие время широкое распространение получили стеклопластиковые матрицы, которые имеют сравнительно небольшую стоимость и длительный срок службы.

Производство стеклопластика.

Стеклопластик получают путем горячего прессования стекловолокна, перемешанного с синтетическими смолами. В стеклопластиках стекловолокно играет роль армирующего материала, придающего изделиям высокую механическую прочность при малой плотности.

В настоящее время существует целый ряд различных смол, используемых в производстве стеклопластиковых изделий. Наибольшее распространение получили полиэфирные, винилэфирные и эпоксидные смолы. В зависимости от метода формования, химсостава и области применения все смолы можно разделить на следующие группы:

а) по методу формования:

для ручного формования

для вакуумной инжекции

для горячего прессования

для процессов намотки

для пультрузии

б) по области применения:

обычные конструкционные

химстойкие

огнестойкие

теплостойкие

светопрозрачные

Основные методы изготовления стеклопластиковых изделий.

Ручное (контактное) формование.

При этом методе стеклоармирующий материал вручную пропитывается смолой при помощи кисти или валиков. Затем пропитанный стекломат укладывается в форму, где он прикатывается прикаточными валиками. Прикатка осуществляется с целью удаления из ламината воздушных включений и равномерного распределения смолы по всему объему. Отверждение ламината происходит при обычной комнатной температуре, после чего изделие извлекается из формы и подвергается мехобработке (обрезка облоя, высверливание отверстий и т.д.)

Применяемые материалы:

Смолы: Любые, например эпоксидные, полиэфирные, винилэфирные.

Волокна: Любые.

Наполнители: Любые, стойкие к используемым смолам.

Основные преимущества:

Широко используется в течении многих лет.

Простота процесса.

Недорогие используемые инструменты, если используются смолы, отверждаемые при комнатной температуре.

Широкий выбор поставщиков и материалов.

Более высокое содержание стеклянного наполнителя и более длинные волокна по сравнению с методом напыления рубленного роввинга.

Основные недостатки:

Качество смеси смолы и катализатора, качество ламината, содержание стеклообразующего в ламинате очень зависят от квалификации рабочих.

Высокая вероятность воздушных включений в ламинате.

Малая производительность метода.

Вредные условия труда.

Метод напыления рубленного роввинга.

Стеклонить подается в ножи пистолета, где она рубится на короткие волокна. Затем они в воздухе смешиваются с струей смолы и катализатора и наносятся на форму. После нанесения рубленного роввинга, его необходимо прикатать с целью удаления из ламината воздушных включений. Прикатанный материал оставляют отвердевать при обычных атмосферных условиях.

Применяемые материалы:

Смолы: Прежде всего полиэфирные.

Волокна: Только стеклонить в виде роввинга (ровницы).

Наполнители: Любые, стойкие к стиролу. Укладываются вручную.

Основные преимущества:

Широко используется много лет.

Быстрый путь нанесения волокна и смолы.

Дешевые формы.

Основные недостатки:

Ламинаты имеют тенденцию быть очень богатыми смолой и поэтому чрезмерно тяжелыми.

Присутствуют только короткие волокна, которые ограничивают механические свойства ламината.

Смолы должны быть с низкой вязкостью для возможности их напыления. Это приводит к уменьшению их механических свойств и теплостойкости.

Вредные условия труда, большое содержаний в воздухе мелких частиц стекла.

Качество конечного продукта в основном зависит от мастерства оператора установки.

Метод RTM.

Стеклоармирующий материал укладывается на матрицу в виде заранее заготовленных выкроек. Затем укладывается пуансон, который прижимается к матрице при помощи прижимов. Смола подается в полость формы под рассчитанным давлением. Иногда, для облегчения прохода смолы через материал используется вакуум, который создается внутри формы. Как только смола пропитала весь стекломатериал, инжекцию останавливают и ламинат оставляют в форме до полного отверждения. Отверждение может проходить при обычной или повышенной температурах.

Применяемые материалы:

Смолы: эпоксидные, полиэфирные, винилэфирные.

Волокна: Любые. Желательно использовать специально предназначенные для этого стекломатериалы с проводящим слоем и механически связанными волокнами.

Наполнители: Любые стойкие к стиролу, кроме материалов в виде сот.

Основные преимущества:

Могут быть получены ламинаты с высоким содержанием стекла и с минимальным содержанием пустот.

Хорошие условия труда и окружающей среды. Нет большого выброса вредных веществ.

Возможно сокращение трудовых затрат и времени на изготовление изделия. Один рабочий может обслуживать одновременно несколько аппаратов, производяших инжекцию.

Вся форма изделия имеет глянцевую поверхность.

Минимизированы отходы материалов.

Основные недостатки:

Дорогие и сложные формы.

Сложность процесса.

Необходимость иметь инжекционное оборудование.

Метод пультрузии.

Волокна подаются от катушечной рамы до ванны со смолой и затем проходят через нагретую фильеру. В фильере убираются излишки смолы, происходит профилирование ламината и отверждение материала. После этого отвержденный профиль автоматически обрезается на необходимые длины.

Применяемые материалы.

Смолы: Эпоксидная смола, полиэфирная смола, винилэфирная смола.

Волокна: Любые.

Наполнители: Не используются.

Основные преимущества:

Это может быть очень быстрый процесс пропитки и отверждения материала.

Автоматизированное управление содержанием смолы в ламинате.

Недорогие материалы.

Хорошие структурные свойства ламинатов, так как профили имеют направленные волокна и высокое содержание стекломатериала.

Закрытый процесс пропитки волокна.

Основные недостатки:

Ограниченная номенклатура изделий.

Дорогое оборудование.

Метод намотки.

Этот процесс прежде всего используется для изготовления пустотелых круглых или овальных секционных компонентов, типа труб или резервуаров. Волокна пропускаются через ванну со смолой, затем через натяжные валики, служащие для натяжения волокна и удаления излишков смолы. Волокна наматываются на сердечник с необходимым сечением, угол намотки контролируется отношением скорости движения тележки к скорости вращения.

Применяемые материалы:

Смолы: Любые.

Волокна: Любые, волокна подаются напрямую от рамы для катушек без дополнительного сшивания в ткань.

Наполнители: Любые.

Основные преимущества:

Это может быть очень быстрый и поэтому экономически выгодный метод укладки материала.

Регулируемое соотношение смола/стекло.

Высокая прочность при малом собственном весе.

Неподверженность коррозии и гниению

Недорогие материалы

Хорошие структурные свойства ламинатов, так как профили имеют направленные волокна и высокое содержание стекломатериала.

Основные недостатки:

Ограниченная номенклатура изделий.

Дорогое оборудование.

Волокно трудно точно положить по длине сердечника.

Высокие затраты на сердечник для больших изделий.

Рельефная лицевая поверхность.

Метод RFI (Resin Film Infusion).

Сухие ткани выкладываются вместе со слоями полутвердой пленки из смолы. Весь полученный пакет закрывается специальной пленкой. Сначала между пленкой и формой создается вакуум, после чего форму помещают в термошкаф или автоклав. Под воздействием температуры смола переходит в текучее состояние и благодаря вакууму пропитывает материал. После некоторого времени смола полимеризуется.

Применяемые материалы:

Смолы: Только эпоксидная смола.

Волокна: Любые.

Наполнители: Почти все, хотя ПВХ пена нуждается в специальной обработке из-за высоких температур процесса.

Основные преимущества:

Могут быть получены ламинаты с высоким содержанием стекла и с минимальным содержанием пустот.

Высокие физико-механические характеристики из-за твердого начального состояния полимера и высоких температур отверждения.

Более низкая стоимость процесса по сравнению с методом препрегов.

Хорошие условия труда и окружающей среды. Нет большого выброса вредных веществ.

Основные недостатки:

Мало применяется вне аэрокосмической промышленности.

Для процесса необходима система вакуумного мешка, термошкаф или автоклав.

Требования к оборудованию и инструменту по температуростойкости.

Метод препрегов.

Препрег - предварительно пропитанная смолами стеклоткань.

Ткани и волокна предварительно пропитаны пред-катализированной смолой под высокой температурой и давлением. В таком виде препреги могут хранится до нескольких недель, однако для увеличения срока хранения, их хранят при пониженных температурах. Смола в препрегах находится в полутвердом состоянии. При формовании препреги укладываются на поверхность формы и закрываются вакуумным мешком. Затем происходит их нагревание до температуры примерно 120 - 180 град.C при этой температуре смола переходит в текучие состояние и препрег принимает размеры формы. Далее при дальнейшем повышении температуры происходит отверждение смолы. Дополнительное давление (до 5 атмосфер) для формования обычно обеспечивается автоклавом.

Применяемые материалы:

Смолы: Эпоксидные, полиэфирные, фенольные и высокотемпературные смолы типа полиимидных др.

Волокна: Любые.

Наполнители: Любые стойкие к температурам процесса.

Основные преимущества:

Могут быть получены ламинаты с высоким содержанием стекла и с минимальным содержанием пустот.

Хорошие условия труда и окружающая среда. Нет большого выброса вредных веществ.

Возможность автоматизировать процесс и снизить трудовые затраты.

Основные недостатки:

Высокая стоимост материалов

Для отверждения необходимы автоклавы, которые ограничивают размеры выпускаемых изделий.

Используемая литература

Арзамасов Б.Н., Макарова В.И., Мухин Г.Г. Материаловедение: Учебник. 3 - е изд. М.: Изд - во МГТУ им. Н.Э. Баумана, 2001. 648 с.

Материаловедение и технология металлов / Г.П. Фетисов, М.Г. Карпман, В.М. Матюнин. М.: Высшая школа, 2000. 638 с.

Материаловедение - учебники любых авторов, справочники, ГОСТы по металлам и сплавам.

Размещено на Allbest.ru


Подобные документы

  • Физико-химические основы термической и химико-термической обработки материалов. Структуры и превращения в системе железо-углерод. Защитно-пассивирующие неорганические и лакокрасочные покрытия. Основы строения вещества. Кристаллизация металлов и сплавов.

    методичка [1,2 M], добавлен 21.11.2012

  • Виды ликвации, причины возникновения и способы устранения. Определение ударной вязкости. Характеристики механических свойств металла. Первичная кристаллизация сплавов системы железо-углерод. Диаграмма изотермического превращения аустенита для стали У8.

    контрольная работа [1,2 M], добавлен 22.09.2013

  • Процесс легирования стали и сплавов - повышение предела текучести, ударной вязкости, прокаливаемости, снижение скорости закалки и отпуска. Влияние присадок легирующих элементов на механические, физические и химические свойства инструментальной стали.

    курсовая работа [375,9 K], добавлен 08.08.2013

  • Микроструктура и углеродистых сталей в отожженном состоянии, зависимость между их строением и механическими свойствами. Изучение диаграммы состояния железо - углерод. Кривая охлаждения сплавов. Структура белого, серого, высокопрочного и ковкого чугуна.

    презентация [1,5 M], добавлен 21.12.2010

  • Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Диаграмма состояния Fe–Fe3C. Компоненты и фазы железоуглеродистых сплавов, процессы при их структурообразовании. Состав и компоненты структуры стали и чугуна.

    презентация [6,3 M], добавлен 14.10.2013

  • Характерные особенности диаграммы железо-углерод. Обработка металлов давлением: ковка, штамповка, прокатка, прессование. Правила работы с электролитом для кислотных аккумуляторов. Понятие системы электросвязи, канала связи. Радиостанция Моторола Р040.

    контрольная работа [959,0 K], добавлен 11.10.2010

  • Кристаллизация и твердофазные превращения в белых чугунах, их характеристика, структура и свойства, эвтектические превращения, содержание цементита. Виды диаграмм состояния железо-углеродистых сплавов. Понятия чистое техническое железо, сталь и чугун.

    контрольная работа [1,2 M], добавлен 17.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.