Технологические схемы производства различных видов керамики

Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 02.03.2011
Размер файла 74,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кирпич глиняный пустотелый и пористо-пустотелый изготовляется по способу пластического формования из глин с выгорающими добавками или без них. Массу, применяемую для выработки этого кирпича, обрабатывают более тщательно, чем для обыкновенного. Вакуумные прессы оборудованы специальными приспособлениями для получения в кирпиче отверстий, так называемыми кернами. Их устанавливают на металлической гребенке внутри мундштука у выхода глиняного бруса из пресса. Сквозные отверстия, количество которых может быть различным, располагают в кирпиче перпендикулярно постели. Поверхность граней кирпича может быть гладкой или рифленой.

Размеры вырабатываемого нашими заводами пустотелого кирпича пластического формования должны быть следующими (в мм): длина 250±6, ширина 120±4 и толщина (88 или 65) ±3.

Пустотелый кирпич в соответствии с техническими условиями (ГОСТ 6316--55) подразделяют на четыре марки в зависимости от предела прочности при сжатии по сечению брутто, т. е. без вычета площади отверстий. В табл. 7 приведены показатели пределов прочности при сжатии и изгибе.

Кирпич пустотелый пластического формования, высушенный до постоянного веса, разделяют по объемному весу брутто на два класса: класс А -- с объемным весом до 1300 кг/м3 включительно и класс Б --с объемным весом более 1300 (но не выше 1450) кг/м3. Водопоглощение кирпича должно быть не менее 6% от его веса в абсолютно сухом состоянии. По морозостойкости этот вид кирпича должен отвечать всем требованиям, предъявляемым к обыкновенному кирпичу.

Применяют такой кирпич для кладки наружных и внутренних стен, а также для заполнения стен каркасных зданий. Для помещений с режимом повышенной влажности (бань, прачечных и др.) использование его не допускается.

Кирпич глиняный пустотелый полусухого прессования

Этот стеновой материал выпускается с несквозными пустотами, расположенными перпендикулярно постелям. Число пустот может быть четыре и больше, часто вырабатывается кирпич с 8 и 18 пустотами; в первом случае диаметр пустот равен 35-- 45 мм, а во втором 17--18 мм . Размеры этого кирпича: длина 250±4, ширина 120 + 3 и толщина (88 или 65) ±3 мм. Качество кирпича, а также форма, количество и размеры пустот нормируются ГОСТ 6248--59.

Прочностные показатели этого кирпича такие же, как и пустотелого кирпича пластического формования. Объемный вес кирпича брутто в высушенном до постоянного веса состоянии не должен превышать

1450 кг/м3, т. е. соответствовать классу В. Марки этого кирпича, устанавливаемые по пределу прочности при сжатии, аналогичны маркам пустотелого кирпича пластического формования. Водопоглощение должно быть не менее 8% от веса кирпича, высушенного до постоянного веса. Показатели морозостойкости аналогичны показателям обыкновенного кирпича. Применяется кирпич в строительстве наравне с пустотелым кирпичом пластического формования.

Камни керамические пустотелые пластического формования

Такие камни по основному назначению разделяются на два вида: для кладки несущих стен одноэтажных и многоэтажных зданий и для кладки внутренних ненесущих стен и перегородок. На 25 показаны камни с различными по количеству, объему и конфигурации пустотами.

Изготовляются камни из легкоплавких глин с добавками или без них, со сквозными пустотами путем формования и последующего обжига. Глина предварительно сушится и тонко размалывается, масса тщательно перерабатывается и увлажняется. Формуют камни на вакуумных прессах при вакууме 700 мм рт. ст. и выше. Технология производства в общем аналогична технологии изготовления пустотелого кирпича. Камни изготовляют в форме прямоугольного параллелепипеда с прямыми ребрами и ровными или рифлеными поверхностями (для усиления сцепления с вяжущими растворами и в декоративных целях); сквозные пустоты расположены перпендикулярно постелям.

Нашей промышленностью выпускаются камни следующих размеров: длина (250, 190 и 290) ±6 мм, ширина (120, 70, 90 и 190) ±4 мм, толщина (138, 188 и 288) ±4 мм. Объемный вес камней (брутто) находится в пределах 1300--1450 кг/мг, т. е соответствует классу В. По морозостойкости камни удовлетворяют требованиям, предъявляемым к обыкновенному кирпичу, водопоглощение их не менее 6% от веса камней, высушенных до постоянного веса.

Пустотелые камни поставляются на строительные объекты в комплекте с дополнительными отделочными камнями (для выкладки карнизов, поясов и т. п.). Не допускается применение пустотелых камней для кладки фундаментов и цоколей зданий, а также для наружных стен помещений с большой влажностью.

Кирпич строительный легкий

Легкий (пористый) кирпич изготовляется из обычных глин с введением в них выгорающих добавок, а также из диатомитов (трепелов) или из смесей диатомитов и глин. Кирпич легкий имеет следующие размеры: длина 250±8, ширина 120±6 и толщина 88±4 мм. Выпускается также пористый кирпич большего размера -- 250X120X140 мм. Чем меньше объемный вес легкого кирпича, тем меньше его теплопроводность. В зависимости от объемного веса легкий строительный кирпич подразделяется на три класса -- А, Б и В в соответствии с принятой классификацией стеновых материалов. В зависимости от предела прочности при сжатии -- на марки 50, 75 и 100. Морозостойкость легкого кирпича (Мрз 10) значительно ниже, чем у кирпича других видов, рассмотренных выше. В табл. 8 приведены показатели пределов прочности кирпича при сжатии и изгибе.

Применение большемерного кирпича значительно выгоднее, чем обычного, так как уменьшается количество швов в кладке стен и, следовательно, сокращается расход вяжущего и повышается производительность труда. Использование пористого кирпича уменьшает толщину наружных стен и снижает их стоимость примерно на 10%. Однако вследствие пониженной прочности его не применяют для возведения стен, несущих большие нагрузки. Не применяют его и для фундаментов и цоколей зданий и для стен влажных помещений вследствие малой морозостойкости, а также потому, что в этих случаях не используются его теплоизоляционные свойства.

Виброкирпичные панели

Виброкирпичные панели представляют собой крупномерные строительные детали, изготовляемые из кирпича на цементном растворе с утеплителями. Для обеспечения необходимой прочности и монолитности между кирпичами закладывается арматурная сетка. В качестве утеплителя при сборке панелей применяют минераловатные плиты, пеностекло, фибролит и др. Для подъема панели на всю ее высоту закладывают петли.

Изготовляют панели двумя способами -- горизонтальной и вертикальной кладкой, наиболее эффективна горизонтальная кладка. Технологический процесс состоит из следующих основных операций: приготовления материала -- кирпича, раствора и металлического каркаса, формования (сборки) панелей, уплотнения вибрированием, отделки панелей и обработки их в пропарочных камерах в течение 8--12 ч при температуре 80° С (для ускорения процесса твердения). Прочность конструкции панели при монтаже и транспортировании обеспечивается прокладкой в горизонтальных швах армирующих сеток из проволоки, а по обе стороны проема устанавливаются вертикальные арматурные каркасы.

Панели выпускают двухслойными и однослой. Двухслойные панели из кирпича и утеплите- брокирпичная панель ля могут быть облицованы керамическими плитками, что придает панели красивый вид. Стена, собранная из таких панелей, не нуждается в дополнительной отделке -- облицовке, штукатурке и окраске. Общая толщина двухслойной панели 260 мм, в том числе кирпича 120, утеплителя 100, облицовочных керамических плиток 4 и 36 мм трех слоев раствора. Размеры вырабатываемых панелей 2670X3180x260 мм.

Однослойные панели изготовляют из крупнопустотных керамических камней, размер их 2750x3190x300 мм, толщина их складывается из толщины керамического камня 250 мм, керамзитобетонного заполнителя 25 мм и раствора 25 мм. Однослойные панели делают и из специального многощелевого эффективного керамического камня, длина которого соответствует толщине панели.

Панели для внутренних стен и перегородок изготовляют также из кирпича (в половину кирпича) и армируют стальными проволочными каркасами. Толщина таких панелей 140 мм--120 мм слой кирпича и 5--12 20 мм два слоя раствора -- по 10 мм с каждой стороны панели. Размер панели 2620X2270X140 мм, вес около 2 г.

Производство виброкирпичных стеновых панелей можно считать целесообразным в тех районах строительства, где не налажен массовый выпуск железобетонных панелей, но действуют кирпичные заводы. Преимущества применения виброкирпичных панелей по сравнению с кладкой стен из штучного кирпича заключаются в более высоком уровне механизации при монтаже стен и значительной экономии стеновых материалов. Недостаток виброкирпичных панелей -- сложность конструкции и, следовательно, изготовления, а также расходование металла на армирование.

Наряду с виброкирпичными панелями изготовляются также кирпичные блоки. Делают их на установках-полуавтоматах, дающих возможность получать блоки различных размеров: толщиной 1,5, 2 и 2,5 кирпича, длиной до 2,8 и высотой до 2,65 м.

14 Производство и применение облицовочных изделий

Широкое и эффективное применение в современном строительстве керамических облицовочных материалов определяется качествами их, отвечающими всем требованиям, предъявляемым к облицовочным материалам.

Все керамические облицовочные изделия можно разбить на две группы: для облицовки фасадов и внешних стен зданий и для облицовки внутренних стен зданий. Поскольку условия эксплуатации этих материалов различны, то их физико-механические показатели также во многом могут быть различными. Так, например, изделия для внешней облицовки должны обладать высокими показателями водонепроницаемости и морозостойкости, что не обязательно для изделий внутренней облицовки.

Внешние стены зданий под воздействием атмосферных осадков периодически увлажняются, вследствие чего увеличивается теплопроводность стен. Следовательно, облицовочные материалы должны обладать большой водонепроницаемостью и не допускать проникания воды к основному материалу стены. Очень опасно и разрушительно для наружной облицовки совместное действие воды и мороза. Поэтому облицовочные материалы должны быть морозостойкими и выдерживать без видимого разрушения многократное замораживание и оттаивание в насыщенном водой состоянии. Облицовка должна надежно противостоять механическим воздействиям -- удару, сжатию, излому, т.е. обладать высокой прочностью. Кроме того, она должна иметь красивый внешний вид, правильную форму и хороший естественный цвет, не меняющийся в течение длительного времени под воздействием различных факторов (солнечный свет, перепад температур, атмосферные осадки, газы, находящиеся в воздухе, и др.)- Весьма важным качеством для облицовочных материалов является простота их укладки в конструкцию стены и надежность крепления.

Кирпич и камни лицевые, в настоящее время являющиеся основными облицовочными керамическими материалами, делают сплошными и пустотелыми. Лицевая поверхность их может быть гладкой, рифленой или офактуренной. Рельефное офактуривание поверхности достигается дополнительной обработкой влажного сырца специальными гребенками и рифлеными валиками. Изготовляются они из глин, с добавками или без них, формуются и обжигаются примерно в тех же условиях, как и другие керамические изделия. При облицовке фасадов зданий надежность крепления этих материалов достигается тем, что облицовка ведется одновременно с кладкой стен; таким образом, облицовочные кирпичи и камни служат и конструктивным несущим элементом наряду с обычным стеновым материалом.

В зависимости от формы и назначения лицевой керамический кирпич и камни подразделяют на рядовые и профильные. Наиболее часто применяемые материалы имеют размеры: кирпич лицевой рядовой и профильный 250X120X65 (90) мм, камень лицевой рядовой 250 X X 120x140 мм и камень трехчетвертной 185x120x140 мм. Допускаемые техническими условиями отклонения от размеров не должны превышать ±4 для размеров 185 и 250 мм и +3 --2 для размеров 65-- 90 мм.

Фасадные плиты предназначаются для облицовки фасадов зданий. В зависимости от конструкции, способов изготовления и методов крепления плиты подразделяются на закладные и прислонные. Закладные плиты устанавливаются одновременно с кладкой стен, а прислонные крепятся на растворе после возведения и осадки стен. Вырабатываются плиты различных размеров от 250X215 мм и более с допусками ±5 мм по длине и ±3 мм по ширине. Структура черепка плит должна быть однородной, без расслоений и пустот. По морозостойкости плиты должны выдерживать не менее 25 повторных циклов замораживания и оттаивания без каких-либо признаков видимых повреждений: расслоений, выкрашивания углов и ребер и т.п. Водопоглощение плит из светложгущихся глин должно быть не более 12%, из остальных глин не более 14%. Цвет лицевых поверхностей плит должен соответствовать утвержденному эталону, видимая с расстояния 10 м разнотонность лицевой поверхности не допускается. Показатели внешнего вида, правила маркировки, хранения, транспортирования и приемки определяются ГОСТ 6664--59.

Плитки фасадные малогабаритные изготовляют с гладкой или фактурной наружной поверхностью. На тыльной стороне плитки делают углубления для лучшего сцепления с цементным раствором. Лицевая сторона может быть различного цвета, глазурованной или неглазуро-ванной.

Выпускаются плитки прямые (рядовые) и угловые. Всего предусмотрено по 4 размера этих плиток (табл. 10). Отклонения по размерам плиток не должны превышать по длине ±3, по ширине (высоте) ±2 и по толщине ±2 мм.

15 Огнеупоры. Классификация. Сырьевые материалы для производства огнеупоров. Основы технологии

Огнеупорные материалы -- это материалы применяемые для проведения металлургических процессов (плавка, отжиг, обжиг, испарение и дистилляция), конструирования печей, высокотемпературных агрегатов (реакторы, двигатели, конструкционные элементы и др).

Огнеупорные материалы отличаются повышенной прочностью при высоких температурах, химической инертностью. По составу огнеупорные материалы это керамические смеси тугоплавких оксидов, силикатов, карбидов, нитридов, боридов. В качестве огнеупорного материала применяется углерод (кокс, графит). В основном это неметаллические материалы, обладающие огнеупорностью не ниже 1580°C, применяются практически везде где требуется ведение какого-либо процесса при высоких температурах.

Классификация

Огнеупоры подразделяются на формованные (изделия) и неформованные (порошки, мертели и т. д.), также их классифицируют по следующим признакам:

· огнеупорность

· пористость

· химико-минеральный состав

· область применения

Классификация по огнеупорности

· огнеупорные (огнеупорность от 1580 до 1770 ° С)

· высокоогнеупорные (от 1770 до 2000 ° С)

· высшей огнеупорности (более 2000 ° С)

Классификация по пористости

· особоплотные (открытая пористость до 3 %)

· высокоплотные (открытая пористость от 3 до 10 %)

· плотные (открытая пористость от 10 до 16 %)

· уплотненные (открытая пористость от 16 до 20 %)

· среднеплотные (открытая пористость от 20 до 30 %)

· низкоплотные (пористость от 30 % до 45 %)

· высокопористые (общая пористость от 45 до 75 %)

· ультрапористые (общая пористость более 75 %)]

Классификация по химико-минеральному составу

Следует различать кислые, нейтральные и основные огнеупоры. Более детальная классификация производится по их химическому составу:

· Кремнеземистые

· Алюмосиликатные

· Глиноземистые

· Глиноземоизвестковые

· Высокомагнезиальные

· Магнезиально-известковые

· Известковые

· Магнезиально-шпинелидные

· Магнезиально-силикатные

· Хромистые

· Цирконистые

· Оксидные

· Углеродистые

· Оксидоуглеродистые

· Карбидкремниевые

· Бескислородные

Алюмосиликатные огнеупоры (alumina-silica refractories) - огнеупоры, изготовленные преимущественно из А12О3 и SiO2. Алюмосиликатные огнеупоры подразделяют на полукислые (14-28% А12О3 ), шамотные (28-45%), высокоглиноземистые (49-95%) и применяют во многих тепловых агрегатах.

Безобжиговые огнеупоры (unburned refractories) - изделия из огнеупорных материалов и связки, приобретают требуемые свойства при сушке < 400°С (после нагрева изделий от 400 до 1000°С их называют термообработанными). Связкой могут быть глины, керамические суспензии, растворы фосфатов, щелочные силикаты (жидкое стекло), смолы термопластичные и термореактивные, эластомеры и другие безобжиговые огнеупоры по прочности и пластичности не уступают, а по термостойкости превосходят обожженные огнеупоры. Наиболее широко применяют следующие безобжиговые огнеупоры: кремнеземистые бетонные блоки (для нагревательных колодцев), шамот и высокоглиноземные (для обжиговых агрегатов), магнезиальноизвестковые на смоляной (пековой) связке (для сталеплавильных конвертеров) периклазовые и периклазохромитовые (для сталеразливочных стаканов), магнезиальные в стальных кассетах.

Бескислородные огнеупоры (non-oxygenous refractories) - огнеупоры, изготовленные из тугоплавких бескислородных соединений: карбидов, нитридов, боридов, силицидов, сульфидов. Технология бескислородных огнеупоров включает приготовление порошков бескислородных соединений, формование из них изделий с добавлением связки и последующий обжиг при высоких температуpax. Применение бескислородных огнеупоров при высоких температуpax в окислительной атмосфере ограничено.

Волокнистые огнеупоры (fibrous refractories) - теплоизоляционные, состоящие из волокон огнеупоры в виде формованных (плиты, блоки, листы и др.) с неорганической или органической связкой и неформованных (вата, войлок и др.) изделий. Волокнистые огнеупоры изготовляют преимущественно из высоко-глиноземного и глиноземного стекловолокна и из корундового, поликристалличического волокна, а также из ZrO2 и др. оксидов. Волокнистые огнеупоры применяют для теплоизоляции и футеровки тепловых агрегатов, а также для заполнения компенсационных швов.

Высокоглиноземистые огнеупоры (high-alumina refractories) - алюмосиликатные огнеупоры, содержащие > 45% А12О3. Высокоглиноземистые огнеупоры подразделяются на муллитокремнеземистые (МКР, 45-62% А12О3), муллитовые (МЛ, 62-72%) и муллитокорундные (МК, 72-90%). Изделия МКР изготавливают на основе шамота из бокситов, глин и бокситов, а также концентратов высокоглиноземистых алюмосиликатов, МЛ и МК - на основе технического глинозема, электрокорунда, маложелезистых бокситов, богатых глиноземом. Высокоглиноземистые огнеупоры применяют для футеровки сталеразливочных, промежуточных и чугуновозных ковшей, скользящих затворов ковшей, сводов электродуговых печей, лещади и горна домен, печей, воздухонагревателей нагревательных печей и др. тепловых агрегатов с рабочей температурой выше 1300-1350°С, а также в качестве стаканов для разливки стали, трубок для термопар и др. Неформованные высокоглиноземистые огнеупоры типа МЛ и МК применяют в виде набивных масс (для сталеразливочных ковшей), заполнителей огнеупорных бетонов, мертелей и т.п.

Высокоглиноземистые (корундовые) огнеупоры (high-alumina (corundum) refractories) - огнеупоры, содержащие > 95% А12О3. Корундовые огнеупоры изготавливают из порошков электроплавкого корунда и технического глинозема, формуют разными способами и обжигают при 1600-1750°C. Корундовые огнеупоры применяют в агрегатах с рабочей температурой до 1750-1800°С, они обеспечивают необходимую стойкость в условиях контакта со шлаком, жидким металлом, расплавом стекла, щелочами и кислотами. Из корундовых огнеупоров изготовляют корундовые плиты для шиберных затворов сталеразливочных ковшей, изделия для футеровки камер вакууматоров стали, насадки высокотемпературных воздухонагревателей, чехлы термопар, тигли для плавки стекол, металлов и др. Неформовованные корундовые огнеупоры - мертели и бетоны с корундовым заполнителем применяют для футеровки патрубков вакууматоров стали, а массы и обмазки - для изгототовления и ремонта огнеупорных футеровок с рабочей температурой > 1700°С.

Известковопериклазовые (доломитовые) огнеупоры (lime-periclase (dolomite) refractories) - огнеупоры, изготовленные из доломита, в т.ч. с добавлением периклазового порошка с массовой долей MgO - 10-50% и СаО - 45-85%. Безобжиговые известковопериклазовые огнеупоры изготавливают формованием порошков обожженного доломита на органической связке (каменноугольная смола, пекбез или с термической обработкой при 300-600°С); огнеупорность их > 2000°С. Изготовляют также известковопериклазовые огнеупоры, обожженные при 1500-1750°С и сохранившие частично свобобные СаО. Известковопериклазовые огнеупоры устойчивы при взаимодействии с основными шлаками. Безобжиговые известковопериклазовые огнеупоры применяют для футеровки сталеплавильных конвертеров, а обожженные известковопериклазовые огнеупоры - сталеплавильных печей, сталеразливочных ковшей и т.п. Используют неформовованные известковопериклазовые огнеупоры (массы из обожженного доломита со связкой) для набивки блочных и монолитных футеровок электросталеплавильных печей, конвертеров, сталеразливочных ковшей и др.

Карбидкремниевые огнеупоры (silicon-carbide refractiries) - огнеупоры, изготовленные на основе SiC (> 70%). Карбидкремниевые огнеупоры применяют для изготовления муфелей, рекуператоров, чехлов термопар и др.; футеровки электрических нагревательных колодцев, агрегатов производства цинка и алюминия, циклонов трубопроводов и т.п. Карбидкремниевые огнеупоры на нитридной и оксинитридной связке используют также для футеровки нижней части шахты домен, печей. Неформованные карбидкремниевые огнеупоры применяют для покрытий щитовых экранов котельных топок, в виде мертелей и масс при выполнении огнеупорной кладки.

Кремнеземистые огнеупоры (silicons refractories) - огнеупоры, содержащие > 80% SiO2. К ним относят наиболее распространенные динасовые и кварцевые огнеупоры, а также кварц, стекло.

Динасовые огнеупоры содержат > 93% SiO2 или 80-93% SiO2 (при изготовлении с добавками) и изготовливаются из кварцитов. В порошок кварцита добавляют известковое молоко и железистые добавки, формуют на прессах изделия задан, размеров и обжигают при 1430-1460°С. Динасовые огнеупоры применяют для футеровки коксовых, стекловар, печей, воздухонагревателей, а также ряда плавильных агрегатов в ЦМ и др. Неформованные динасовые огнеупоры - мертели, материалы для обмазок и т.п. изготавливают из молотых боя динас, огнеупоров и кварцитов, применяют при выполнении и ремонте кладки.

Кварцевое стекло - переохлажденный расплав природного (песок, жильный кварц, горный хрусталь и др.) или синтетического кремнезема, содержащего > 99% SiO2, применяют для изготовления стекловарных печей (в виде блоков), ламп инфракрасного нагрева, защитных чехлов термопар и др. Из кварцевого стекла путем измельчения, формования и обжига (а также без обжига) изготавливают также термостойкие огнеупорные изделия (так называемая кварцевая керамика), используют в качестве погружных стаканов и защитных труб при разливке стали, в лабораторной практике и др.

Легковесные огнеупоры (lightweight refractories) - огнеупоры с высокой (45-85%) пористостью. Легковесные огнеупоры подразделяют на: шамотные, высокоглиноземные, динасовые, глиноземные (корундовые) и другие типы. Основа технологии изготовления: введение в шихту измельченных выгорающих добавок (древесных опилок, лигнина, кокса, полистирола и др.) и формование изделий пластичным или полусухим способами; смешивание суспензий из огнеупорных порошков с пеной из клеевого раствора с поверхностно-активной добавкой, химическое газообразование и вспучивание суспензии, содержащей стабилизатор, разливка в форму; формование изделий из легковесных заполнителей (пористых зерен, пустотелых сфер) с добавлением связующего. Заключительная стадия - обжиг при > 1250°С. Легковесные огнеупоры применяют в качестве теплоизоляционных материалов для футеровки стен и сводов нагревательных и обжиговых печей, котельных топок и др. Экономия энергоресурсов от применения легковесных огнеупоров по сравнению с обычными 10-30%. Высокоогнеупорные легковесные огнеупоры на основе оксидов применяют в вакуумной технике, высокотемпературных печах, силовых установках легательных аппаратов и др. Неформованные легковесные огнеупоры в виде засыпок из зернистых материалов, в т.ч. из пустотелых гранул применяют для внешней теплоизоляции тепловых агрегатов.

Магнезиальные огнеупоры (magnesia refractories) - огнеупоры, содержащие в основе MgO. К ним относят: магнезиальносиликатные (45-85%), магнезиальношпинелидные (40-85%) и магнезиальноизвестковые (10-85%). Магнезиальные огнеупоры изготовляют из обожженных и частично сырых материалов с добавлением связки и обжигом при 1500-1900°С. Магнезиальные огнеупоры имеют высокую стойкость при взаимодействии с расплавами металлов и основных шлаков, широко применяются для футеровки металлургических и других агрегатов.

Магнезиальносиликатные огнеупоры (magnesia-silica refractories) - огнеупоры, состоящие в основном из форстерита (Mg2(SiO4)) и содержащие 50-60% MgO, 25-40% SiO2. Магнезиальносиликатные огнеупоры формуют со связующей добавкой и обжигают при 1450-1550°С (или используют без обжига). Основные свойства магнезиальносиликатных огнеупоров: пористость открытая 22-28%, температуpa начала размягчения под нагрузкой - до 1610-1620°С. Магнезиальносиликатные огнеупоры применяют для футеровки насадок регенераторов мартенов, и стекловарных печей, сталеразливочных ковшей (в т.ч. в виде набивных масс), плавильных агрегатов ЦМ, а также для изготовления сталеразливочных стаканов и др. Неформованные магнезиальносиликатные огнеупоры могут применяться как добавка в металлургических порошках.

Магнезиальношпинелидные огнеупоры (magnesia spinel refractories) - огнеупоры, состящие из периклаза и хромшпинелида MgO. Сг2О3 (в т.ч. со шпинелью MgO o А12О3). Периклазохромитовые огнеупоры содержат > 60% MgO и 5-20% Сг2О3. Периклазохромитовые огнеупоры формуют и обжигают при 1700-1850°С. Для высококачественных периклазохромитовых огнеупоров используют MgO чистотой > 96% и концентраты хромита. Периклазохромитовые огнеупоры применяют для футеровки сводов сталеплавильных печей, вакууматоров стали, кислородных конвертеров (горловина, летки), сталеразливочных ковшей (шлак, пояс), медеплавильных агрегатов, высокотемпературных обжиговых печей и др.). К магнезиальношпинелидным огнеупорам (также относят: хромитопериклазовые, изготовляемые из смеси периклазового порошка с хромитовой рудой и содержащие 40-60% MgO и 15-35% Сг2О3; периклазошпинельные (> 40% MgO и 5-55% А12О3), шпинельные, состоящие в основном из шпинели состава MgO и хромитовые огнеупоры. Магнезиальношпинелидные огнеупоры этих типов используют взамен более дорогостоящих магнезиальношпинелидных периклазохромитовых огнеупоров для футеровки менее ответственных частей (участков) сталеплавильных агрегатов, обжиговых печей и др. Применяют безобжиговые магнезиальношпинелидные огнеупоры для изготовления сталеразливочных стаканов и др.

Неформованные огнеупоры (non-shaped refractories) - огнеупоры, изготовленные без определенной форм и размеров в виде кусковых, порошковых и волокнистых материалов, а также паст и суспензий. К ним относят: металлургические заправочные порошки, заполнители и мелкозернистые компоненты для огнеупорных бетонов, огнеупорные цементы, бетонные смеси и готовые к применению массы, мертели, материалы для покрытий (в т.ч. торкрет-массы), некоторые виды волокнистых огнеупоров. Неформованные огнеупоры могут быть сухими, полусухими, пластичными и жидкотекучими. Неформованные огнеупоры применяют для выполнения и ремонта футеровок сталеразливочных ковшей (набивные и наливные кремнеземные, высокоглиноземные и магнезиальные массы); конвертеров (торкрет-массы), нагревательных и обжиговых печей (шамот, и высокоглиноземные массы), индукционных печей (корундовые и периклазовые массы), коксовых печей (обмазки), подин мартен, и электродуговых печей (заправочные порошки) и т. д. Неформованные огнеупоры применяют для рабочего слоя футеровки промежуточных и сталеразливочных ковшей, стен и сводов мартеновских печей, в набивных частях футеровки вакууматоров, печей ЦМ и др.

Оксидные огнеупоры (oxide refractories) - огнеупоры, содержащие > 97% высокоогнеупорных оксидов или их соединений и твердых растворов. Формованные оксидные огнеупоры изготовляют преимущественно из тонкозернистых порошков прессов, или литьем из суспензий с последующим обжигом, а неформованные оксидные огнеупоры - измельчением оксидов, обычно после предварительного обжига и введения необходимых добавок. В металлургии оксидные огнеупоры применяют в виде изделий из технической керамики для аппаратуры при измерении высоких температур, датчиков контроля масс, доли кислорода в стали, тиглей для лабораторных плавильных печей, вкладышей в разлив, устройствах и др.

Периклазовые огнеупоры (periclase (mag-nesite) refractories) - магнезиальные огнеупоры, содержащие > 85% MgO. Периклазовые огнеупоры изготовляют из периклазового порошка с добавлением клеящей связки обжигом при 1600-1900°С; для безобжиговыех периклазовых огнеупоров используют связки из лигносульфонатового сульфата магния и др. Периклазовые огнеупоры применяют для футеровки стенок мартеновских печей, миксеров, печей для плавки меди и никеля, высокотемпературных нагревательных печей, леток кислородных конвертеров и др., а также в виде плит шиберных затворов сталеразливочных ковшей, стаканов для разливки сталей, пористых фурм для продувки стали газами и т.п. Неформованные периклазовые огнеупоры используют для изготовления мертеля, металлургических (заправочных) порошков, набивных масс для вакууматоров стали, индукционных печей и др.

Периклазоуглеродистые огнеупоры (periclase (magnesite)-carbon refractories) - огнеупоры, изготовленные из периклазового порошка с добавлением 6-25% природного или искусственного графита и органической связки (например, фенольной порошкообразной с этиленгли-колем или бакелита). Периклазоуглеродистые огнеупоры применяют для футеровки устройств для подачи газа снизу в конвертерах с комбинированной продувкой и ответственных участков стен мощных электродуговых печей; для шлакового пояса электродуговых печей и сталеразливочных ковшей, а также шиберных затворов.

Плавленые огнеупоры (fused refractories) - огнеупоры, изготовленные расплавлением огнеупорных материалов и разливкой в формы. Для плавки большинства огнеупорных материалов используют электродуговые печи, а кварца - печи сопротивления и кислородные горелки. Корундовые и корундомуллитовые плавленые огнеупоры применяют в виде блоков для изготовления подин нагреватательных печей и колодцев, днищ вакуум-камер и др., бадделеитокорундовые кварцевые плавленые огнеупоры - для футеровки стекловарных печей. Порошки плавленых периклаза, глинозема и шпинелей используют для изготовления огнеупорных изделий и бетонов. Корундовые порошки из глинозема и боксита применяются также в производстве абразивов.

Полукислые огнеупоры (semi-silicious (silica-acid) refractories) - алюмосиликатные огнеупоры с массовой долей А12О3 от 14 до 28 %. Полукислые огнеупоры применяют преимущественно для малоответственных участков футеровок металлургических агрегатов, в т.ч. коксовых печей, в виде капсул для определения серы и углерода в чугуне, стали и др.

Смолодоломитовые огнеупоры (tar-dolomite refractories) - формованные на прессах изделия из порошка обожженного доломита (крупность зерен до 6-8 мм), смешанного при нагревании до 100-120°С с 4-6% каменноугольной смолы или пека. Смолодоломитовые огнеупоры имеют кажущуюся плотность 2800-2900 кг/м3, предел прочности при сжатии 2000-4000 МПа, устойчивы против основных шлаков. При добавке в массу магнезитового порошка изделие называются смолодоломитомагнезитовыми. Смолодоломитовые огнеупоры применяются для футеровки кислородных конвертеров. Иногда смолодоломитовые огнеупоры применяют в кладке дуговых сталеплавильных печей.

Смоломагнезитовые огнеупоры (tar-magnesite refractories) - изделия и массы, приготовленной из обожженного магнезитового (периклазового) порошка смешением при нагреве до 100-120°С с 4-6% каменноугольной смолы или пека. При содержании примеси < 2-3 % СаО стойки к гидратации на воздухе; применение аналогично смолодоломитовым огнеупорам.

Углеродистые огнеупоры (carbon refractories) - огнеупоры, состоящие преимущественно из свободного углерода или содержащие углерод в качестве основного компонента. К углеродистым огнеупорам относят: угольные и графитированные блоки, изготовленные из кокса и термоантрацита с каменноугольной смолой, пеком, битумом, антрацитовым маслом, обжигаемые при 1100-1450°С; графитированные изделия из нефтяного кокса с графитовой структурой и малым содержанием золы, получаемые обжигом при > 2000°С; пирографит - продукт разложения углеродсодержащего газа на нагретой поверхности и др. К углеродистым огнеупорам относят также углеродсодержащие огнеупоры, изготовленные из графита, огнеупорной глины, шамота (в т.ч. высокоглиноземистого), корунда и т.п. Углеродистые огнеупоры отличаются высокой теплопроводностью, низким ТКЛР, хорошей стойкостью при взаимодействии с расплавами металлов и шлаками. Углеродистые огнеупоры применяют для футеровки нижнего строения домен, печей, электротермических печей, агрегатов для плавки свинца, меди и др., а также для изготовления погружных стаканов, стопоров-моноблоков, вкладышей для изложниц, тиглей для плавки цветных металлов и др. Неформованные углеродистые огнеупоры из коксрвых порошков на каменноугольной смоле применяют для заполнения швов кладки, углеродсодержащие - для футеровки желобов домен, печей и др.

Шамотные огнеупоры (fireclay refractories) - алюмосиликатные огнеупоры, содержащие 28-45% А12О3 и 50-70 SiO2. Технология производства формованных шамотных огнеупоров включает: обжиг глины (каолина) при 1300-1500°С во вращающихся или шахтных печах, измельчение полученного шамота, смешивание со связующей глиной и водой (иногда с добавлением других связующих материалов), формование, сушку и обжиг при 1300-1400°С. Шамотные огнеупоры применяют для футеровки доменных печей, сталеразливочных ковшей, нагревательных и обжиговых печей, котельных топок и др., а также для изготовления сифонных изделий для разливки стали. Неформованные шамотные огнеупоры изготовляют из измельчения шамота и связующих материалов и применяют в виде мертелей, набивных масс, порошков, заполнителей бетонов и др. при выполнении и ремонте огнеупорных футеровок разных тепловых агрегатов.

16 Искусственные пористые заполнители, основы технологии производства, основные виды и свойства легких заполнителей

В зависимости от происхождения пористые заполнители делят па природные и искусственные. Природные заполнители получают путем рассева или частичного дробления и рассева пористых горных пород вулканического или осадочного происхождения. К заполнителям вулканического происхождения относят щебень и песок из пемзы, вулканического шлака и вулканического туфа. Заполнителями осадочного происхождения являются: щебень и песок из пористых известняков и доломитов, известняков-ракушечников, известковых туфов, диатомита, трепела и др. Искусственные заполнители получают путем термической обработки силикатного сырья с последующим дроблением и рассевом, разделяют на две подгруппы: отходы промышленности и специально изготовленные заполнители. Заполнители --отходы промышленности -- щебень и песок из топливных шлаков, а также из отвального металлургического шлака. К специально изготовленным заполнителям относят: керамзитовый гравий и песок, гравий полый керамический, аглопоритовый щебень и песок, шлаковую пемзу, гранулированный доменный шлак, щебень и песок из вспученных перлита и вермикулита и др. Важнейшими характеристиками пористых заполнителей являются их объемная масса и прочность при сжатии.

Из применяемых для легких бетонов пористых заполнителей наиболее экономичными являются природные в том случае, когда не требуется их транспортировка (местные материалы). Однако в большинстве случаев значительно больший эффект применения в легких бетонах имеют искусственные заполнители.

17 Сухой, пластический и шликерный способы производства керамзита

Керамзитовый гравий (керамзит) представляет собой пористый материал округлой формы с оплавленной поверхностью, получаемый в результате вспучивания глин при обжиге. Аглопоритовый щебень (аглопорит) -- пористый кусковой материал, получаемый методом спекания на решетках агломерационных машин различного силикатного сырья. После спекания отходов от переработки и сжигания угля, а также глинистого сырья, на агломерационных решетках образуется пористая глыба, которая и подвергается дроблению и рассеву. Щебень должен выдержать не менее 15 циклов попеременного замораживания и оттаивания. Преимуществом аглопоритового щебня по сравнению с керамзитом является более широкое распространение исходного сырья. Однако этот щебень отличается значительной открытой пористостью, что требует большего расхода цемента, чем в бетонах на керамзитовом заполнителе, и повышает объемную массу бетона.

Сущность технологического процесса производства керамзита состоит в обжиге глиняных гранул по оптимальному режиму. Для вспучивания глиняной гранулы нужно, чтобы активное газовыделение совпало по времени с переходом глины в пиропластическое состояние. Между тем в обычных условиях газообразование при обжиге глин происходит в основном при более низких температурах, чем их пиропластическое размягчение. Например, температура диссоциации карбоната магния -- до 600°С, карбоната кальция -- до 950 °С, дегидратация глинистых минералов происходит в основном при температуре до 800 °С, а выгорание органических примесей еще ранее, реакции восстановления окислов железа развиваются при температуре порядка 900 °С, тогда как в пиропластическое состояние глины переходят при температурах, как правило, выше 1100 °С.

Различают четыре основные технологические схемы подготовки сырцовых гранул, или четыре способа производства керамзита: сухой, пластический, порошково-пластический и мокрый.

Сухой способ используют при наличии камнеподобного глинистого сырья (плотные сухие глинистые породы, глинистые сланцы). Он наиболее прост: сырье дробится и направляется во вращающуюся печь. Предварительно необходимо отсеять мелочь и слишком крупные куски, направив последние на дополнительное дробление. Этот способ оправдывает себя, если исходная порода однородна, не содержит вредных включений и характеризуется достаточно высоким коэффициентом вспучивания.

Наибольшее распространение получил пластический способ. Рыхлое глинистое сырье по этому способу перерабатывается в увлажненном состоянии в вальцах, глиномешалках и других агрегатах (как в производстве кирпича). Затем из пластичной глиномассы на дырчатых вальцах или ленточных шнековых прессах формуются сырцовые гранулы в виде цилиндриков, которые при дальнейшей транспортировке или при специальной обработке окатываются, округляются.

Качество сырцовых гранул во многом определяет качество готового керамзита. Поэтому целесообразна тщательная переработка глинистого сырья и формование плотных гранул одинакового размера. Размер гранул задается исходя из требуемой крупности керамзитового гравия и установленного для данного сырья коэффициента вспучивания.

Гранулы с влажностью примерно 20% могут сразу направляться во вращающуюся печь или, что выгоднее, предварительно подсушиваться в сушильных барабанах, в других теплообменных устройствах с использованием тепла отходящих дымовых газов вращающейся печи. При подаче в печь подсушенных гранул ее производительность может быть повышена.

Таким образом, производство керамзита по пластическому способу сложнее, чем по сухому, более энергоемко, требует значительных капиталовложений, но, с другой стороны, переработка глинистого сырья с разрушением его естественной структуры, усреднение, гомогенизация, а также возможность улучшения его добавками позволяют увеличить коэффициент вспучивания.

Порошково-пластический способ отличается от пластического тем, что вначале помолом сухого глинистого сырья получают порошок, а потом из этого порошка при добавлении воды получают пластичную глиномассу, из которой формуют гранулы, как описано выше. Необходимость помола связана с дополнительными затратами. Кроме того, если сырье недостаточно сухое, требуется его сушка перед помолом. Но в ряде случаев этот способ подготовки сырья целесообразен: если сырье неоднородно по составу, то в порошкообразном состоянии его легче перемешать и гомогенизировать; если требуется вводить добавки, то при помоле их легче равномерно распределить; если в сырье есть вредные включения зерен известняка, гипса, то в размолотом и распределенном по всему объему состоянии они уже не опасны; если такая тщательная переработка сырья приводит к улучшению вспучивания, то повышенный выход керамзита и его более высокое качество оправдывают произведенные затраты.

Мокрый (шликерный) способ заключается в разведении глины в воде в специальных больших емкостях -- глиноболтушках. Влажность получаемой пульпы (шликера, шлама) примерно 50%. Пульпа насосами подается в шламбассейны и оттуда -- во вращающиеся печи. В этом случае в части вращающейся печи устраивается завеса из подвешенных цепей. Цепи служат теплообменником: они нагреваются уходящими из печи газами и подсушивают пульпу, затем разбивают подсыхающую «кашу» на гранулы, которые окатываются, окончательно высыхают, нагреваются и вспучиваются. Недостаток этого способа -- повышенный расход топлива, связанный с большой начальной влажностью шликера. Преимуществами являются достижение однородности сырьевой пульпы, возможность и простота введения и тщательного распределения добавок, простота удаления из сырья каменистых включений и зерен известняка. Этот способ рекомендуется при высокой карьерной влажности глины, когда она выше формовочной (при пластическом формовании гранул). Он может быть применен также в сочетании с гидромеханизированной добычей глины и подачей ее на завод в виде пульпы по трубам вместо применяемой сейчас разработки экскаваторами с перевозкой автотранспортом.

Керамзит, получаемый по любому из описанных выше способов, после обжига необходимо охладить. Установлено, что от скорости охлаждения зависят прочностные свойства керамзита. При слишком быстром охлаждении керамзита его зерна могут растрескаться или же в них сохранятся остаточные напряжения, которые могут проявиться в бетоне. С другой стороны, и при слишком медленном охлаждении керамзита сразу после вспучивания возможно снижение его качества из-за смятия размягченных гранул, а также в связи с окислительными процессами, в результате которых FeO переходит в Fe2O3, что сопровождается деструкцией и снижением прочности.

Сразу после вспучивания желательно быстрое охлаждение керамзита до температуры 800--900 °С для закрепления структуры и предотвращения окисления закисного железа. Затем рекомендуется медленное охлаждение до температуры 600--700 °С в течение 20 мин для обеспечений затвердевания стеклофазы без больших термических напряжений, а также формирования в ней кристаллических минералов, повышающих прочность керамзита. Далее возможно сравнительно быстрое охлаждение керамзита в течение нескольких минут.

Первый этап охлаждения керамзита осуществляется еще в пределах вращающейся печи поступающим в нее воздухом. Затем керамзит охлаждается воздухом в барабанных, слоевых холодильниках, аэрожелобах.

Для фракционирования керамзитового гравия используют грохоты, преимущественно барабанные -- цилиндрические или многогранные (бураты).

Внутризаводской транспорт керамзита -- конвейерный (ленточные транспортеры), иногда пневматический (потоком воздуха по трубам). При пневмотранспорте возможно повреждение поверхности гранул и их дробление. Поэтому этот удобный и во многих отношениях эффективный вид транспорта керамзита не получил широкого распространения.

18Основы технологии аглопорита

Аглопорит получают спеканием (агломерацией) сырья. Этот способ широко применяют в металлургической промышленности для агломерации руд. Сущность процесса состоит в следующем.

Из сырья с добавкой топлива (угля) готовят рыхлую шихту и укладывают ее на колосниковую решетку. Под решеткой в вакуум-камере отсосом воздуха вентилятором (дымососом) создают разрежение, благодаря которому происходит просос воздуха через шихту. Сверху шихту поджигают. За счет горения угля в ней создается высокая температура (до 1400... 1500°С). При этом шихта спекается в пористую остеклованную массу. Процесс спекания осуществляется сравнительно быстро. Горячие газы, отсасываемые вниз, подогревают нижележащие слои шихты, и зона горения постепенно передвигается к колосниковой решетке. Верхние спекшиеся слои в это время несколько охлаждаются просасываемым воздухом. Когда зона горения топлива доходит до колосниковой решетки и процесс агломерации завершается, получают спекшийся аглопоритовый корж, который дробят на щебень и песок.

В промышленных условиях при производстве аглопорита из глинистых пород шихту готовят следующим образом. Глинистое сырье, дробленный каменный уголь (крупность не более 5 мм), а также добавки (о которых будет сказано ниже) смешивают в определенной пропорции. Массовая доля угля составляет, как правило, 7... 12%.

Если глинистое сырье сухое, то в глиномешалку подается вода. Перемешанная шихта должна иметь рыхлую комковатую структуру. В специальных машинах -- грануляторах (например, в барабанном грануляторе, работающем по принципу окатывания комочков во вращающемся барабане) шихта гранулируется.

Подготовленная шихта спекается на агломерационной машине, которая представляет собой непрерывно движущийся конвейер из тележек-палет, имеющих в основании колосниковую решетку из жаропрочной стали и борта с обеих сторон. Верхняя ветвь конвейера движется по рельсам над вакуум-камерами.

Шихта загружается на колосниковую решетку слоем 200 ... 300 мм и зажигается, проходя под горном, где за счет горения подаваемого туда жидкого или газообразного топлива создается температура примерно 1000° С. Далее, продвигаясь над вакуум-камерами, шихта благодаря прососу воздуха спекается. С машины сходит спекшийся корж.

Корж, как правило, неоднороден: внутри спекание полное, корж в изломе темного цвета (восстановительная среда определяет переход оксидов железа в закись, и это способствует лучшему спеканию), а на поверхности (избыток воздуха, окислительная среда, ниже температура обжига) образуется как называемый недожог буро-красноватого цвета с пониженными прочностью и стойкостью. Поэтому первой операцией после спекания шихты на агломерационной решетке является отделение недожога. Корж разламывается на куски специальным устройством -- коржеломателем (вал с редко насаженными билами), куски падают на решетку, слабоспекшиеся частицы при этом осыпаются и возвращаются в технологический процесс как добавка к сырью, улучшающая газопроницаемость и спекание шихты.

В качестве добавок, способствующих повышению скорости спекания глинистого сырья и, следовательно, повышению производительности агломерационных машин, а также улучшению качества аглопорита, используют древесные опилки, лигнин (отход гидролиза древесины), золу и другие отходы промышленности.

После отделения недожога (возврата) аглопорит охлаждают до температуры 80... 120°С, дробят и сортируют на щебень и песок.

Принципиальная технологическая схема производства аглопоритового щебня и песка. Помимо показанного на схеме шахтного холодильника для охлаждения аглопорита применяют ленточные (металлический транспортер с перфорированным дном), чашевые (кольцевой бункер с двумя жалюзийными цилиндрическими стенками) и барабанные холодильники.

При использовании в качестве основного сырья отходов углеобогащения в технологическую схему вносятся изменения, касающиеся подготовки исходных материалов. Отходы углеобогащения измельчают дроблением в две стадии с промежуточным грохочением, получая зерна размером не более 2,5 мм. Глину добавляют в виде сухого компонента (крупность -до 3 мм) или глиняного шликера. Прочность керамического материала, заполняющего межпоровое пространство аглопорита и керамзита (оплавленной массы, состоящей из стекловидной фазы с кристаллическими включениями), примерно одинакова. Поэтому при равной плотности зерен прочность аглопорита и керамзита в бетоне близка

19 Свойства аглопорита

Особенность аглопорита, как и многих других пористых заполнителей, в том, что с уменьшением размеров фракции аглопоритового щебня или песка возрастает ее насыпная плотность. Это объясняется следующим. В аглопорите имеются поры различных размеров: от мельчайших до 3 мм и более. При дроблении аглопорита разрушение идет, в первую очередь, по более крупным порам, поэтому чем мельче фракции, тем меньше пористость зерен, больше их плотность и прочность.

Минский аглопорит различных фракций имеет следующую насыпную плотность: щебень фракции 20 ...40 мм -- 500... 600 кг/м3; фракции 10...20 мм --600...700 кг/м3; фракции 5... 10 мм --700... 800 кг/м3; песок до 5 мм -- до 1000 кг/м3.

Межзерновая пустотность аглопоритового щебня составляет 50...60%, (для высшей категории качества -- не более 50%), следовательно, плотность зерен в 2 раза и более превышает насыпную плотность щебня.

Пористость зерен аглопоритового щебня находится в пределах 40...60%.

Коэффициент формы зерен в среднем не должен превышать 2,5 (для высшей категории качества -- 2).

В отличие от керамзитового гравия аглопоритовый щебень характеризуется большей долей открытых пор (15...20%), заполняемых в бетоне водой и цементным тестом. Это приводит к" некоторому повышению расхода цемента, но одновременно способствует упрочнению заполнителя и сцеплению его с цементным камнем, что благоприятно сказывается на возможности получения высокопрочного аглопорито-бетона. Аглопорит отличается сравнительно высокой однородностью по насыпной плотности и прочности, что создает предпосылки для его эффективного применения в бетоне. В соответствии с государственным стандартом к аглопориту предъявляется ряд требований по обеспечению стойкости и долговечности. Аглопоритовый щебень испытывается на стойкость к силикатному распаду, морозостойкость и т. д. Ограничивается наличие остатков невыгоревшего топлива: потеря массы при прокаливании пробы аглопоритового щебня не должна превышать 3%. Для ограничения содержания в аглопоритовом щебне слабообожженных зерен предусматривается его испытание в растворе сернокислого атрия с допускаемой потерей массы после трех циклов насыщения высушивания не более 5%.


Подобные документы

  • Исторические сведения о возникновении керамики, область ее применения. Современные технологии керамических материалов. Производство керамических материалов, изделий в Казахстане, СНГ и за рубежом. Производство и применение стеновых и облицовочных изделий.

    курсовая работа [134,7 K], добавлен 06.06.2014

  • Технология различных видов корундовой керамики. Влияние внешнего давления и добавок на температуру спекания керамики. Физико-механические и физические свойства керамики на основе диоксида циркония. Состав полимерной глины Premo Sculpey, ее запекание.

    курсовая работа [2,1 M], добавлен 27.05.2015

  • Анализ существующих технологических процессов алмазно-абразивной обработки напылённых покрытий и технической минералокерамики. Физико-механические свойства керамических материалов. Влияние технологических факторов на процесс обработки напылённой керамики.

    дипломная работа [4,0 M], добавлен 28.08.2011

  • Изучение понятия, видов и свойств керамических материалов и изделий. Характеристика сырья и процесса производства керамических изделий. Исследование использования в строительстве как стеновых, кровельных, облицовочных материалов и заполнителей бетона.

    реферат [17,6 K], добавлен 26.04.2011

  • Классификация и производство керамических изделий и материалов, основные технологические виды: терракота, майолика, фаянс, каменная масса и фарфор. История развития и образование международной Академии гончарного искусства в Женеве. Биеннале керамики.

    реферат [22,6 K], добавлен 23.12.2010

  • История гончарной керамики. Технология производства керамических изделий. Сырьё для керамических масс. Прозрачные керамические материалы, особенности их структуры. Производство каменной керамической посуды в XVI в. Виды современных глиняных изделий.

    презентация [3,0 M], добавлен 11.02.2011

  • Понятие и способы изготовления стеклянных изделий, их классификация и типы, применяемые методы и материалы. История керамики и общее описание изготавливаемого изделия, оборудование. Особенности применения стеклянных и керамических изделий в оформлении.

    курсовая работа [299,6 K], добавлен 17.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.