Расчет и проектирование привода конвейера

Расчет клиноременной передачи. Определение конструктивных размеров червячной передачи. Расчет закрытой червячной передачи. Компоновочная схема и тепловой расчет редуктора. Проверочный расчет шпонок ведущего вала. Выбор масла, смазочных устройств.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 07.05.2009
Размер файла 4,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

59

Министерство образования Республики Беларусь

Борисовский государственный политехнический колледж

Расчетно-пояснительная записка

к курсовому проекту по «Технической механике»

Тема: Расчет и проектирование привода конвейера

Разработал:

Коренько А.В.

гр. ТЗ-401, вар.11

Борисов 2007

Содержание

1 Введение

2 Выбор электродвигателя

3 Расчет клиноременной передачи

4 Расчет цепной передачи

5 Расчет закрытой червячной передачи

6 Расчет ведомого вала редуктора

7 Расчет ведущего вала-червяка

8 Подбор подшипников

9 Подбор и проверочный расчет шпонок ведущего вала

10 Подбор и проверочный расчет шпонок ведомого вала

11 Определение конструктивных размеров червячной передачи

12 Компоновочная схема и тепловой расчет редуктора

13 Определение конструктивных размеров крышек подшипников

14 Выбор масла, смазочных устройств

15 Выбор стандартных изделий

Список использованной литературы

1 Введение

Тяговым органом заданного привода является цепная передача В цепных передачах (см. рис.1) вращение от одного вала к другому передается за счет зацепления промежуточной гибкой связи (цепи) с ведущим и ведомым звеньями (звездочками).

Рис.1 Схема цепной передачи с червячным редуктором

В связи с отсутствием проскальзывания в цепных передачах обеспечивается постоянство среднего передаточного числа. Наличие гибкой связи допускает значительные межосевые расстояния между звездочками. Одной цепью можно передавать движение одновременно на несколько звездочек. По сравнению с ременными цепные передачи имеют при прочих равных условиях меньшие габариты, более высокий КПД и меньшие нагрузки на валы, так как отсутствует необходимость в большом предварительном натяжении тягового органа.

Недостатки цепных передач: значительный износ шарниров цепи, вызывающий ее удлинение и нарушение правильности зацепления; неравномерность движения цепи из-за геометрических особенностей ее зацепления с зубьями звездочек, в результате чего появляются дополнительные динамические нагрузки в передаче; более высокие требования к точности монтажа передачи по сравнению с ременными передачами; значительный шум при работе передачи.

Цепные передачи предназначаются для мощности обычно не более 100 кВт и могут работать как при малых, так и при больших скоростях (до 30 м/с). Передаточные числа обычно не превышают 7.

Применяемые в машиностроении цепи по назначению подразделяются на приводные, передающие энергию от ведущего вала к ведомому; тяговые, применяемые в качестве тягового органа в конвейерах; грузовые, используемые в грузоподъемных машинах. Из всех типов природных цепей наибольшее распространение имеют роликовые с числом рядов от 1 до 4, втулочные , одно- и двухрядные, и зубчатые.

Кинематическая схема привода конвейера приведена на рис.2.

Вращение привода передается от вала электродвигателя 1 к валу ведомой звездочки 4 цепного конвейера посредством клиноременной передачи и червячного редуктора с нижним расположением червяка 2.

Рис.2 Кинематическая схема привода конвейера.

2 Выбор электродвигателя

Исходные данные:

- мощность на ведомой звездочке Р4=3,5 кВт;

- число оборотов на ведомой звездочке п4=35 об/мин;

- работа двухсменная;

- нагрузка спокойная нереверсивная.

Определяем общий КПД привода по схеме привода

зобщ1 з2 з3 з0 (2.1)

где [1, с.5, табл.1.1]: з1=0,97- КПД ременной передачи;

з2=0,72 - КПД закрытой червячной передачи с однозаходним червяком;

з3=0,95 - КПД цепной передачи;

з0=0,992- коэффициент, учитывающий потери на трение в опорах 2-х валов.

Сделав подстановку в формулу (2.1) получим:

зобщ.=0,97*0,72*0,95*0,992=0,65

Определяем мощность, необходимую на входе [1,с.4]

Ртр4общ. (2.2)

где Ртр - требуемая мощность двигателя:

Ртр=3,5/0,65=5,38кВт

Выбираем электродвигатель [1,с.390,табл. П1,П2]

Пробуем двигатель 4А112М4:

Рдв.=5,5кВт;

nс=1500об/мин;

S=3,7%

dдв.=32мм.

Определяем номинальную частоту вращения электродвигателя по формуле (1.3) [1,c.6]:

nном=nc·(1-S);

nном=1500·(1-0,037);

nном=1444,5 об/мин

Определяем общее передаточное число привода

U=nном./n4=1444,5/35=41,3

Производим разбивку передаточного числа по ступеням. По схеме привода

Uобщ.=U1· U2· U3; (2.3)

Назначаем по рекомендации [1,табл.1.2]: U1=2; U2=10;

Тогда

U3= Uобщ./( U1· U2);

U3=2,06, что входит в рекомендуемые пределы

Принимаем U3=2.

Тогда уточняем передаточное число привода по формуле (2.3):

Uобщ.=2*10*2=40

Принимаем окончательно электродвигатель марки 4А112М4

Угловые скорости определяем по формуле

щ=рn/30 (2.4)

По формуле (2.4) определяем угловую скорость вала двигателя

щдв=рnдв/30=р*1444,5/30=151,3рад/с;

По схеме привода (рис.2) и формуле (2.4) определяем частоты вращения и угловые скорости каждого вала

n2= nдв/U1=1444,5/2=722,3об/мин;

щ2=рn2/30=р*722,3/30=75,6 рад/с;

n3= n2/U2=722,3/10=72,2 об/мин;

щ3=рn3/30=р*72,2/30=7,6 рад/с;

n4= n3/U3=72,2/2=36,1 об/мин;

щ4=рn4/30= р*36,1/30=3,8 рад/с.

Определяем мощность на каждом валу по схеме привода

Р2дв з1=5,5*0,97=5,335 кВт;

Р32 з2 з0=5,335*0,72*0,992=3,764 кВт;

Р43 з3=5,124*0,95=3,576 кВт,

что близко к заданному.

Определяем вращающие моменты на каждом валу привода по формуле

(Нм) (2.5)

;

;

;

.

Все рассчитанные параметры сводим в табл.1.

Таблица 1

Параметры кинематического расчета

№ вала

n, об/мин

щ, рад/с

Р, кВт

Т, Нм

U

Дв. (1)

1444,5

151,27

5,5

36,35

2

2

722,3

75,6

5,335

70,57

10

3

72,2

7,6

3,764

495,3

2

4

36,1

3,8

3,576

941

3 Расчет клиноременной передачи

Исходные данные:

Мощность на валу меньшего шкива Р1дв =5,5 кВт

Вращающий момент на меньшем шкиве Т1=36,35 Нм

Передаточное число U=3

Частота вращения меньшего шкива nдв=1444,5 об/мин

Угловая скорость вращения меньшего шкива щдв=151,27 рад/с

По мощности и частоте вращения меньшего шкива выбираем сечение «А» клинового ремня [3,табл.2.1]. Для наглядности, используя ГОСТ1284.1-80 размеры ремня сводим в табл.2.

Таблица 2

Размеры клинового ремня

Наименование

Обозначение

Величина

Обозначение ремня

А

-

Диаметр меньшего шкива, мм

d1

125

Ширина большего основания ремня, мм

W

13

Расчетная ширина ремня, мм

11

Высота ремня, мм

Т0

8

Площадь поперечного сечения, мм2

А

81

Угол клина ремня, °

б

40

Расчетная длина ремня, мм

560…4000

Масса одного метра, кг

q

0,105

Определяем диаметр большего шкива

d2=d1хUх(1-е) (3.1)

где е=0,01 - относительное скольжение ремня для передач с регулируемым натяжением ремня.

Подставив значения в формулу (3.1) получим

d2=125х2х0.99=247,5мм

Округляем до ближайшего значения из стандартного ряда

d2=250мм

Рассчитываем уточненное передаточное отношение:

U1=d2/d1=250/125=2, т.е. оно не изменилось.

Назначаем межосевое расстояние в интервале (мм):

аmin=0,55Т0=0,55(125+250)+8=206,25мм

аmax=(d1+ d2)= 125+250=375мм

Принимаем а=300мм

Вычисляем длину ремня:

Lр=2а+0,5р(d1+ d2)+ (d1+ d2)2/4а

Lр=2х300+0,5х3.14(125+250)+(125+250)2/1200=1306мм

Принимаем из стандартного ряда Lр =1320мм. Ввиду очень близкого округления длины ремня нет необходимости пересчитывать межосевое расстояние.

Рассчитываем угол обхвата меньшего шкива

б1=180-57(d2 -d1)/а

б1=180-57(250-125)/300=156?

Рассчитываем скорость ремня

;

где [н]=25м/с - допускаемая скорость для клиновых ремней,

м/с.

Находим необходимое для передачи число ремней:

(3.2)

где Р0=2 кВт - мощность, допускаемая для передачи одним ремнем «А» с диаметром меньшего шкива 125мм и скоростью ремня 10м/с [3,табл.2.4];

СL=0,95 - коэффициент, учитывающий влияние длины ремня [3,табл.2.5];

Ср=1,2 - коэффициент динамичности нагрузки и режима работы (при среднем режиме работы, при двухсменой работе) [3,табл.2.6];

Сб=0,93 - коэффициент, учитывающий влияние угла обхвата на тяговую способность ремня;

Сz=0,9 - коэффициент, учитывающий число ремней в комплекте (при z=4-6). Подставив значения в формулу (3.2) получим:

ремня

Проверим частоту пробегов ремня Uпр=н/Lр?[Uрек]

где [Uрек]=30c-1 - рекомендованное значение частоты пробегов для клиноременной передачи.

Uпр=9,5/1,8=5,3с-1.

Определяем силу предварительного натяжения одного клинового ремня:

где Сl=1 - коэффициент влияния отношения расчетной длины ремня к базовой;

Определяем окружную силу, передаваемую комплектом ремней:

Ft1х103/н=5500/9,5=579Н.

Определяем силы натяжения ведущей и ведомой ветвей одного клинового ремня

Определяем силу давления ремня на вал

Fоп=2F0*z *sinб1/2=2х110х4хsin78°=861Н

Параметры клиноременной передачи заносим в табл.3.

Таблица 3

Параметры клиноременной передачи

Параметр

Обозначение

Значение

Тип ремня

-

А

Количество ремней, шт

z

4

Межосевое расстояние, мм

а

300

Скорость ремня, м/с

н

9,5

Частота пробегов ремня, с-1

Uпр

5,3

Диаметр ведущего шкива, мм

d1

125

Диаметр ведомого шкива, мм

d2

250

Предварительное натяжение, Н

F0

110

Окружная сила, Н

Ft

579

Сила давления ремня на вал, Н

Fоп

861

4 Расчет цепной передачи

Исходные данные:

- передаточное число U3=2;

- вращающий момент на ведущей звездочке Т3=495,3Нм;

- частота вращения ведущей звездочки n3=72,2 об/мин:

- угловая скорость щ3=7,6 рад/с.

Вычисляем число зубьев на ведущей и ведомой звездочке:

z3=31-2U3;

z4= z3хU3;

z3=31-2х2=27

z4=27х2=54

Рассчитываем коэффициент эксплуатации [3,c.277]:

КэД х ка х кН х кР х кСМ х кП;

где кД =1 - динамический коэффициент при спокойной нагрузке;

ка =1 - коэффициент, учитывающий влияние межосевого расстояния (при а?(30…60)хt);

кН =1 - коэффициент, учитывающий влияние угла наклона линии центров(угол не превышает 60?);

кР =1,25 - при периодическом регулировании натяжения цепи;

кСМ =1 - при капельной смазке;

кП=1,25 - коэффициент, учитывающий продолжительность работы в сутки, при двухсменной работе.

Кэ=1х1х1х1,25х1х1,25=1,56

Определяем шаг цепи:

где [pн]=22МПа - допускаемое давление в шарнирах цепи (при частоте вращения ведущей звездочки до 300об/мин и шаге цепи 19,05);

й=2 - число рядов цепи типа ПР.

Принимаем р=25,4мм, выбираем цепь 2ПР-25,4-11400 [3,табл.3.1], параметры цепи заносим в табл.4. Обозначения параметров см. рис.3.

Рис.3 Рисунок роликовой цепи

Таблица 4

Параметры приводной роликовой двухрядной цепи

Параметр

Обозначение

Значение

Шаг, мм

t

25,4

Расстояние между пластинами внутреннего звена, мм

Ввн

15,88

Диаметр оси ролика, мм

d

7,92

Диаметр ролика, мм

d1

15,88

Высота цепи, мм

h

24,2

Ширина цепи, мм

b

68

Расстояние между плоскостями, проходящими через оси роликов, мм

А

29,29

Разрушающая нагрузка, кН

Q

11400

Масса одного метра цепи, кг/м

q

5

Параметр, озн. проекцию опорной поверхности, мм2

Аоп

211

Определяем скорость цепи:

;

.

Определяем окружную силу:

;

.

Определяем давление в шарнире:

;

;

Уточняем значение [рН] = 22 МПа [3,табл.3.3] и проверяем условие:

;

;

Условие выполнено, т.е. ;

Выполнив приведенные расчеты, мы исключили разрыв и быстрый износ выбранной цепи.

Определяем длину цепи в шагах:

;

;

где а=30хt= 30х25,4=762мм - оптимальное межосевое расстояние передачи, принятое из условия долговечности цепи.

Уточняем межосевое расстояние:

;

;

Для свободного провисания цепи предусматривается возможность уменьшения межосевого расстояния на 0,4%, т.е. на .

Определяем диаметры делительных окружностей звездочек:

;

;

;

Определяем диаметры наружных окружностей звездочек:

;

;

;

где d1 = 15,88 мм; [см выше табл. 4].

Определяем силы, действующие на цепь:

Окружная сила:

От центробежных сил:

;

;

От провисания:

;

;

где kf=1,5 - коэффициент, учитывающий расположение цепи, в данном случае принят для наклонной цепи, под углом 45.

Рассчитываем расчетную нагрузку на валы:

;

Проверяем коэффициент запаса прочности:

;

;

Условие выполняется, т.е. ;

где [s] = 8,4 - нормативный коэффициент запаса прочности, при выборе зависящий от шага цепи и частоты вращения ведущей звездочки [3,табл.3.4];

Параметры цепной передачи заносим в табл.5.

Таблица 5

Параметры цепной передачи

Параметр

Обозначение

Значение

Скорость цепи, м/с

н

8,25

Межосевое расстояние, мм

аЦ

760

Диаметры делительных окружностей, мм: ведущей звездочки

ведомой звездочки

dД3

dД4

219

437

Диаметры наружных окружностей, мм: ведущей звездочки

ведомой звездочки

Dе3

Dе4

230,3

449

Окружная сила, Н

Ft3

378

Центробежная сила, Н

Fv3

340

Сила от провисания, Н

Ff3

56

Нагрузка на вал, Н

FВ3

490

5 Расчет закрытой червячной передачи

5.1 Исходные данные

Передаточное отношение

Мощность на валу червяка

Момент на червяке

Число оборотов червяка

Угловая скорость червяка

5.2 Выбор материала червяка и червячного колеса

Для червяка с учетом мощности передачи выбираем [1, c.211] сталь 45 с закалкой до твердости не менее HRC 45 и последующим шлифованием.

Марка материала червячного колеса зависит от скорости скольжения

м/с

Для венца червячного колеса примем бронзу БрА9Ж3Л, отлитую в кокиль.

5.3 Предварительный расчет передачи

Принимаем допускаемое контактное напряжение [1,табл.5.4]: [ун] = 173МПа.

Число витков червяка Z1 принимаем в зависимости от передаточного числа.

При U = 10 принимаем Z1 = 4.

Число зубьев червячного колеса Z2 = Z1 x U = 4 x 10 = 40.

Принимаем предварительно коэффициент диаметра червяка q = 10;

Коэффициент нагрузки К = 1,2;

Определяем межосевое расстояние [1, c.61]

(5.1)

Вычисляем модуль

(5.2)

Принимаем по ГОСТ2144-76 (таблица 4.1 и 4.2) стандартные значения m = 4, q = 10, а также Z2 = 40 Z1 = 4. Тогда пересчитываем межосевое расстояние по стандартным значениям m, q и Z2:

Принимаем aw = 100 мм.

5.4 Расчет геометрических размеров и параметров передачи

Основные размеры червяка:

Делительный диаметр червяка

Диаметры вершин и впадин витков червяка

Длина нарезной части шлифованного червяка [1]

Принимаем b1=42мм

Делительный угол подъема Y [1, табл. 4.3] при Z1 = 4 и q =10; принимаем Y = 21 ?48'05” ha=m=4мм; hf=1,2x m=4,8мм; c=0,2x m=0,8мм.

Основные геометрические размеры червячного колеса [1]:

Делительный диаметр червячного колеса

Диаметры вершин и впадин зубьев червячного колеса

Наибольший диаметр червячного колеса

Ширина венца червячного колеса

Принимаем b2=32мм

Окружная скорость

червяка -

колеса -

Скорость скольжения зубьев [1, формула 4.15]

КПД редуктора с учетом потерь в опорах, потерь на разбрызгивание и перемешивания масла [1, формула 4.14]

Уточняем вращающий момент на валу червяка

По [1, табл. 4.7] выбираем 7-ю степень точности передачи и находим значение коэффициента динамичности Kv = 1,1.

Коэффициент неравномерности распределения нагрузки [1,формула 4.26]

В этой формуле коэффициент деформации червяка при q =10 и Z1 =4 [1,табл. 4.6]

При незначительных колебаниях нагрузки вспомогательный коэффициент Х=0,6

Коэффициент нагрузки

5.5 Проверочный расчет

Проверяем фактическое контактное напряжение

МПа < [GH] = 173МПа.

Проверяем прочность зубьев червячного колеса на изгиб.

Эквивалентное число зубьев.

Коэффициент формы зуба [1, табл. 4.5] YF = 2,19

Напряжение изгиба

Па = 16,2 МПа

Определяем основное допускаемое напряжение изгиба для реверсивной работы: , где -коэффициент долговечности, принимаем по его минимальному значению =0,543/1,с.67/;

Таким образом, =98*0,543=53,21МПа. Прочность обеспечена, т. к. < .

Определяем окружные Ft, осевые Fa и радиальные Fr силы в зацеплении соответственно на червяке и на колесе по формулам:

Все вычисленные параметры заносим в табл.6.

Таблица 6

Параметры червячной передачи

Параметр

Колесо

Червяк

m

4

z

40

4

ha,мм

4

hf,мм

4,8

с, мм

0,8

d, мм

160

40

dа, мм

168

48

df, мм

150,4

30,4

dаm, мм

172

-

b, мм

32

42

г

21?48'05”

V, м/с

0,6

1,5

Vs, м/с

1,6

Ft, Н

6191

2615

Fa, Н

2615

6191

Fr, Н

2252

6 Расчет ведомого вала редуктора

6.1 Исходные данные

Исходные данные выбираем из табл.3,5,6 с округлением до целых чисел:

Н;

Н;

Н;

FВ3=490Н - нагрузка от цепи на вал под углом 45°;

Т3=495,3Н;

d=160мм;

b=32мм.

По кинематической схеме привода составляем схему усилий, действующих на валы редуктора.

Рис.4 Схема усилий, действующих на валы червячного редуктора

6.2 Выбор материала вала

Назначаем материал вала. Принимаем сталь 45, для которой [1, табл.8.4] ув = 890 Н/мм2. Определяем пределы выносливости материала вала при симметричном цикле изгиба и кручения

; ;

; Н/мм2;

; Н/мм2.

6.3 Определение размеров вала

Определяем диаметр выходного конца вала под ступицей звездочки из расчёта на чистое кручение

(6.1)

где [фк]=(20…30)Мпа [1,c.161]

Принимаем [фк]=25Мпа.

Диаметр выходного конца

Принимаем ближайшее большее значение из стандартного ряда d1 =50мм.

Намечаем приближенную конструкцию ведомого вала редуктора (рис.5)

Рис.5 Приближенная конструкция ведомого вала

Диаметры подшипниковых шеек d2 =d1+2t=50+2х2,8=55,6мм

Принимаем d2 =60мм

Диаметр под ступицу червячного колеса d3= d2 +3,2r=60+3,2х3=69,6мм

Принимаем d3 =71мм

Диаметр буртика

d5= d3 +3,2r=71+9,6=80мм

l1 =(1,0…1,5)d1 =1,2х50=60мм

l2?1,25d2 =1,25х60=75мм

l3 =(0,8..1)хdam=170мм

Предварительно выбираем подшипник 7512 ГОСТ333-79 с внутренним диаметром 60мм, наружным 110мм, шириной 20мм. l4 =22мм.

6.4 Расчет ведомого вала на изгиб с кручением

Для построения эпюр с учетом рис.5 определяем расстояния прилагаемых сил (рис.6).

a=b=l3/2=85мм;

с=l1/2+l2-10=95мм;

d=160мм.

Рис.6 Компоновочный эскиз вала

Заменяем вал балкой на опорах в местах подшипников.

Силу давления цепной передачи на вал FВ раскладываем на составляющие в осях х и у:

FВх= FВy= FВcos45°=346,5Н.

Рассматриваем вертикальную плоскость (ось у)

Изгибающий момент от осевой силы Fа будет: mа=[Fad/2]: mа=2615·16010-3/2; mа=209Нм.

Определяем реакции в подшипниках в вертикальной плоскости.

1mАу=0

-RBy·(a+b)+Fr·a+ mа-FВу(a+b+c)=0

RBy=(-FВу(a+b+c)+Fr·а+ mа)/ (a+b);

RBy= (-346,5·0,265+2252·0,085+209)/ 0,17;

RBy==436,5Н

2mВу=0

RАy·(a+b)-Fr·b- mа+FВу(a+b+c)=0

RАy==(-FВу·c-+Fr·b+ mа)/ (a+b);

RАy =(-346,5·0,095+2252·0,085+209)/ 0,17;

RАy =2162Н

Проверка: FКу=0

RАy -Fr+ RBy -FВу =2162-2252+436,5-346,5=0

Назначаем характерные точки 1,2,2',3 и 4 и определяем в них изгибающие моменты:

М=0;

М=-RАy·а;

М=-2162·0,085;

М =-184Нм;

М2'у= М -mа (справа);

М2'у=-184-209;

М2'у =-293Нм;

М=FВу·с;

М=346,5·0,095=33Нм;

М=0;

Строим эпюру изгибающих моментов Му, Нм (рис.7)

Рассматриваем горизонтальную плоскость (ось х)

1mАх=0;

-FВх·(a+b+с)-RВх·(a+b)+ Ft·a=0;

-346,5·(0,085+0,085+0,095)-RВх·(0,085+0,085)+6196·0,085=0;

RВх=434,8/0,17; RВх=2558Н

2mВх=0;

RАх·(a+b)-Ft·b-FВх·с= 0;

RАх=(61910,085+346,50,095)/0,17;

RАх=3286,5Н

Проверка mКх=0;

RАх- Ft +FВх+RВх=2558-6191+346,5-3286,5=0

Назначаем характерные точки 1,2,2',3 и 4 и определяем в них изгибающие моменты:

М=0; М= -RАх·а;

М=-3286,5·0,085;

М=-279Нм; М=-FВх ·с;

М=-346,5·0,095;

М=-33Нм, М=0;

Строим эпюру изгибающих моментов Мх.

Крутящий момент

ТI-I=0; ТII-II=T1=Ft·d/2;

ТII-II=619116010-3/2; ТII-II=495Нм.

Рис.7 Эпюры изгибающих и крутящих моментов ведомого вала.

6.5 Расчет коэффициента запаса прочности

В соответствии с рис.7 наиболее опасным является сечение 2-2, в котором имеются концентраторы напряжений от посадки червячного колеса с натягом, шпоночного паза и возникают наибольшие моменты.

Исходные данные для расчета:

М2'у=293Нм;

М=279Нм;

Т2-2=495Нм;

d=71мм;

в=20мм - ширина шпонки,

t=7,5мм - глубина шпоночного паза.

При расчете принимаем, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения - по отнулевому циклу.

Определяем результирующий изгибающий момент:

Нм.

Определяем напряжения изгиба:

уии/W;

где W - момент сопротивлению изгибу. По [1,табл.22.1]:

мм3

уи=404000/30880=13Н/мм2.

При симметричном цикле его амплитуда равна: уа= уи =95Н/мм2.

Определяем напряжения кручения: фк2-2/Wк; где Wк - момент сопротивлению крученю. По [1,табл.22.1]:

мм3

фк=495000/65025=7,6Н/мм2.

При отнулевом цикле касательных напряжений амплитуда цикла равна:

фа= фк /2=7,6/2=3,8 Н/мм2.

Согласно примечанию к табл. 0.2 [3] в расчет принимаем концентрацию напряжений от посадки зубчатого колеса, для которой по табл.0.5 [3] (интерполируя) Кун=3,9; Кфd=2,8. По табл. 0.3…0.4 [3]: КF=1,0 - для шлифованной посадочной поверхности; Кн=1,0 - поверхность вала не упрочняется. Определяем коэффициенты концентрации напряжении вала:

у)D=( Кун+ КF-1)/ Кн=(3,9+1-1)/1=3,9;

ф)D=( Кфн+ КF-1)/ Кн=(2,8+1-1)/1=2,8.

Определяем пределы выносливости вала:

-1)D-1/(Ку)D=383/3,9=98,2 Н/мм2;

-1)D-1/(Кф)D=222/2,8=79,3 Н/мм2.

Определяем коэффициенты запаса прочности:

sу=(у-1)D/ уа=98,2/13=7,5;

sф=(ф-1)D/ фа=79,3/3,8=20,8.

Определяем расчетный коэффициент запаса по нормальным и касательным напряжениям:

Сопротивление усталости вала в сечении 3-3 обеспечивается.

7 Расчет ведущего вала редуктора-червяка

7.1 Исходные данные

Исходные данные выбираем из табл.3,5,6 с округлением до целых чисел:

Н;

Н;

Н;

Н;

Т2=116,3Н;

d=83,33мм;

b=40мм.

Схема усилий приведена на рис.4.

7.2 Определение диаметров вала

Ведущий вал - червяк (см.рис.8)

Рис.8 Эскиз червяка

Диаметр выходного конца при допускаемом напряжении (согласно табл. 7.1 [2]):

По ГОСТ принимаем d1 =25мм

Диаметры подшипниковых шеек d2 =d1+2t=25+2х2,2=29,9мм

Принимаем d2 =30мм d3?df1=47,88

Принимаем d3 =40мм

l1 =(1,2…1,5)d1 =1,4x25=35мм

l2?1,5d2 =1,5x30=45мм

l3 =(0,8…1)хdam=170мм

l4 - определим после выбора подшипника

7.3 Эскизная компоновка ведущего вала

Назначаем предварительно подшипники шариковые радиально-упорные однорядные средней серии по мм подшипник №36307, у которого Dп=80мм; Вп=21мм [1,c.394, табл.П3].

Выполняем эскизную компоновку вала редуктора. Необходимо определить длину вала L и расстояния от середины подшипников до точек приложения нагрузок a, b и с (рис.6).

Принимаем

lст=b+10мм - длина ступицы колеса:

lст=40+10=50мм;

(30…50)мм - расстояние от торца подшипника до торца ступицы шкива.

Принимаем 40мм. lш=60мм - длина ступицы шкива.

Определяем размеры а, b, с и L.

а=b=Вп/2+е+К+lст/2;

а=b=21/2+10+10+50/2;

а=b=55,5мм

Принимаем а=b=55мм.

с= Вп/2+40+lш/2;

с=21/2+40+60/2;

с=80,5мм

Принимаем с=80мм.

L=Вп/2+a+b+c+ lзв/2;

L=21/2+55+55+80+60/2;

L=230,5мм;

Принимаем L=235мм.

7.4 Расчет ведущего вала на изгиб с кручением

Заменяем вал балкой на опорах в местах подшипников.

Рассматриваем вертикальную плоскость (ось у)

Изгибающий момент от осевой силы Fа будет:

mа=[Fad/2]:

mа=6191·4010-3/2;

mа?124Нм.

Определяем реакции в подшипниках в вертикальной плоскости.

1mАу=0

RBy·(a+b)-Fr·a- mа=0

RBy=(Fr·а+ mа)/ (a+b);

RBy= (2252·0,055+124)/ 0,11;

RBy==2253Н

2mВу=0

RАy·(a+b)+Fr·b- mа=0

RАy==(-Fr·b mа)/ (a+b);

RАy =(2252·0,055+124)/ 0,11;

RАy =1Н

Проверка: FКу=0

RАy- Fr - RBy=1-2252+2253=0

Назначаем характерные точки 1,2,2',3 и 4 и определяем в них изгибающие моменты:

М=0;

М= -RАy·а;

М=-1·0,055;

М =-0,05Нм;

М2'у= М- mа(справа);

М2'у=-0,05-124;

М2'у =-124Нм;

М=0;

М=0;

Строим эпюру изгибающих моментов Му, Нм (рис.9)

Рассматриваем горизонтальную плоскость (ось х)

Рис.8 Эпюры изгибающих и крутящих моментов ведущего вала.

1mАх=0;

-FОп·(a+b+с)-RВх·(a+b)+Ft·a=0;

-861·(0,055+0,055+0,08)+RВх·(0,055+0,055)-2615·0,055=0;

RВх=307,4/0,11;

RВх2795Н

2mВх=0;

RАх·(a+b)-Ft·b-Fоп·с= 0;

RАх=(26150,055+8610,08)/0,11;

RАх1934Н

Назначаем характерные точки 1,2,3 и 4 и определяем в них изгибающие моменты:

М=0;

М= -RАх·а;

М=-1934·0,055;

М=106Нм;

М= FОп ·с;

М=861·0,08;

М=69Нм

М=0;

Строим эпюру изгибающих моментов Мх.

Крутящий момент

ТI-I=0;

ТII-II=T1=Ft·d/2;

ТII-II=26154010-3/2;

ТII-II=52Нм.

Так как значения изгибающих и крутящих моментов значительно меньше, чем у ведомого вала расчет вала на прочность не проводим.

8 Подбор подшипников

8.1 Расчет подшипников червяка на долговечность

Исходные данные

n2=722мин-1;

dп3=30мм;

RАy=1Н;

RАх=1934Н;

RBy=2252Н;

RВх=2791Н;

Н.

Определяем радиальные нагрузки, действующие на подшипники

; (12.1)

;

Здесь подшипник 2 - это опора А в сторону которой действует осевая сила Fа (рис.9).

;

;

Назначаем тип подшипника, определив отношение осевой силы к радиальной силе того подшипника, который ее воспринимает (здесь подшипник 2)

;

;

Так как соотношение больше 0,35, то назначаем роликовый конический однорядный подшипник средней серии по dп3=30мм.

Подшипник № 7306, у которого:

Dn2=72мм;

Вn2=21мм;

С0=40кН - статическая грузоподъемность;

С=29,9кН - динамическая грузоподъемность

е=0,34 - коэффициент осевого нагружения;

У=1,78 - коэффициент при осевой нагрузке [1,c.402, табл.П7].

Определяем коэффициент Х при радиальной нагрузке [1,c.212, табл.9.18] в зависимости от отношения

;

где V - коэффициент вращения, при вращении внутреннего кольца V=1.

Тогда Х=0,4.

Изображаем схему нагружения подшипников. Подшипники устанавливаем враспор.

Рис.9 Схема нагружения вала-червяка

Определяем осевые составляющие от радиальных нагрузок

S=0,83eFr [1,c.216]

S1=0,830,343587;

S1=1012Н;

S2=0,830,341934;

S2=546Н.

Определяем осевые нагрузки, действующие на подшипники.

FaI=S1;

FaII=S2 +FaI;

FaI=1012Н;

FaII=546+1012;

FaII=1558Н.

Определяем эквивалентную нагрузку наиболее нагруженного подшипника II

Fэ2=(ХVFr2+УFaII)KKф;

где K - коэффициент безопасности;

K =1,3…1,5 [1,c.214, табл.9.19];

принимаем K =1,5;

Kф - температурный коэффициент;

Kф =1 (до 100?С) [1,c.214, табл.9.20];

Fэ2=(0,411934+1,781558)1,51; Fэ2=5146Н?5,2кН

Определяем номинальную долговечность роликовых подшипников в часах

[1,c.211]; (12.2)

Подставляем в формулу (12.2):

; ч.

По заданию долговечность привода 3 года при двухсменной работе Lhmin=260х8х2х3=12500ч.

В нашем случае Lh> Lhmin, принимаем окончательно для червяка подшипник 7306.

8.2 Расчет подшипников тихоходного вала на долговечность

Исходные данные

n2=72,2мин-1;

dп3=60мм;

RАy=2162Н;

RАх=3286Н;

RBy=436Н;

RВх=2558Н;

Н.

Определяем радиальные нагрузки, действующие на подшипники (12.1)

;

Здесь подшипник 2 - это опора А в сторону которой действует осевая сила Fа (рис.10).

;

;

Назначаем тип подшипника, определив отношение осевой силы к радиальной силе того подшипника, который ее воспринимает (здесь подшипник 2)

;

;

Так как соотношение больше 0,35, то назначаем роликовый конический однорядный подшипник средней серии по dп3=60мм.

Подшипник № 7512, у которого:

Dn2=110мм;

Вn2=30мм;

С0=94кН - статическая грузоподъемность;

С=75кН - динамическая грузоподъемность

е=0,392 - коэффициент осевого нагружения;

У=1,528 - коэффициент при осевой нагрузке [1,c.402, табл.П7].

Определяем коэффициент Х при радиальной нагрузке [1,c.212, табл.9.18] в зависимости от отношения

где V - коэффициент вращения, при вращении внутреннего кольца V=1.

Тогда Х=0,4. Подшипники устанавливаем враспор.

Определяем осевые составляющие от радиальных нагрузок

S=0,83eFr [1,c.216]

S1=0,830,3922595; S1=844Н;

S2=0,830,3923933; S2=1280Н.

Определяем осевые нагрузки, действующие на подшипники.

FaI=S1;

FaII=S2 +FaI;

FaI=844Н;

FaII=844+1280;

FaII=2124Н.

Определяем эквивалентную нагрузку наиболее нагруженного подшипника II

Fэ2=(ХVFr2+УFaII)KKф;

где K - коэффициент безопасности;

K =1,3…1,5 [1,c.214, табл.9.19];

принимаем K =1,5;

Kф - температурный коэффициент;

Kф =1 (до 100?С) [1,c.214, табл.9.20];

Fэ2=(0,413933+1,782124)1,51;

Fэ2=8030Н=8,03кН

Определяем номинальную долговечность роликовых подшипников в часах

[1,c.211]; (12.2)

Подставляем в формулу (12.2):

; ч.

По заданию долговечность привода Lhmin=12500ч.

В нашем случае Lh> Lhmin, принимаем окончательно для червяка подшипник 7512.

9. Подбор и проверочный расчет шпонок ведущего вала

Выбор и проверочный расчет шпоночных соединений проводим по [3].

Рис.10 Сечение вала по шпонке

Для выходного конца быстроходного вала при d=25 мм подбираем призматическую шпонку со скругленными торцами по ГОСТ23360-78 bxh=8x7 мм2 при t=4мм (рис.10).

При длине ступицы шкива lш=35 мм выбираем длину шпонки l=32мм.

Материал шпонки - сталь 45 нормализованная. Напряжения смятия и условия прочности определяем по формуле:

(9.1)

где Т - передаваемый момент, Нмм; ТII=70570Нмм

lр - рабочая длина шпонки, при скругленных концах lр=l-b,мм;

[]см - допускаемое напряжение смятия.

С учетом того, что на выходном конце быстроходного вала устанавливается шкив из ст.3 ([]см=110…190 Н/мм2) вычисляем:

Условие выполняется.

10. Подбор и проверочный расчет шпонок ведомого вала

Передаваемый момент Т3=232Нм=495300Нмм.

Для выходного конца тихоходного вала при d=50 мм подбираем призматическую шпонку со скругленными торцами bxh=14x9 мм2 при t=5,5мм.

При l1=60 мм выбираем длину шпонки l=45мм.

Материал шпонки - сталь 45 нормализованная. Проверяем напряжение смятия, подставив значения в формулу (9.1).

Условие выполняется.

Для соединения тихоходного вала со ступицей червячного колеса при d=71 мм подбираем призматическую шпонку со скругленными торцами bxh=20x12 мм2 при t=7,5мм.

При l1=32 мм выбираем длину шпонки l=32мм.

Материал шпонки - сталь 45 нормализованная. Проверяем напряжения смятия и условия прочности с учетом материала ступицы чугуна СЧ20 ([]см=70…100 МПа) и Т2=748 Нмм:

Условие выполняется.

Выбранные данные сведены в табл.6.

Таблица 6

Параметры шпонок и шпоночных соединений

Параметр

Вал-шкив

Вал-полумуфта

Вал-колесо

Ширина шпонки b,мм

8

14

20

Высота шпонки h,мм

7

9

12

Длина шпонки l,мм

32

45

32

Глубина паза на валу t1,мм

4

5,5

7,5

Глубина паза во втулке t2,мм

3,3

3,8

4,9

11. Определение конструктивных размеров червячной передачи

Длины ступиц и внутренние диаметры определены ранее. Наружные диаметры ступиц определяем по формуле:

dст=1,55d;

dст=1,55х71=110мм

Учитывая, что диаметр впадин df=150,4мм конструкцию червячного колеса принимаем биметаллической, т.е. колесо без обода из серого чугуна, а венец - из бронзы БрА9Ж3Л. Определяем конструктивные размеры частей (см. рис.11).

Рис.11 Конструктивные размеры червячного колеса d=(0,4…0,5)b=0,5х32=16мм, h=(0,3…0,4)d=5мм

Размеры фасок венца и ступицы выбираем в зависимости от их диаметров.

fо=2,5мм (для d=110…164мм), fст=2,0мм (для d=71мм)

Принимаем б=45?, г=0°

12. Компоновочная схема и тепловой расчет редуктора

По рассчитанным и выбранным размерам строим компоновочную схему редуктора (рис.12) и определяем основные размеры корпуса.

Производим тепловой расчет, суть которого сводится к тому, чтобы температура масла в картере редуктора не превышала допускаемого значения [t м]=80…90?С.

tм=tв1(1-з)/(КtА)? [t м] (12.1)

где tв -- температура воздуха вне корпуса, °С; в цеховых условиях t м=20?С;

Р1=5335 -- мощность на червяке, Вт;

з=0,85 -- КПД редуктора с 4-хзаходним червяком;

Кt -- коэффициент теплоотдачи, зависящий от материала корпуса редуктора и интенсивности вентиляции помещения. Для чугунных корпусов принимают Кt =8. . .17 Вт/(м2? ?С);

А -- площадь поверхности охлаждения редуктора.

Для облегчения определения площади поверхности редуктора компоновочный чертеж упрощаем до формы параллепипеда с размерами 300х250х100мм. Тогда

А=2х0,3х0,25+2х0,25х0,1+2х0,3х0,1=0,26м2

Подставив данные в формулу (12.1) получим

tм=20+5335(1-0,85)/(10х0,26)=50,8?С? [t м]

Рис.12 Конструкция корпуса редуктора

13. Определение конструктивных размеров крышек подшипников

Конструкцию крышек подшипников принимаем привертную (рис.13).

Рис.13 Конструкция крышек подшипников

Определяем основные размеры крышек подшипников и заносим результаты в табл.8.

Таблица 8

Основные размеры крышек подшипников

Размер

Обозначение

Значение

ведущий вал

ведомый вал

Наружный диаметр, мм

D1

110

155

Наружный посадочный диаметр, мм

D

72

110

Внутренний диаметр по валу, мм

d

31

61

Внутренний диаметр по манжете, мм

d1

52

85

Внутренний диаметр по подшипнику, мм

d2

64

95

Толщина стенки, мм

b

12

15

Остальные размеры определяем конструктивно при построении чертежа.

14. Выбор системы и вида смазки

Скорость скольжения в зацеплении VS = 2,38 м/с. Контактные напряжения Н = 510 Н/мм2. По таблице 10.29 из [3] выбираем масло И-Т-Д-460.

Используем картерную систему смазывания. В корпус редуктора заливаем масло так, чтобы венец зубчатого колеса был в него погружен на глубину hм (рис.14):

Рис.14 Схема определения уровня масла в редукторе: hм = (0,1…0,5)d1 = 0,2540 = 10мм; hм min = 2,2m = 4мм.

При вращении колеса масло будет увлекаться его зубьями, разбрызгиваться, попадать на внутренние стенки корпуса, откуда стекать в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которым покрываются поверхности расположенных внутри корпуса деталей, в том числе и подшипники.

Объем масляной ванны V = 0.65PII = 0.653,65 = 2.37 л.

Контроль уровня масла производится через круглый прозрачный маслоуказатель, для чего в корпусе в зоне верхнего и нижнего уровней смазки делаются отверстия. Для слива масла предусмотрена сливная пробка. Заливка масла в редуктор производится через съемную крышку, в которую закручивается пробка-отдушина.

И для вала-червяка, и для вала червячного колеса выберем манжетные уплотнения по ГОСТ 8752-79. Установим их рабочей кромкой внутрь корпуса так, чтобы обеспечить к ней хороший доступ масла.

15. Выбор стандартных изделий

Выбор подшипников, манжет и шпонок произведен ранее.

В качестве стяжных винтов выбираем винты с внутренним шестигранником по ГОСТ 11738-84 с резьбой М10 и длинами 18мм. Для крепления крышек подшипников выбираем винты с внутренним шестигранником по ГОСТ 11738-84 с резьбой М8 и длинами 16мм. Под винты устанавливаем пружинные шайбы по ГОСТ6402-70. М6х10 ГОСТ1491-80 - 4шт. Для крепления маслоуказателя выбираем винты М4х8 ГОСТ1491-80 - 4шт.Для фиксации крышки и основания корпуса выбираем 2 штифта 5х32 ГОСТ3129-70.

Список использованной литературы

1. Дунаев П.Ф., Детали машин, Курсовое проектирование. М.: Высшая школа, 1990.

2. Скойбеда А.Т., Кузьмин А.В., Макейчик Н.Н., Детали машин и основы конструирования, Минск: «Вышейшая школа», 2000.

3. Куклин Н.Г., Куклина Г.С., Детали машин, учебник для техникумов. М.: Высшая школа, 1987.

4. Курмаз А.В., Скойбеда А.Т., Детали машин, проектирование, учебное пособие Минск: УП «Технопринт», 2001.


Подобные документы

  • Выбор материала для червячных передач. Расчет закрытой червячной передачи и открытой клиноременной передачи. Нагрузки валов редуктора. Разработка чертежа общего вида редуктора. Проверочный расчет подшипников. Расчет технического уровня редуктора.

    курсовая работа [3,5 M], добавлен 28.05.2012

  • Расчет плоскоременной передачи, клиноременной передачи, цепной передачи, конической передачи, цилиндрической передачи, червячной передачи, кинематический расчет привода, расчет одно-двух-трех ступечатого редуктора, цилиндрического редуктора.

    курсовая работа [53,2 K], добавлен 22.09.2005

  • Основные кинематические и энергетические параметры привода. Крутящие моменты на валах. Расчет червячной передачи редуктора. Эскизная компоновка. Подбор подшипников, проверочный расчет валов. Смазывание червячной передачи. Расчет резьбовых соединений.

    контрольная работа [189,5 K], добавлен 17.10.2013

  • Выбор электродвигателя и силовой расчет привода. Расчет закрытой цилиндрической зубчатой передачи. Уточненный расчет валов на статическую прочность. Определение размеров корпуса редуктора. Выбор смазки зубчатого зацепления. Проверочный расчет шпонок.

    курсовая работа [2,2 M], добавлен 12.12.2009

  • Назначение и область применения привода. Выбор электродвигателя и кинематический расчет. Определение мощностей и передаваемых крутящих моментов валов. Расчет червячной передачи. Компоновочная схема. Порядок сборки и регулировки редуктора.

    курсовая работа [3,9 M], добавлен 16.05.2007

  • Кинематический расчет привода. Выбор электродвигателя. Определение вращающих моментов на валах. Проектировочный расчет ременной передачи. Проектирование редуктора. Допускаемые контактные напряжения. Расчет червячной передачи. Выбор и проверка муфты.

    курсовая работа [431,0 K], добавлен 11.12.2008

  • Силовой расчет привода. Расчет зубчатой передачи редуктора. Проектировочный и проверочный расчеты валов, колес, корпуса редуктора и подшипников. Выбор шпонок и проверка их на прочность. Цилиндрические и конические передачи с прямыми и косыми зубьями.

    курсовая работа [745,8 K], добавлен 24.03.2012

  • Кинематический и силовой расчет привода ленточного конвейера. Выбор материалов и допускаемых напряжений, конструктивные размеры корпуса редуктора и червячного колеса. Расчет червячной передачи и валов, компоновка редуктора. Тепловой расчет редуктора.

    курсовая работа [1,1 M], добавлен 14.06.2014

  • Проектные и проверочные расчеты закрытых передач привода. Расчет клиноременной передачи. Проектировочный расчет валов. Подбор и расчет подшипников, шпонок. Проверочный расчет ведомого вала. Конструктивные размеры корпуса редуктора. Выбор способа смазки.

    курсовая работа [1,7 M], добавлен 16.07.2009

  • Кинематический расчет привода. Расчёт цилиндрической зубчатой передачи и клиноремённой передачи. Первый этап компоновки редуктора. Расчет и подбор муфты. Проверочный расчет долговечности подшипников и тихоходного вала на выносливость. Выбор сорта масла.

    курсовая работа [1,2 M], добавлен 22.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.