Орская ТЭЦ

Основные понятия о работе ОТЭЦ-1. Устройство тепломеханического оборудования ТЭЦ. Требования к персоналу и правила работы с оборудованием. Технология проведения срочных и капитальных ремонтов. Требования к рабочему персоналу по технике безопасности.

Рубрика Производство и технологии
Вид научная работа
Язык русский
Дата добавления 17.02.2009
Размер файла 174,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4. Управление т/а при пуске синхронизации и работе под нагрузкой осуществляется с помощью МУТ по месту. Маховик МУТ расположен на фасадной крышке переднего подшипника.

5. Регуляторы давления теплофикационного и производственного отборов силь- фонного типа, служат для поддержания заданного давления в камерах отбора. Заданное давление в камерах отбора устанавливается натяжением пружины регулятора, маховиком по месту.

Включение в работу и отключение РД производятся маховиками натяжения пружин РД, расположенными на боковой стенке переднего подшипника (см. п.15.9.; п. 15.10 данной инструкции).

6. Ограничитель мощности в нужных случаях ограничивает открытие РК регулятором скорости. ОМ действует односторонне, не препятствуя закрытию РК. Маховик управления ОМ расположен на фасадной крышке переднего подшипника, рядом с МУТ.

7. Система регулирования обеспечивает закрытие АЗВ, РК и поворотной диафрагмы:

- при повышении частоты вращения РТ на 11-12 % сверх номинальной, от действия центробежных выключателей (бойков);

- в случае отказа в работе центробежных выключателей при повышении частоты вращения примерно на 14% сверх номинальной, от действия дополнительной защиты.

8. Турбина может быть остановлена;

а) вручную, одной из двух кнопок на корпусе переднего подшипника турбины;

б) дистанционно, со щита управления- ключом;

в) с помощью защит , подающих импульс на останов турбины.

9. турбина снабжена защитами, которые воздействуя на электромагнитный выключатель, автоматически прекращают доступ свежего пара в ЦВД, при возникновении следующих аварийных ситуаций:

- недопустимом осевом сдвиге РТ, как в сторону генератора, так и в сторону регулятора скорости;

- недопустимом повышении давления в конденсаторе;

- недопустимом падении давления масла на смазку подшипников;

- недопустимом понижении температуры свежего пара перед турбиной;

- понижение уровня в демпферном баке;

- срабатывании тепломеханических защит генератора.

Регулировка и защита турбины типа Р-50-130-13:

1. Перестановка регулирующих клапанов турбины производится двухсторонним поршневым сервомотором, золотником которого управляет регулятор скорости и регулятор давления (противодавление).

Регулятор скорости автоматически осуществляет поддержание постоянства числа оборотов агрегата с неравномерностью около 5%, норма 4,5 - 6,5%.

Блок золотников регулятора скорости включает в себя механизм управления, который предназначен для: а) зарядки золотников регулятора безопасности;

б) последовательного открытия стопорного и регулирующих клапанов;

в) подрегулировки числа оборотов при синхронизации генератора на холостом ходу;

г) управления электрической нагрузкой при работе генератора в параллель при включенном регуляторе давления.

При включенном регуляторе давления, что имеет место только при работе генератора в параллель, управление тепловой нагрузкой производится регулятором давления.

Механизм управления регулятора скорости и регулятора давления имеют ручной привод.

2. Турбина снабжена ограничителем мощности, используемым для ограничения открытия регулирующих клапанов регулятором скорости.

При противодавлении ниже 14 ата в сервомоторе регулирующих клапанов образуется излишний запас хода из-за чего турбина под действием регулятора давления может перегрузиться недопустимым образом.

Ограничитель мощности предназначен ограничивать электрическую нагрузку только при снижении частоты сети.

3. Турбина снабжена регулятором безопасности, два центробежных байка которого срабатывают при достижении числа оборотов, лежащих в пределах 10 - 12% сверх номинального 3300 - 3360 об /мин., что вызывает закрытие автоматического стопорного клапана, прекращает доступ свежего пара к регулирующим клапанам турбины.

Одновременно под действием регулятора безопасности закрываются и регулирующие клапаны турбины. Тот же результат достигается и при выключении турбины от сети.

Остановка турбины осуществляется или выключением турбины от руки с помощью кнопки ручного выключателя или же дистанционно с ЦТЩУ при повороте ключа отключения турбины в положение «ОТКЛЮЧЕНО».

При помощи механизма управления можно вновь приступить к открытию автоматического стопорного клапана при снижении числа оборотов до значения 101-102% от номинального (3030-3060 об/мин).

4. Турбина снабжена электромагнитным выключателем при срабатывание которого закрываются автоматический стопорный клапан и регулирующие клапаны.

Воздействие на электромагнитный выключатель, приводящее к его срабатыванию, осуществляется:

а) реле осевого сдвига ротора с одновременной подачей аварийного сигнала при осевом сдвиге ротора в месте расположения упорного подшипника более чем на 1,75 мм против прижатия к нерабочим колодкам;

б) защитным устройством от недопустимого увеличения перепада давления (свыше 5,5 кгс/см2) на последней ступени турбины;

в) ключом для дистанционного отключения турбины с ЦТЩУ.

5. Обратные клапаны на трубопроводах не регулирующих отборов пара к ПВД имеют принудительное закрытие при:

а) закрытие автоматического стопорного клапана;

б) отключение генератора.

Каждый обратный клапан имеет гидравлический сервомотор, приводимый в действие подачей воды от автоматического стопорного клапана и от масляного выключателя генератора.

6. Масляная система турбины питает маслом марки ТИП-22, как систему регулирования (при давлении 20 кгс/см?, так и систему смазки (при давлении 0,8 кгс/см?) на уровне подшипников турбогенератора.

Подача масла в систему регулирования производится центробежным масляным насосом, приводимым непосредственно от вала турбины в систему смазки, до маслоохладителей, масло подается с давлением 3 кгс/см? сдвоенным эжектором, который одновременно обеспечивает необходимый подпор на всасывание центробежного насоса около 1 кгс/см?.

7. Для обслуживания турбогенератора в период пуска, предусмотрены три масляных электронасоса:

а) пусковой, типа 6 МСМ-М, производительностью 150 м?/час, напор 450 мм вод ст., приводится в действие от эл. двигателя переменного тока, напряжением 380 Вольт, мощностью 125 кВт при 985 об/мин;

б) резервный, типа 5 НДВ-60, производительностью 180 м?/час, напор 26-30 мм вод ст., приводится в действие от эл. двигателя переменного тока, напряжением 380 Вольт, мощностью 22 кВт при 1450 об/мин;

Резервный маслонасос обеспечивает маслом систему смазки до включения пускового масляного насоса, а также работает при останове турбины.

в). аварийный маслонасос (насос смазки), типа 4 НДВ-60, производительностью 90-108 м?/час, напор 22 - 25 мм вод ст., приводится в действие от эл. двигателя постоянного тока, напряжением 220 Вольт, мощностью 14 кВт при 1500 об/мин;

работающим от аккумуляторной батареи.

Примечание:

Для проверки маслопровода системы регулирования на плотность, пусковой маслонасос переводится на работу с установкой эл. двигателя переменного тока, напряжением 3000 Вольт, мощностью 400 кВт при 1470 об/мин.

8. Турбина снабжена реле падения давления масла, которое автоматически:

а) включает эл. двигатель резервного масляного насоса смазки, работающего на переменном токе, при понижении давления в системе смазки после маслоохладителей до 0,6 кгс/см?, с одновременной подачей предупредительного сигнала;

б) включает эл. двигатель аварийного маслонасоса, работающего на постоянном токе, если давление в системе смазки упадет до 0,5 кгс/см?;

в) отключает турбину и дает запрет на включение валоповоротного устройства при понижении давления масла в системе смазки до 0,3 кгс/см?, с одновременной подачей сигнала.

9. Рабочая емкость масляного бака 14 м? до верхнего уровня, емкость масляной системы около 16 тн.

Указатель уровня масла в баке снабжается контактами для подачи световых сигналов: при минимальном уровне по шкале прибора - 50 мм; при максимальном уровне - 320 мм.

10. Маслоохладители типа МБМ-63-90 с поверхностью охлаждения 60 м? каждого, с рабочим давлением охлаждающего масла 5 кгс/см?, рабочим давлением воды 5 кгс/см?, температура на входе 20? С - в количестве 2-х штук служат для охлаждения масла циркуляционной водой, с температурой не выше 33? С. Кроме того, в аварийных случаях к маслоохладителям подведена сырая вода после фильтров.

Давление воды в маслоохладителях не должно превышать 0,8 кгс/см?. Расход охлаждающей воды на каждый маслоохладитель равен 180 м?/час, гидравлическое сопротивление при этом расходе равно 1,65 мм вод. ст.. Расход масла через маслоохладитель - 34 м?/час.

11. Регенеративное устройство предназначено для подогрева питательной воды паром, отбираемым из промежуточных ступеней турбины и состоит из трех поверхностных подогревателей высокого давления № А, Б, В.

а) поверхностные подогреватели № А, Б типа ПВ-425-230, с поверхностью нагрева 425 м? каждый, производительностью по воде 504 т/час;

б) подогреватель № В типа ПВ-350-230, с поверхностью нагрева 350 м? каждый, производительностью по воде 400 т/час.

Греющий пар на подогреватель А подается с паропровода отборного пара 10-16 ата, на подогреватель Б поступает - со второго отбора 32 ата, на подогреватель В пар поступает с первого отбора 50 ата.

Подогреватель высокого давления снабжен:

а) охладителем конденсата греющего пара, расположенным внутри подогревателя;

б) регулирующим клапаном отвода конденсата;

в) уравнительным сосудом для присоединения датчика электронного уровня с сигнализатором, воздействующим на клапан автоматической защиты для отключения подогревателей по воде, при аварийном повышении уровня конденсата.

12. Подогреватели высокого давления состоят из группового защитного устройства, состоящего из автоматического клапана на входе и обратного клапана на выходе питательной воды из подогревателей, автоматического клапана с электромагнитом и трубопроводом пуска и отключения.

Защитное устройство отключает подогреватели и направляет питательную воду по байпасу, в случае нарушения водяной плотности трубных систем и повышения уровня конденсата в корпусе любого из подогревателей выше установленного (по прибору на тепловом щите).

Конденсат греющего пара подогревателей высокого давления каскадно, через подогреватель А подается в деаэратор 6 ата № 4 и № 5.

13. Отсос пара из камер лабиринтовых уплотнений турбины производится в специальный вакуумный охладитель (ПС-50), снабженный эжектором поддерживающим давление в охладителе 0,94-0,96 ата, конденсат которого направляется в бак нижних точек.

Охладитель лабиринтового пара охлаждается хим.очищенной обессоленной водой, с помощью установленных 2-х центробежных насосов.

5.3. Характеристика трубопроводов в турбинном отделении

В КТЦ расположены следующие трубопроводы пара и горячей воды:

- паропроводы острого пара котлов и турбин, поперечная связь между котлами №№ 9,10,11,12,13 и турбинами №№ 9,10,11,12, паропроводы острого пара и поперечная связь относится к паропроводам 1-ой категории 2-ой группы;

- коллектор холодного питания котлов относится к трубопроводам 1-ой категории 4-ой группы;

- коллектор горячего питания котлов относится к трубопроводам 1-ой категории 4-ой группы;

- паропроводы отборного пара турбин на производство, давлением 10?16 кгс/см2 относятся к трубопроводам 3-ей категории 1-ой группы.

При эксплуатации гл. паропровода персоналом котлотурбинного цеха должны выполняться:

- контроль за приборами тепловых перемещений паропроводов;

- наблюдение за состоянием гл. паропроводов;

- контроль за температурными режимами работы гл. паропроводов при пусках и остановках.

Паропровод высокого давления предназначается для подачи пара от котлов №№ 9,10,11,12,13 через поперечную связь на т/а №№ 9,10,11,12, так и на прямую (блочно) котел № 10 на т/а № 9; котел № 11 на т/а № 10; котел № 12 на т/а № 11; котел № 13 на т/а № 12; кроме к/а № 9, который работает на т/а №№ 9,10,11,12 только через поперечную связь.

Паропровод поперечной связи выполнен из стали 12Х1МФ с наружным диаметром 325х38; от котлов №№ 10,11,12,13 с диаметром 273х32, от поперечной связи к т/а №№ 9,10,11,12 с диаметром 273х32 выполнен из стали 12Х1МФ, от к/а 9 до задвижки 0-П-19 диаметром 273 х 32 с переходом на диаметр 325х38 из стали 12Х1МФ.

На магистралях гл. паропровода имеются в верхних точках - воздушники, а в нижних точках и тупиковых участках - дренажные устройства.

Предназначение дренажного устройства - это продувка гл паропровода при прогреве, обеспаривание при выводе в ремонт. Прогрев паропровода осуществляется на РДНД при выводе в ремонт через дренажи паропровод соединяется с атмосферой.

На поперечной связи гл. паропровода установлены задвижки I-П-19 (связь по пару КТЦ IV оч. и к/а 9) и задвижка 0-П-19, которая позволяет вывести в ремонт половину гл. паропровода поперечной связи.

6. УСТРОЙСТВО И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ ГЕНЕРАТОРОВ И СИСТЕМЫ ОХЛАЖДЕНИЯ

6.1. В КТЦ на водородном охлаждении работают турбогенераторы №№ 9,10,11,12. Применение водорода в качестве охлаждающей среды на турбогенераторах дает огромные преимущества по сравнению с воздушным.

Водород в 14,4 раза легче воздуха, он обладает лучшей в 7 раз теплопроводностью чем воздух. Это позволяет на тех же генераторах вырабатывать при водородном охлаждении значительно большую эл. мощность, чем при воздушном охлаждении. Водород в обычных условиях -газ без цвета, запаха, вкуса. К недостаткам относится взрывоопасность водорода в смеси с воздухом или кислородом.

При содержании в воздухе водорода 4 - 75% по объему образуется взрывоопасная смесь.

6.2. В КТЦ на водородном охлаждении работают турбогенераторы №№ 9,10,11,12. Работа этих турбогенераторов на воздушном охлаждении ЗАПРЕЩАЕТСЯ.

Допускается непродолжительная работа т/г 9,10,11,12 при воздушном охлаждении только в режиме холостого хода без возбуждения.

Генератор

Тип генератора

Газовый объем со вставленным ротором

Мощность генератора при водородном охлаждении, МВТ

№ 9

ТВ-60-2МФ

50 м3

75

№ 10

ТВ-60-2МФ

50 м3

75

№ 11

ТВ-60-2МФ

50 м3

75

№ 12

ТВФ-60-2

34 м3

60

6.3. Уплотнение вала ротора и схема маслоснабжения уплотнений генераторов.

В турбогенераторах с водородным охлаждением предотвращение утечки водорода в месте выхода вала ротора осуществляется посредством специальных уплотняющих подшипников, размещаемых между торцевыми щитами генератора и опорными подшипниками ротора генератора.

Принцип действия уплотнения вала заключается в запирании водорода непрерывным встречным потоком масла, подаваемым в узкий зазор между валом ротора и вкладышем уплотнения под давлением, превышающим давление водорода.

Значение перепада давлений масло-водород находится в пределах 0,04-0,06 Мпа (0,4-0,6 кгс/см2).

Номинальное значение перепада уточняется при наладке системы маслоснабжения и на работающем генераторе поддерживается неизменным специальной регулирующей аппаратурой. Уменьшение перепада давления уплотняющего масла над давлением водорода до 0,03 МПа (0,3 кгс/см2) может привести к утечкам водорода через уплотняющие подшипники, увеличение этого перепада до 0,08-0,1 МПа (0,8-1,0 кгс/см2) также может привести к утечкам водорода, в первом случае - за счет незначительного превышения давления масла над давлением водорода, а во втором - в следствии большого расхода масла в сторону воздуха, больших скоростей масла и его эжектирующей способности.

6.4. Уплотняющие подшипники генераторов установленных в КТЦ выполнены торцевого типа с прижимом вкладышей к гребню вала стальными пружинами.

Уплотнение торцевого типа состоит из вкладыша и корпуса, крепящегося к торцевому щиту. Запирающий масляный слой создается между торцевой поверхностью вкладыша и боковой поверхностью упорного диска вала. Усилие от давления масла в масляном слое, возрастающее по мере увеличения частоты вращения за счет клиновой разделки рабочей поверхности вкладыша, старается отжать последний от вала и разорвать масляную пленку. Для предотвращения этого явления искусственно создается усилие прижатия, которое уравновешивает усилие отжатия вкладыша от упорного диска.

Прижим вкладыша к валу создается посредством совместного действия специальных пружин и давления водорода.

Рабочая поверхность вкладыша залита баббитом. Имеющим специальную разделку, состоящую из чередующихся в тангенциальном направлении клиновых и плоских площадок, разделенных радиальными канавками, кольцевой канавкой, наружного и внутреннего кольцевых поясков. Клиновые площадки при номинальной частоте вращения ротора являются основным несущим элементом, обеспечивающим образование сплошной масляной пленки толщиной 0,08-0,15 мм между упорным диском вала и вкладышем, смазывающей рабочие поверхности и отводящей потери трения.

Через эти площадки и наружный сплошной поясок проходит основной поток масла на сторону воздуха, достигающий 95 % общего расхода масла, поступающего в уплотнения. Плоские площадки контактируют с поверхностью упорного диска при отсутствии сплошной масляной пленки, т.е. при низких частотах вращения и работе от ВПУ. Между несущей поверхностью и внутренним кольцевым пояском располагается кольцевая прерывистая канавка, в которую подается уплотняющее масло под давлением, превосходящим давление водорода. Эта канавка вместе с внутренним пояском обеспечивает герметизацию газового объема генератора и незначительный расход масла в сторону водорода. Газовый объем генератора отделен от камеры слива масла в сторону водорода маслоуловителями лабиринтного типа. Слив масла прошедшего на строну воздуха осуществляется в картер опорного подшипника. Вкладыш удерживается от вращения посредством шпоночного узла. Масляный режим уплотняющих подшипников контролируется количеством сливаемого масла в сторону водорода. При нормальной работе подшипника струя сливаемого масла имеет диаметр 3-6 мм. При избыточном количестве масла на подшипнике струя сливаемого масла в сторону водорода имеет диаметр более 6 мм, при недостатке масла на подшипник струя имеет диаметр менее 3 мм или прекращается вовсе.

При пусках и остановах турбоагрегата, роста или снижения нагрузки происходит тепловое перемещение валопровода, а следовательно меняется положение упорных дисков относительно корпусов уплотнений вала. При отходе упорного диска от баббитовой заливки, увеличивается минимальная толщина масляного слоя и снижается усилие в масляном клине. Усилие прижатия вкладыша становится выше отжимающего усилия в масляной пленке. Когда разность усилий превзойдет усилия трения вкладыша в корпусе, вкладыш сдвинется и последует за валом. При сближении упорного диска с вкладышем толщина масляного слоя уменьшится и возрастет усилие в масляном клине.

Появляется неуравновешенная разность усилий, которая отжимает вкладыш от вала, преодолевая силы трения.

6.5. В режимах работы с пониженной частотой вращения (пуск, останов турбоагрегата, вращение от ВПУ) гидродинамическое усилие уплотняющего масла значительно снижается и возникает полусухое трение между вкладышем и диском. В том режиме усилие прижимающее вкладыш к диску воспринимается меньшей площадью баббитовой поверхности - только плоскими площадками. Если удельное давление на баббит в режиме полусухого трения велико, то неизбежен ускоренный износ баббита, который накапливается при повторении подобных режимов и особенно при продолжительном вращении от ВПУ.

В результате износа уменьшаются несущие клиновые площадки, снижается гидродинамическое усилие и несущая способность вкладыша.

Уравновешивания усилия прижимающего вкладыша к диску при номинальной частоте вращения достигается при уменьшенной толщине масляного слоя, что ведет к повышению температуры вкладыша в процессе эксплуатации. При ускоренном износе баббита толщина масляного слоя может снизиться на столько, что дальнейшее повышение температуры баббита может привести к его размягчению в направлении вращения вала и перекрытию маслоподающих отверстий во вкладыше.

Существенным недостатком уплотнений вала генераторов турбин ст. №№ 9,10,11,12 является их повышенная чувствительность к нарушению их маслоснабжения. Кратковременное снижение давления масла (перепад давлений масло-водород) при нарушении работы системы маслоснабжения для конструкции торцевых уплотнений генераторов турбин представляют большую опасность, как из-за возможного пропуска водорода в картере, так и потому, что несущая способность вкладышей резко снижается, нарушается равновесие усилий, действующих на вкладыши, возникает режим полусухого трения.

6.6. При недостаточной подаче масла на уплотняющий подшипник повышается температура вкладыша и сливаемого с подшипника масла, при увеличенной подаче масла - температура вкладыша и сливаемого масла понижается.

Температура вкладышей уплотнений вала является наиболее представительным параметром, характеризующим их состояние. Выплавливание баббита сегментов упорных подшипников происходит при температуре колодок 130 оС. Учитывая температурный запас и способ контроля температуры нагрева баббита в уплотнениях торцевого типа, температура баббита торцевых уплотнений не должна превышает 80оС.

Масло, подаваемое на уплотняющие подшипники, должно иметь температуру 40-45оС. Температура масла на выходе из уплотнений не должна превышать 65оС.

Разность температур входящего и выходящего масла не должна превышать 30оС.

6.7. В качестве основного источника маслоснабжения уплотнений вала используется инжектор, который считается наиболее простым и надежным устройством из-за отсутствия в нем вращающихся и трущихся элементов.

Напорным масла инжектора является масло из системы регулирования турбины, масло для уплотняющих подшипников генераторов берется из системы смазки турбины, после маслоохладителей и при помощи инжектора подается на уплотняющие подшипники. Подаваемое масло на уплотнения генератора должно иметь давление после инжектора не менее 3 кгс/см2. Помимо инжектора установлены два центробежных насоса уплотнений в качестве резерва. Один из которых резервный, с двигателем переменного тока, а другой - аварийный, с двигателем постоянного тока, подающее масло на уплотнения из чистого отсека главного масляного бака турбины (ГМБ). Нормально в работе находится инжектор, электронасосы находятся в резерве на блокировке по понижению давления масла на уплотнение.

Регулирование подачи масла на уплотняющие подшипники генераторов производится дифференцированными регуляторами перепада давления (РПД) типа:

на генераторе - № 9,10, 11 - тип ДРДМ-30М - уплотняющее масло;

на генераторе - № 12 - тип ДРДМ-12М - уплотняющее масло.

Регуляторы давления масла ДРДМ-30М, ДРДМ-12М обеспечивают постоянный перепад давления между давлением газа в корпусе генератора и давлением масла перед подшипниками как при изменении давления масла, так и при изменении оборотов генератора.

Из напорного коллектора (после инжектора или НУГ) масло как правило поступает в маслоохладитель (МО) (при нормальной работе), в котором масло охлаждается до 40-42оС, а затем в масляные фильтры (МФ), один из которых- в работе, другой- в резерве.

После МФ масло подается на вход РПД. Давление мала перед РПД должно быть в пределах 8-10 кгс/см2. После РПД масло подается в демпферный бак и под давлением выше давления водорода поступает на оба уплотнения вала.

Схема маслоснабжения уплотнений связана со сливным трубопроводом масла с подшипников турбины и поэтому всегда находится в заполненном состоянии.

При отказе дифференцированного регулятора масло в (ДБ) или подшипники может быть подано через задвижку УМ-20.

Непосредственно перед подшипниками установлены запорные вентили, которые нормально полностью открыты и служат для корректировки расхода масла на подшипник в случае ненормальной работы.

Работа маслоснабжения уплотняющих подшипников генераторов с отключенным ДБ ЗАПРЕЩАЕТСЯ.

Работа уплотнений помимо ДБ предусматривается как временная мера, на случай устранения неисправностей в системе маслоснабжения уплотнений.

Пройдя уплотнения вала большая часть масла сливается в сторону воздуха - в картеры опорных подшипников генераторов и лишь незначительная часть в сторону водорода, в сливную водородную камеру.

Из водородной камеры во избежание и попадания водорода в ГМБ турбины, масло сливается в схему маслоснабжения через водородоотделительный бачок, U-образный гидрозатвор. U-образные гидрозатворы установлены на всех генераторах , обеспечивающих работу генератора с давлением газа в корпусе до 0,5 кгс/см2.

Для возможности работы генераторов с давлением газа выше 0,5 кгс/см2 на генераторах №№ 9,10,11,12 установлены поплавковые механические гидрозатворы типа 3Г-30. Поплавковый гидрозатвор включается в схему параллельно U-образному гидрозатвору.

Нормально поплавковый гидрозатвор находится постоянно в работе. При переводе генератора в режим работы с давлением газа в корпусе генератора выше 0,5 кгс/см2, необходимо предварительно включать U-образный гидрозатвор и проверить нормальную работу поплавкового гидрозатвора.

7. ГЛАВНЫЙ ЩИТ УПРАВЛЕНИЯ

Главный щит управления - мозг станции, с пульта которого координируется работа всего оборудования станции.

Главный щит управления на ТЭЦ - 1 представляет собой приборный щит, играющий роль главного звена в системах автоматизации технологических процессов. На главном щите управления располагаются электрические, пневматические, и гидравлические приборы и аппараты контроля, управления, регулирования и питания.

Пульты, шкафы, щиты средств автоматизации производственных процессов предназначены для размещения на них средств контроля, и управления технологическими процессами, контрольно-измерительными приборов, сигнальных устройств, аппаратуры управления, автоматического регулирования, защиты, блокировки, линии связи между ними.

Главный пульт управления выполняет следующие основные функции:

· анализ режимов технологического оборудования;

· контроль технологических параметров;

· управление (открытие, закрытие, стоп) и контроль станционных и агрегатных задвижек;

· контроль режимов перекачки, готовности магистральных и подпорных насосных агрегатов;

· обработка предельных значений параметров по агрегату (котел и турбина).

Щиты и пульты управления на ТЭЦ применяются с целью:

· расширения функциональных возможностей автоматизации по сравнению с существующими системами;

· обеспечения учета потребления и выработки энергоресурсов: расхода газа (жидкого топлива), расхода воды, пара, тепловой энергии на отопление и горячее водоснабжение, расхода конденсата с производства, расхода газа по котлам.

Щиты и пульты управления (стативы) представляют собой металлический каркас из перфорированного швеллера с технологической обвязкой. Окраска металлоконструкций производится эпоксидно-порошковыми красками методом электростатического напыления.

Стойки укомплектовываются измерительными приборами (датчиками давления, перепада давления, температуры, вибрации, силы тока, уровня) и сигнализирующими приборами релейного типа (датчиками-реле напора, сигнализирующими манометрами и реле давления, сигнализаторами уровня).

Щиты и пульты управления изготавливаются в виде открытых стоек, как для индивидуального, так и для полносборного монтажа с общей обвязкой.

Возможно размещение стоек в блочно-комплектных устройствах (блок-боксах) для систем автоматизации, контроля и управления.

Пульты, шкафы, щиты средств автоматизации производственных процессов устанавливаются в производственных помещениях и специальных щитовых помещениях: операторских, диспетчерских, и т.д.

8. ПОКАЗАТЕЛИ ТЕПЛОВОЙ ЭКОНОМИЧНОСТИ ТЭЦ

Все основные тепловые показатели ТЭЦ можно приблизительно рассчитывать по ниже приведенным формулам:

1. Расход условного топлива:

где - расход природного газа;

- расход мазута;

- низшая теплота сгорания природного газа;

- низшая теплота сгорания мазута.

2. Удельный расход условного топлива на отпуск тепла:

где - отпуск тепла потребителям

3. КПД ТЭЦ:

где - отпуск электроэнергии

4. КПД брутто котлоагрегата:

где - выработка тепла;

- расход перегретого пара;

- расход пара на непрерывную продувку;

- соответственно, энтальпия перегретого пара, пара на продувку и энтальпия питательной воды.

Усредненные расходы топлива на всех котлах ТЭЦ - 1 сведены в следующую таблицу:

Тип котла

Кол-во горелок

Расход топлива на 1 горелку

Расход топлива на весь котел

газ,

мазут,

газ,

мазут,

1,2,3

ПТВМ-180

20

1265

-

25300

-

4

КВГМ-180

6

3796

-

22776

-

9

БКЗ-210

8

2000

-

16000

-

10

ТГМ-84

18

1765

1,7

31770

30,6

11

ТГМ-84

18

1765

1,7

31770

30,6

12

ТГМ-84

18

1900

1,7

34200

30,6

13

ТГМ-84Б

6

5000

5,0

30000

30,0

9. ОРГАНИЗАЦИЯ ЭКСПЛУАТАЦИИ ОТДЕЛЬНЫХ ЦЕХОВ

9.1. Компрессорный цех

На территории ОТЭЦ-1 находится трубопровод сжатого воздуха, используемый для собственных нужд предприятия (снабжение сжатым воздухом различного пневматического оборудования). Данный трубопровод подключен к компрессору ВП - 20/8М производительностью 20 м/мин и давлением 8 атм. Компрессор находится в компрессорном цехе, располагаемом непосредственно возле КТЦ II очереди. Компрессор представляет собой двухступенчатую крейцкопфну, машину двойного действия, с угловым расположением цилиндра. Компрессор снабжен автоматической аварийной защитой. Компрессор приводится в действие от синхронного эл. двигателя, типа ДСК-12-24-12, мощностью -125 квт. Напряжение - 380 В. Число оборотов- 500 об/мин.

9.2. Система откачки сточных вод с пром. площадки ОТЭЦ - 1 на золоотвал №2

При эксплуатации системы откачки сточных вод с пром. площадки ОТЭЦ-1 на золоотвал № 2 должны быть обеспечены:

1. Надежность оборудования, устройств и сооружений внутренней и внешней системы откачки сточных вод с пром. площадки ОТЭЦ-1 на золоотвал № 2.

2. Рациональное использование емкости золоотвала.

3. Предотвращение загрязнений и сточными водами воздушного и водного бассейна, а также окружающей территории.

4. Своевременное наращивание дамбы золоотвала.

5. Плотность трактов и оборудования, исправность облицовки и перекрытий каналов, золопроводов, отключающих устройств.

Эксплуатация системы откачки сточных вод с пром. площадки ОТЭЦ-1 на золоотвал № 2 должна быть организована в режимах, обеспечивающих:

1. Оптимальные расходы воды и электроэнергии.

2. Исключение замораживания внешних водоводов, заиливание каналов и колодцев.

Оборудование багерной насосной № 1:

1. Багерные насосы ст. № 1; № 2; № 3.

Тип 12 Гр-8Т2.

Центробежный, одноступенчатый, консольный с двойным корпусом.

Подшипник радиально-опорный роликовый № 3631 - 1 шт. и подшипник упорный № 46234 -2 шт.

Смазка подшипников - масло «Индустриальное-45».

Вращение рабочего колеса по часовой стрелке, если смотреть на электродвигатель со стороны насоса.

Напор насоса - 70-79 м вод.ст.

Производительность - 1000-1500 м?/час

Электродвигатель асинхронный, тип А 13-46-6

Мощность - 630 квт

Число оборотов - 980 об/мин

Напряжение -3000 вольт

Перекачиваемая среда - сточные воды с очистных сооружений ТЭЦ и КТЦ.

Температура - не более50? С

2. Дренажные насосы ст. №№ 1; 2.

Тип 4НФУ

Центробежные, одноступенчатые, консольные

3. Дренажный насос ст. № 3

Тип 4К-8

Центробежный, одноступенчатый, консольный

Производительность - 360 м?/час

Напор - 6 м вод.ст.

4. Дренажный насос № 4

Тип К 100-65-200

Центробежный, одноступенчатый, консольный

Производительность - 100 м?/час

Напор - 50 м вод.ст.

Оборудование багерной насосной № 2

1. Багерные насосы ст. №№ 1; 2; 3 - первого подъема.

Багерные насосы ст. №№ 1А; 2А; 3А - второго подъема.

Тип ГРТ 1250/71

Центробежный, одноступенчатый, консольный с двойным корпусом.

Смазка подшипников - масло «Индустриальное-45».

Производительность - 1250 м?/час

Напор - 71 м вод.ст.

Электродвигатель асинхронный

Мощность - 630 квт

Число оборотов - 980 об/мин

Напряжение -6000 вольт

2. Сальниковые насосы (насосы уплотнения)

Служат для уплотнения сальников багерных насосов первого подъема №№ 1;2;3 установлены 2 шт.

Тип - ЦНС -105-98.

Производительность - 105 м?/час

Напор - 98 м вод.ст.

Для уплотнения сальников багерных насосов второго подъема №№ 1А;2А;3А установлены 2 шт.

Тип - ЦНС -105-196.

Производительность - 105 м?/час

Напор -196 м вод.ст.

Дренажные насосы предназначены для откачки воды из дренажного приямка.

Дренажный насос ст. № 1

Тип - ЦНС -3

Производительность -36,4 м?/час

Напор -15,9 м вод.ст.

Шламовый водоструйный насос № 2

Производительность - 30 м?/час

Напор -6 м вод.ст.

Дренажный насос ст. № 3 -водоструйный эжектор.

Оборудование насосной осветленной воды.

1. Насосы осветленной воды ст. №№ 1; 2; 3 предназначены для подачи осветленной воды на ТЭЦ, для повторного использования в системе гидрозолоудаления.

Тип насосов - 300Д90

Производительность - 900 м?/час

Напор -18 м вод.ст.

Электродвигатель асинхронный,тип А-272-6

Мощность - 100 квт

2. Дренажные насосы №№ 1; 2.

Тип ВКС-5/24

Производительность - 8,5-18,4 м?/час

Напор - 10-20 м вод.ст.

Схема работы гидрозолоудаления багерной насосной № 1.

Гидросмесь из котельного отделения поступает в багерную по каналу, расположенному в сточном проходном тоннеле. Перед входом в багерную канал разделяется на два канала (к колодцам №№ 1; 2). Переключение на колодцы производится путем перевода поворотной шандоры.

Кроме того на каждом колодце имеется своя запорная шандора. За запорной шандорой поперек канала сделано углубление, являющееся предварительным железоуловителем.

После предварительного железоуловителя гидросмесь поступает в приемный колодец. Поперек приемного колодца установлена наклонная решетка с ячейками шириной 20 мм.

Приемный колодец соединяется с буферным колодцем амбразурой, расположенной на высоте 2300 мм от пола багерной.

Если в приемный колодец поступило больше смеси чем откачивается багерными насосами, то гидросмесь через амбразуру заполняет буферный колодец. При нормальной работе следует поддерживать уровень гидросмеси на 1,5- 2 м выше дна колодца.

Золопроводы и золоотвал № 2.

Золоотвал ТЭЦ является ответственным гидротехническим сооружением, аварии которого могут привести к тяжелым последствия не только для станции, но и для объектов народного хозяйства и населенных пунктов, расположенных вблизи золоотвала.

Золоотвал № 2 «новый» расположен к северу от ТЭЦ-1в урочище Казак-Чекан на расстоянии 9,5 км. Высота подачи воды -108 м над площадкой ТЭЦ. Емкость наполнения золоотвала 4 млн. м?.

В эксплуатации находится с 1983 года. Максимальная высота ограждающей дамбы 36 м.

Площадь золоотвала -42 га. Золоотвал овражного типа.

Гребень ограждающей дамбы на отметке 308,0 м. Ширина дамбы -10 м.

Для возможности аварийных сбросов воды при сильных наводнениях (паводках) предусмотрен аварийный водосброс.

Максимальный уровень воды золоотвала -295 см.

Аварийный сброс при уровне -298 см.

Для контроля за осадками и смещениями дамбы золоотвала установлена сеть поверхностных и глубинных реперов.

От багерной насосной № 2 до золоотвала № 2 проложено три золопровода диаметром 426 мм. Протяженность трассы - 6,5 км

От золоотвала № 2 до насосной осветленной воды проложен железобетонный канал, протяженностью 70 м.

Трубопровод осветленной воды O 530 мм от насосной осветленной воды до ТЭЦ протяженность трассы -10 км.

10. ХАРАКТЕРИСТИКА ИНФОРМАЦИОННОЙ СЕТИ ТЭЦ

Информационная опорная сеть ОТЭЦ - 1 строится на основе 7-ми подсистем:

· первичные каналы сети связи;

· узлы связи;

· комплекс распределённого контроля и управления агрегатами и информационной сетью;

· система архивирования информации и обеспечение бесперебойного питания;

· информационные серверы коллективного пользования;

· интеграция с российскими сетями;

· универсальная система подключения абонентской компьютерной техники;

Первичные каналы связи строятся на основе одномодового оптоволоконного кабеля по топологии "звезда" с центром на стационарной АТС.

Система распределённого контроля и управления Информационной Опорной Сетью представляет собой программно-аппаратный комплекс с центром управления в здании АТС.

Для организации бесперебойного электропитания информационой сети используется распределённая система гарантированного электропитания.

Информационные серверы коллективного пользования - это специально организованные информационные ресурсы Опорной Сети, к которым обеспечен доступ абонентов с многоуровневой системой регистрации.

В качестве поставщика услуг Internet, обеспечивающего доступ к российским и мировым ресурсам используется АО "ВолгаТелеком" г. Орск.

Для организации связи между узлами телекоммуникационной распределённой сети связи используются современные оптические каналы связи, которые позволяют построить магистраль передачи данных на территории предприятия.

Служебный входной оптический шкаф расположен внутри здания АТС, в котором заканчиваются кабели, введённые в здание снаружи.

Для информационной опорной сети из общего магистрального многожильного оптического кабеля выделено два одномодовых волокна, один из которых служит для приёма информации, другой для передачи.

Для подключения активного оборудования информационной опорной сети используется оптический одномодовый кабель для внутренней прокладки, который приварен к магистральному кабелю и оканчивается стандартным ST коннектором. Кабель для внутренней проводки закреплён по всей длине стяжками к направляющим конструкциям и входит в распределительный шкаф. Для работоспособности сети в целом, необходимо, чтобы по всей длине оптического кабеля затухание было не более 0,4 Дб/км. Передача информации по одномодовым оптическим волокнам производится на длинах волн 1,3 и 1,55 мкм.

В качестве каналообразующего оборудования используются трансиверы фирмы Nbase NX300, которые передают оптический сигнал на расстояние до 10 км при затухании не более 0,4 Дб/км. Они предназначены для подключения оборудования Ethernet с разъёмом AUI в одномодовую волоконнооптическую линию связи. Протокол передачи информации - Ethernet CSMA-CD. Трансиверы имееют режим работы как полудуплекс (10Мб/сек), так и полный дуплекс (20Мб/сек).

11. Автоматизация

11. 1. Автоматическое управление тепловыми процессами

На такой электростанции, как ОТЭЦ - 1, входящей в энергосистему, должно осуществляться непрерывное круг-лосуточное регулирование текущего режима работы по частоте и перетокам активной мощности, обеспечивающее:

исполнение заданных диспетчерских графиков активной мощ-ности;

поддержание частоты в нормированных пределах;

поддержание перетоков активной мощности в допустимых диа-пазонах, исходя из условий обеспечения надежности функциониро-вания энергосистем, объединенных и единой энергосистем;

корректировку заданных диспетчерских графиков и режимов ра-боты, объединенных и единой энергосистем при изменении режим-ных условий.

Регулирование частоты и перетоков активной мощности должно осуществляться совместным действием систем первичного (общего и нормированного), вторичного и третичного регулирования.

Общее первичное регулирование частоты должно осуществляться всеми электростанциями путем изменения мощности под воздействием автоматических регуляторов частоты вращения роторов турбоагрегатов и производительности котлов, реакторов АЭС и т. п.

Нормированное первичное регулирование частоты должно обес-печиваться выделенными электростанциями. На ТЭЦ - 1 разме-щается необходимый первичный резерв. Параметры и диапазон нормированного первичного регулирования задаются со-ответствующими органами диспетчерского управления.

Вторичное регулирование (в целом по единой энергосистеме и в отдельных регионах) осуществляется с целью поддержания и восстановления плановых режимов по частоте и перетокам активной мощности.

Вторичное регулирование осуществляется оперативно либо автоматически (с использованием систем автоматического ре-гулирования частоты и перетоков мощности - АРЧМ) выделенными для этих целей электростанциями, на которых должен поддерживать-ся необходимый вторичный резерв активной мощности.

Использование системы автоматического управления и ре-жимов работы, препятствующих изменению мощности при измене-ниях частоты (ограничители мощности и регуляторы давления «до себя» на турбинах, режим скользящего давления при полностью от-крытых клапанах турбин, регуляторы мощности без частотной кор-рекции, отключение регуляторов мощности или устройств автома-тического регулирования производительности котельных установок) допускается только временно при неисправности основного оборудования или систем автоматического регулирования.

После изменения мощности, вызванного изменением частоты, персонал электростанции должен принять необходимые меры для выполнения требований участия в первичном регулировании часто-ты. При снижении частоты ниже установленных значений диспетчер единой энергосистемы России или изолированно работающей (аварийно отделившейся) объединенной энергосистемы (энергосистемы, энергорайона) должен ввести в действие имеющиеся резервы мощности.

Регулирование параметров тепловых сетей должно обеспечивать поддержание заданного давления и температуры теплоносителя в контрольных пунктах.

Допускается отклонение температуры теплоносителя от задан-ных значений при кратковременном (не более 3 ч) изменении утвер-жденного графика, если иное не предусмотрено договорными отно-шениями между энергосистемой и потребителями тепла.

Регулирование в тепловых сетях осуществляется автоматически или вручную путем воздействия на:

работу источников и потребителей тепла;

гидравлический режим тепловых сетей, в том числе изменением перетоков и режимов работы насосных станций и теплоприемников;

режим подпитки путем поддержания постоянной готовности водоподготовительных установок теплоисточников к покрытию изменяющихся расходов подпиточной воды.

11.2. Автоматические регуляторы тепловых процессов

Высокая экономичность при различных режимах поддерживается автоматическими регуляторами горения. Падение экономичности при переходе от экономической к максимально длительной нагрузке обычно не превышает 2--3%.

Котлы снабжены звуковыми сигнализаторами предельных уровней воды и автоматическими регуляторами питания котла.

На всех котлах ТЭЦ - 1 предусмотрены водосмотры, не смотря на наличие автоматических регуляторов питания и дистанционного привода для управления регулирующими питательными органами с рабочего места машиниста котла. Во всех других случаях наблюдение за уровнем воды и питанием котлов возлагается на машиниста котла.

Основные операции по управлению блоком осуществляются вычислительной подсистемой совместно с автоматическими регуляторами. В наиболее сложных режимах работы, таких как пуск, останов, аварийные режимы, вычислительная подсистема работает как советчик дежурного оператора. Роль и квалификация дежурного оператора с применением АСУ не только не снижается, но постоянно повышается. Операторами на ТЭЦ - 1 работают, как правило, техники, имеющие опыт работы и хорошо знающие не только основное и вспомогательное тепломеханическое оборудование, но и изучившие состав и принципы работы АСУ и умеющие контролировать работу системы автоматического управления.

Для обеспечения постоянного соответствия между выработкой пара, подачей топлива, воздуха и воды котельные агрегаты в 1999 - 2002 гг. были снабжены автоматическими регуляторами питания и горения - системой AMAX. Эта система учитывает способность самого котельного агрегата запасать (аккумулировать) некоторое количество тепла, которое может быть использовано в момент перехода от одной нагрузки к другой до того, как будет установлен соответствующий новой нагрузке режим питания и горения. Система AMAX позволяет регулировать питание котельного агрегата с рабочего места машиниста.

В котлах для всего возможного диапазона солесодержания питательной воды продувка осуществляется по качеству воды в солевых отсеках. Котлы № 10, 11 и 12 оснащены автоматическими регуляторами размера продувки по значению солесодержания котловой воды.

11.3. Автоматизация вспомогательного оборудования

Автоматизация системы защиты паровой турбины от падения давления масла:

Защита работает от 3-х датчиков давления масла ДЕМ по схеме "2" из "3-х". Один датчик настроен на 0,7 кгс/см2, два на 0,3 кгс/см2. При понижении давления масла до 0,7 кгс/см2 загорается табло “Давление масла на смазку I предел “. При достижении давления масла 0,3 кгс/см2 подается команда на отключение турбины с выдержкой времени 3 сек., при этом:

– выпадает блинкер “Падение давления масла на смазку”, загорается табло “Давление масла на смазку аварийно” и работает звуковой сигнал;

– срабатывают соленоиды автомата безопасности и закрывается стопорный клапан;

– выпадают блинкера “Аварийное отключение турбины” и “Автомат безопасности”;

– загораются табло “Стопорный клапан закрыт” и “Аварийное отключение турбины”;

– после закрытия стопорного клапана идут на закрытие главные паровые задвижки I-П-15, I-П-16 и задвижки промышленного отбора I-ПО-1, I-ПО-2;

– открывается задвижка срыва вакуума;

– открываются вентиля обратных клапанов турбины с выдержкой времени 20 сек.;

– закрываются обратные клапана;

– проходит команда на закрытие задвижек по пару к ПВД- 5, 6, 7 и ПНД- 2;

– без выдержки времени после закрытия стопорного клапана проходит команда на отключение генератора и загорается табло “ Генератор отключен ”.

Автоматизация системы контроля вакуума в конденсаторе:

Защита работает от 3-х вакуум-реле по схеме "2" из "3-х". Одно реле настроено на 630 мм.рт.ст. (I предел), два на 470 мм.рт.ст. (II предел). Защита вводится автоматически при нормальном вакууме, подтвержденным 2-мя вакуум-реле. При падении вакуума до I предела загорается табло “ Вакуум низок “ и работает звуковой сигнал. При дальнейшем падении вакуума до II предела подается команда на отключение турбины, при этом:

– выпадает блинкер и загорается табло “ Вакуум аварийный “;

– срабатывают соленоиды автомата безопасности и закрывается стопорный клапан;

– выпадают блинкера “Аварийное отключение турбины” и “Автомат безопасности”;

– загораются табло “Стопорный клапан закрыт” и “Аварийное отключение турбины”;

– после закрытия стопорного клапана идут на закрытие главные паровые задвижки I-П-15, I-П-16 и задвижки промышленного отбора I-ПО-1, I-ПО-2;

– открывается задвижка срыва вакуума;

– открываются вентиля обратных клапанов турбины с выдержкой времени 20 сек.;

– закрываются обратные клапана;

– проходит команда на закрытие задвижек по пару к ПВД- 5, 6, 7 и ПНД- 2;

– без выдержки времени после закрытия стопорного клапана проходит команда на отключение генератора и загорается табло “ Генератор отключен ”.

Автоматизация системы контроля температуры пара перед турбиной:

Защита работает от датчиков температуры острого пара в трубопроводах № 1 и № 2 и датчика температуры острого пара в стопорном клапане по схеме "2" из "3-х". Защита вводится автоматически при температуре 520С в стопорном клапане и при открытом стопорном клапане. При понижении температуры в стопорном клапане до 520С загорается табло "Температура в стопорном клапане низка I предел". При дальнейшем понижении температуры в стопорном клапане и в паропроводах № 1,2 до температуры 495С подается команда на отключение турбины, при этом:

– срабатывают соленоиды автомата безопасности и закрывается стопорный клапан;

– после закрытия стопорного клапана идут на закрытие главные паровые задвижки I-П-15, I-П-16 и задвижки промышленного отбора I-ПО-1, I-ПО-2;

– открываются вентиля обратных клапанов турбины с выдержкой времени 20 сек.;

– закрываются обратные клапана;

– проходит команда на закрытие задвижек по пару к ПВД- 5, 6, 7 и ПНД- 2;

– команда на отключение генератора проходит через 3 сек. после срабатывания реле обратной мощности (РОМ), загорается табло “ Генератор отключен “ (от блинкера).

Автоматизация контроля состояния генератора:

При внутреннем повреждении генератора (срабатывании “Дифференциальной защиты генератора Г9”, “Дифференциальной защиты трансформатора Т9”, “Газовой защиты трансформатора Т9”, “Максимальной токовой защиты генератора Г9”) из схемы электрической защиты проходит импульс в схему технологической защиты на отключение турбины, при этом:

– срабатывают соленоиды автомата безопасности и закрывается стопорный клапан;

– после закрытия стопорного клапана идут на закрытие главные паровые задвижки I-П-15, I-П-16 и задвижки промышленного отбора I-ПО-1, I-ПО-2;

– открываются вентиля обратных клапанов турбины с выдержкой времени 20 сек.;

– закрываются обратные клапана;

– проходит команда на закрытие задвижек по пару к ПВД- 5, 6, 7 и ПНД- 2;

– команда на отключение генератора проходит через 3 сек. после срабатывания реле обратной мощности (РОМ), загорается табло “ Генератор отключен “ (от блинкера).

11.6. Структурная схема АСУ ТП

На электростанции ТЭЦ - 1 функционирует АСУ ТП, решающее следующие типовые комплексы задач:

технико-экономическое планирование;

управление сбытом электрической и тепловой энергии;

управление развитием энергопроизводства;

управление качеством продукции, стандартизацией и метрологией;

управление топливоснабжением;

управление кадрами;

Автоматические системы управления технологическим процессом (АСУ ТП) функционируют как самостоятель-ные системы и как подсистемы интегрированных АСУ энергосистем.

В состав комплекса технических средств АСУ входят:

средства сбора и передачи информации (датчики информации, кана-
лы связи, устройства телемеханики, аппаратура передачи данных и т. д.);

средства обработки и отображения информации (ЭВМ, аналого-вые и цифровые приборы, дисплеи, устройства печати, функциональ-ная клавиатура и др.);

средства управления (контроллеры, исполнительные автоматы, электротехническая аппаратура: реле, усилители мощности и др.);

вспомогательные системы (бесперебойного электропитания, кон-диционирования воздуха, автоматического пожаротушения и др.).

Подразделения, обслуживающие АСУ ТП, должны обеспечивают:

надежную эксплуатацию технических средств, информационного и программного обеспечения АСУ;

представление согласно графику соответствующим подразделе-ниям информации, обработанной в ЭВМ;

эффективное использование вычислительной техники в соответ-ствии с действующими нормативами;


Подобные документы

  • Физкультурно-оздоровительный центр в гостинице: общие принципы освещения, правила комплектации, классификация тренажерных залов и их зонирование, выбор оборудования. Требования к организации, помещениям оборудованию и персоналу фитнес-службы отеля.

    контрольная работа [32,9 K], добавлен 07.10.2013

  • Требования безопасности и надежности эксплуатации автоматизированного электропривода поточной линии. Правила пуска, аварийной остановки, наличие звукового или светового сигналов и блокировки. Технология работы линии в ручном и автоматическом режимах.

    презентация [133,1 K], добавлен 08.10.2013

  • Анализ технического процесса в ОМЦ ЗАО "МРК" и механического оборудования механосборочного участка. Устройство, работа и техническая характеристика электрического мостового крана. Организация ремонтной службы. Техника проведения капитальных ремонтов.

    отчет по практике [1,2 M], добавлен 28.01.2013

  • Описание приточной вентиляционной камеры серии 5.904–75.94. Устройство оборудования вентиляционных камер. Требования техники безопасности при проведении сварочных работ на монтаже санитарно-технических систем оборудования. Средства защиты от ожогов.

    контрольная работа [415,0 K], добавлен 12.09.2012

  • Технология сварки трубопроводов диаметром 89-530 мм, толщиной стенки 5-6 мм. Выбор сварочных материалов и оборудования. Подготовка металла под сварку. Технология сварки. Напряжения и деформации при сварке. Технический контроль. Требования безопасности.

    контрольная работа [20,5 K], добавлен 27.02.2009

  • Общие правила техники безопасности при работе с металлом. Требования к организации рабочего места слесаря. Слесарный и мерительный инструмент. Сущность и методы нанесения разметки. Понятие и виды рубки, правки, отпиливания, клепки и сверления металла.

    отчет по практике [1,4 M], добавлен 27.04.2011

  • Критерії оцінки, основні вимоги до персоналу. Класифікація методів оцінки якості службовців підприємства, стан нормування і продуктивності праці. Аналіз пропозиції щодо вдосконалення методів оцінки персоналу мережі магазинів "Мобілочка", експертні оцінки.

    курсовая работа [45,6 K], добавлен 15.04.2009

  • Обзор автоматизированных гидроприводов буровой техники. Выбор рабочей жидкости гидропривода. Определение расхода жидкости и расчет гидравлической сети. Расчет объема масляного бака. Требования безопасности при работе с гидравлическим оборудованием.

    курсовая работа [1,1 M], добавлен 22.09.2011

  • Основные требования к эксплуатации электрооборудования. Общий вид продольно-строгального станка, их виды и принцип действия. Объем и последовательность приемки данного оборудования. Мероприятия по технике безопасности при эксплуатации электроустановок.

    курсовая работа [668,2 K], добавлен 11.04.2012

  • Основные способы легирования наплавленного металла при дуговой и электрошлаковой наплавке. Применение и устройство шланговых полуавтоматов. Основные требования техники безопасности при сварке. Устранение доли основного металла в составе наплавленного.

    курсовая работа [1,5 M], добавлен 05.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.