Станки с параллельной кинематикой
Металлорежущие станки на основе механизмов параллельной структуры как альтернатива многокоординатным многоцелевым станкам традиционной компоновки. Характеристика многофункционального технологического модуля ТМ-1 ООО, знакомство со сферами использования.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 25.12.2014 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
В настоящее время конструктивные резервы повышения точности станков, в частности многоцелевых, в основном исчерпаны, поскольку, например перемещения рабочих органов осуществляется в них по направляющим с теоретически ограниченной точностью и жесткостью. Для дальнейшего повышения точности, как правило, используются новые УЧПУ с более высоким быстродействием и дискретностью. Что касается жесткости, то в станках обычной компоновки она ограничена вследствие наличия зазоров между подвижными узлами, возникающих в результате вибраций и многих других факторов.
Необходимость, преодоления указанных недостатков станков традиционного исполнения привела к разработке в ряде стран (России. США. Швейцарии, Японии) станков новой концепции, основанной на применении платформы Стюарта, использовавшейся в авиации для моделирования полетов. Эти станки были выполнены в основном как многоцелевые, хотя данная концепция позволяет реализовать на них функции шлифования, полирования и координатных измерений. К проектированию подобных станков впервые приступили в СССР в 1976 г. За рубежом аналогичные разработки начались примерно через 10 лет [фирма Giddings&Lewis (США) и Geodetic Technology International (Швейцария) - в 1988 г., фирма Ingersoll - в 1987 г.].
Отличительной особенностью таких станков, получивших за рубежом название «гексаподы», является сравнительная простота конструкции, высокие показатели скорости перемещения, ускорения и жесткости станка, простая система обратной связи. Для главного привода в таких станках применяют высокоскоростной мотор - шпиндель. Частота вращения которого бесступенчато регулируется встроенным высокочастотным асинхронным электродвигателем. Мотор - шпиндель установлен на подвижной пяти координатной платформе. Для осуществления движений подачи и установочных перемещений платформы используются шесть параллельно работающих телескопических штанг, каждая из которых имеет шариковый механизм ходовой винт - гайка, шаговый серво- электродвигатель и лазерную систему контроля перемещений.
Такой станок в целом значительно проще, легче и жестче станков классической компоновки. Телескопические штанги и рамная конструкция работают только на растяжение и сжатие, не испытывая изгиба, так как сила резания от шпинделя, расположенного на верхней платформе, передается вдоль штанг. Поэтому у станка типа «гексапод» жесткость в 5 раз, а рабочие скорости в 3-5 раз выше, чем у сравнимого с ним по характеристикам многоцелевого станка. Кроме того, поскольку штанги связывают подвижные и неподвижные части станка в единое целое, усилия распределяются по всей структуре равномерно, благодаря чему для станка не требуется массивное основание и дорогостоящий фундамент, что позволяет легко перемещать его при изменении планировки цеха.
Первый отечественный станок на базе МПК разработан в 1987 году Новосибирским электротехническим институтом (рисунок 1). Этот станок отличался внутренним расположением шпинделя, относительно замкнутого контура раздвижных телескопических штанг. На нем были проведены исследования реального объема рабочего пространства и жесткости станка, а также траектории и амплитудно-частотные характеристики подвижной платформы под действием переменной нагрузки.
Разработку станков такого класса активно ведет ЗАО «Лапик» (г. Саратов). В 1992 году выпущены координатно-измеригельные модули КИМ-500 и КИМ-1000, а в 1995 году многофункциональный технологический модуль ТМ-1000.
Рис. 1. Многофункциональный технологический модуль ТМ-1 ООО
Рис. 2. Обрабатывающий центр ГЕКСАМЕХ-1
1.Точность формообразования на гексаподах
Металлорежущие станки на основе механизмов параллельной структуры служат альтернативой многокоординатным многоцелевым станкам традиционной компоновки (с последовательным соединением узлов формообразующей системы). Наиболее распространены фрезерные и шлифовальные станки с шестью степенями свободы, реализованные на основе платформы Стюарта [1], -- гексаподы. Основная область их применения -- обработка поверхностей двойной кривизны.
Для оценки точности формообразования на гексаподах необходимо определить траекторию перемещения режущего инструмента (РИ) и смещение его режущей кромки под действием силы резания. При этом рассматривают перемещение режущей кромки вдоль образующей линии обрабатываемой поверхности [2]. Траекторию этого перемещения технолог назначает на основе личного опыта, что не обеспечивает выполнения основных условий формообразования, в частности отсутствия подрезания смежных участков обрабатываемой поверхности.
При анализе статических деформаций гексапода под действием различных сил оценивают перемещение точки, находящейся в центре подвижной платформы, а не режущей кромки РИ, что не дает возможности установить влияние этих деформаций на точность обработки. Таким образом, существующие методы оценки точности обработки не позволяют полностью использовать возможности гексаподов по этому показателю. В данной работе предложены методы решения указанных задач.
В гексаподе (рис. 1) неподвижное основание 1 соединено шестью раздвижными штангами 2 (с шарнирами 6 на концах) с подвижной платформой 5, на которой расположен шпиндельный узел 3 с закрепленным в нем РИ 4.
Переход из системы координат основания (СКО) в систему координат рабочей точки РИ (СКР), т. е. точки режущей кромки, контактирующей с обрабатываемой поверхностью, осуществляется путем последовательного преобразования систем координат.
Рис. 1. Схема гексапода: 1 -- неподвижное основание; 2 -- раздвижная штанга; 3 -- шпиндельный узел; 4 -- инструмент, 5 -- подвижная платформа; 6 -- шарниры.
металлорежущий станок технологический
Функция формообразования [3], определяющая преобразование СКО в СКР, для станка с параллельной кинематикой имеет вид:
r0=AпAиrи (1)
где r0 -- радиус-вектор обрабатываемой поверхности;
Ап -- матрица преобразования из СКО в систему координат платформы (СКП);
Аи -- матрица преобразования из СКП в систему координат РИ (СКИ);
rи -- радиус-вектор режущей кромки.
Переход из СКО в СКП традиционно осуществляется в виртуальных координатах, учитывающих взаимное положение и ориентацию основания и платформы:
Ап = А1(х)А2(y)А3(z)А4(ц)А5(ш)А6(и) (2)
где А1, А2, А3 -- матрицы перемещений вдоль координатных осей х, у, z;
А4, А5, А6 -- матрицы поворота вокруг этих осей; аргументами матриц являются виртуальные перемещения х, у, z и углы поворота ц, ш, и.
Матрица преобразования из СКП в СКИ имеет вид:
Аи = А6(иш)А3(-Hш), (3)
где иш -- угол поворота шпинделя;
Hш -- расстояние от центра подвижной платформы до зажимного устройства для РИ.
Подставляя выражения (2) и (3) в уравнение (1) получим:
r0=А1(х)А2(y)А3(z)А4(ц)А5(ш)хА6(и+ иш)А3(-Hш)rи.
Расстояния между шарнирами равны длинам штанг, которые являются физическими управляемыми координатами. При известных виртуальных координатах х, у, z, ц, ш, и, используя уравнение (2), можно найти координаты шарниров (известные в СКП) в СКО и соответственно длины штанг. Так, например, длина первой штанги:
q1=[(x1пСКО - x1оСКО)2+(у1пСКО - у1оСКО)2+ (z1пСКО - z1оСКО)2]1/2, (4)
где x1пСКО, у1пСКО, z1пСКО -- координаты шарнира первой штанги, расположенного на платформе, в СКО;
x1оСКО, у1оСКО, z1оСКО -- координаты шарнира первой штанги, расположенного на основании, в СКО.
В свою очередь,
x1пСКО = cosшcosиx1оСКО - cosшsinи у1оСКО + sinшz1оСКО + x; (5)
у1пСКО = (sinцsinшcosи + cosцsinи) x1оСКО + (-sinцsinшsinи + cosцcosи) у1оСКО - sinцcosшz1оСКО + y;
z1пСКО = (- cosцsinшcosи + sinцsinи) x1оСКО + (cosцsinшsinи + sinцcosи) у1оСКО +cosцcosшz1оСКО + z.
Длины остальных штанг находят по формулам, аналогичным выражению (4).
Используя различные виды РИ, можно выбрать рациональную схему обработки заданной поверхности. При анализе формообразующих возможностей гексапода ограничимся тремя видами РИ, охватывающими достаточно широкий спектр возможностей обработки различных поверхностей.
Модели рассматриваемых РИ приведены на рис. 2
Рис. 2. Модели инструментов: а) торцевая фреза, б) цилиндрическая фреза, в) фасонная полусферическая фреза, г) комбинированная модель инструмента (РТ - рабочая точка, остальные обозначения смотри в тексте).
Для торцовой фрезы (см. рис. 2, а) радиус-вектор режущей кромки
rи.т. = А6(иp)А3(-Hф)А2(Rp)e4,
где иp -- угол, определяющий положение рабочей точки фрезы относительно оси Z в СКИ;
Hф -- высота фрезы;
Rp-- радиус рабочей точки;
e4 = (0, 0, 0, 1)т-- радиус - вектор начала координат.
Для цилиндрической фрезы (см. рис. 2, б) радиус-вектор режущей кромки:
rи.ц. = А6(иp)А3(-Hр)А4(р/2)А3(-Rф)e4,
где Нр-- высота рабочей точки фрезы;
Rф -- радиус фрезы.
Для фасонной полусферической фрезы (см. рис. 2, в) радиус-вектор режущей кромки:
rи.п. = А6(иp)А4(цр)А3(- Rф)e4,
где цр -- угол, определяющий положение рабочей точки фрезы относительно оси Х в СКИ.
Все три описанных РИ можно представить с помощью одной комбинированной модели (см. рис. 2, г), в которой радиус-вектор режущей кромки:
rи= А6(иp) А3(-Hр) А2(Rp) А4(цр) А3(Rф)e4, (6)
где Rp-- радиус рабочей точки торцовой фрезы;
Rф -- радиус цилиндрической или фасонной фрезы.
Переход от одной модели к другой осуществляется путем присвоения ряду параметров конкретных значений и наложения следующих ограничений на переменные уравнения (6): 1) для торцовой фрезы 0 ? иp? 2р; цр=0; 0 ? Rp ? Rф; Hр = Hф; 2) для цилиндрической фрезы 0 ? иp? 2р; цр=0; Rp = Rф; 0 ? Hр ? Hф; 3) для фасонной полусферической фрезы 0 ? иp? 2р; 0 ? цр? р/2; Hр =0; Rp = Rф.
Комбинированная модель РИ позволяет создать единую модель формообразующей системы, учитывающую возможность применения РИ трех видов с последующим выбором конкретного вида РИ для обработки заданной поверхности.
Рассмотрим обработку номинальной (т. е. без учета микронеровностей) поверхности сложной формы любым из трех указанных выше РИ с наложением связи огибания [3]. При этом используется не вся поверхность РИ, а только некоторая точка режущей кромки. Выбором ее положения с учетом вращения РИ можно обеспечить заданную скорость резания.
Функция формообразования с использованием виртуальных координат и комбинированной модели РИ (6) имеет вид:
r0 = А1(х)А2(у)А3(z)А4(ц)А5(ш)А6(и + иш + ир) ?
? А3(-Нш - Hp)A2(Rp)A4(цp)A3(-Rф)e4 (7)
Номинальная поверхность в параметрической форме в СКО имеет вид
r = r(u, v), где u и v -- криволинейные координаты. Введем для произвольной точки номинальной поверхности подвижную систему координат (ПСК) с ортами осей X, Y, Z, равными соответственно I = ф1; j = ф2; k = v, где ф1,ф2 -- единичные касательные к поверхности; v -- единичная нормаль.
Уравнения единичных касательных и нормали в указанной произвольной точке имеют вид:
Уравнение номинальной поверхности в ПСК [в общем виде rПСК = f(х, у, z, r0, u, v, е4); [в развернутой форме здесь не приведено] можно получить, совместив центры СКО и ПСК и совершив повороты вокруг координатных осей, обеспечивающие параллельность осей СКО осям ПСК.
Обработка заданной поверхности гексаподом обеспечивается при равенстве правых частей функции формообразования (7) и уравнения номинальной поверхности в ПСК, т. е. r0 = rПСК. Из полученного равенства можно определить значения виртуальных координат станка для обработки произвольной точки поверхности (соответствующие выражения ввиду громоздкости здесь не приведены).
Отметим, что суммарный угол и0 = и + иш + ир может принимать любое требуемое значение, поскольку составляющая иш определяет частоту вращения шпинделя, т. е. главное движение в процессе формообразования. После вычисления виртуальных координат с помощью зависимостей (5) можно найти законы изменения длины штанг при обработке заданной поверхности.
В качестве примера рассмотрим обработку поверхности, заданной параметрическими уравнениями х = 0,2v; у = 0,7u, z = -1,7 + 0,3u - 0,24u2, где u = 0?1; v= 0?1.
Виртуальные координаты станка, соответствующие обработке заданной поверхности, равны:
х = 0,2v- Rф(cosшsinи0cosцp+ sinшsinцp)- Rpcosшsinи0- Hш sinш;
у = 0,7u+ Rф(-sinцpsinцsinшsinи0 +sinцpcosцcosи0) +
+ Rp(cosцsinшsinи0 + sinцcosи0) - Hшcosцcosш;
ш: = arcsin(sinцp);
ц: =
Рассмотрим проход РИ с Rф = 0,05 м; Hш = 0,2 м при u = 0,5; v = 0?1. Полученные при этом зависимости расчетной длины штанг от времени при обработке различными инструментами представлены на рис. 3
Рис. 3. Изменение длины q штанг 1- 6 во времени t при обработке торцовой фрезой (а), цилиндрической фрезой (б) и фасонной полусферической фрезой (в)
При использовании различного вида фрез и шлифовальных кругов (т. е. РИ, у которых рабочая точка расположена на режущей кромке или на поверхности) один или два параметра, входящих в уравнения связей, могут изменяться в достаточно широких пределах. Это позволяет назначать конкретные значения таких параметров при решении различных задач, в том числе задач оптимизации.
В качестве одной из таких задач рассмотрим обеспечение статической точности при обработке сложных поверхностей, в процессе которой существенно изменяются положение и ориентация платформы в пространстве. При решении данной задачи следует учитывать погрешность, обусловленную деформацией штанг под действием силы резания.
В связи с этим проанализируем расчетную схему для определения статической жесткости гексапода (рис. 4).
Рис. 4. Расчетная схема для определения жесткости гексапода: 1 - неподвижное основание; 2 - раздвижная штанга; 3 - подвижная платформа; 4 - шарнир; ОСКО, ОСКП, ОСКИ и ОСКР - начала системы координат соответственно СКО, СКП, СКИ и СКР (остальные обозначения см. в тексте)
Силы, возникающие в штангах под действием силы резания[4], находим из уравнения Fq=JтFрез, где Fq -- вектор сил в штангах; Fрез-- вектор сил и моментов, возникающих в процессе резания; J-- якобиан преобразования СКО в СКР.
Погрешность обработки можно определить, используя уравнение
D = К с -1Fq, гдеD -- вектор смещения инструмента под действием силы резания;
Кс = [J-l]тJ-l -- матрица жесткости гексапода; Ks -- квадратная матрица жесткости штанг, учитывающая деформации растяжения-сжатия.
Изменениеdqi длины qi каждой (i-й) штанги под действием сил и моментов, возникающих в процессе резания, находим из уравненияdqi =Fqi/(ES), где Fqi-- сила, возникающая в i-й штанге;Е -- приведенный модуль упругости штанги (учитывающий наличие привода); S-- приведенная площадь сечения штанги;i =1,6.
Для обеспечения заданной статической точности обработки необходимо внести коррективы в расчетные значения длины штанг: qрабi= qрасчi- dqi, где qрабiи qрасчi- рабочая и расчетная длина штанги. При компенсации положения рабочей точки РИ необходимо учитывать также быстродействие приводов штанг.
При планировании траектории движения инструмента остаются свободными параметры и, цp и ир, определяющие положение платформы относительно рабочей точки РИ. Диапазон возможных изменений свободных параметров в каждой точке этой поверхности ограничивается недопустимостью возникновения особого положения (в котором у несущей системы появляется дополнительная степень свободы) и размером рабочей области.
В отличие от работы [5] в данном случае рассматривается большее число свободных параметров. Как показали результаты компьютерного моделирования на программном комплексе «ГЕКСАПОД» [6], динамическая корректировка параметра ир с учетом направления силы резания в процессе обработки и рациональный выбор параметров цp и и в позволяют значительно увеличить жесткость станка.
Для примера рассмотрим обработку поверхности, заданной параметрическими уравнениями: х = -100 + 200v; у = 200u - 100; z = 50u - 50u2 + 50u - 50u2, где u = 0?1; v = 0?1. Величина погрешности д обработки без коррекции угла ир представлена на рис. 5, а, с коррекцией угла ир -- на рис. 5, б. Соответствующая форма поверхности показана на рис. 6. Как видно, благодаря коррекции угла ир погрешность обработки снизилась в среднем в 2 раза.
Рис. 5. Изменение погрешности д обработки поверхности во времени t без коррекции (а) и с коррекцией (б) угла ир
Рис. 6. Вид поверхности без коррекции (а) и с коррекцией (б)
Таким образом, в данной работе найдено решение двух основных задач формообразования поверхностей на гексаподах. Решение первой задачи сводится к определению такой траектории перемещения РИ, которая позволяет обеспечить обработку номинальной поверхности детали с учетом необходимых условий формообразования.
Для решения второй задачи -- обеспечения точности формообразования при действии сил резания -- рассмотрены два способа уменьшения смещений режущей кромки РИ при обработке: 1) коррекция длины штанг, компенсирующая смещение РИ; 2) изменение угловой ориентации платформы для повышения жесткости гексапода [3-6].
Список литературы
1. Металлорежущие станки: учебник. В 2 т. Т. 2 / В.В. Бушуев, А.В. Еремин, А.А. Какойло и др.; под ред. В.В. Бушуева. Т. 2. -- М.: Машиностроение, 2011. -- 584с.;
2. Решетов Д. Н., Портман В. Т. Точность металлорежущих станков. -- М.: Машиностроение, 1986. -- 336 с.
3. Потапов П. В. Механизмы с параллельной кинематикой в машиностроении // Справочник. Инженерный журнал. Приложение. - 2005. - № 8 (101). - С. 1-24.
4. ВайнштейнИ. В., СироткинР. О., СерковH. А. Станкидлявысокоскоростной обработки деталей и перспективы их развития в машиностроении // Авиационная промышленность. -- 2006. - N9 3. - С. 49-55.
5. http://dspace.susu.ac.ru/handle/0001.74/1078
6. http://www.ssc.smr.ru/media/journals/izvestiaЗаходим на этот сайт, выбираем 2012 год и ищем в списке вот этот номер 2012_1_419_421.
7. Размещено на Allbest.ru
Подобные документы
Механизмы параллельной кинематической структуры. Создание конструкции, обладающей высокой жесткостью и обеспечивающей высокую точность обработки детали при многокоординатной обработке. Снижение энергии, затрачиваемой на выполнение фрезерных операций.
реферат [354,2 K], добавлен 10.11.2016Двухстепенные и трехстепенные механизмы с параллельной кинематикой. Составление кинематических уравнений. Определение кинематической схемы 5D-принтера. Габаритные размеры и конструкция двигателя. Описание устройства алгебраически с помощью геометрии.
диссертация [4,7 M], добавлен 22.11.2022История изобретения металлорежущих станков, их составляющие и классификация по особенностям работы и применения. Станки: токарные, винторезные, сверлильные, расточные, шлифовальные, круглошлифовальные, комбинированные нарезные, фрезерные, другие.
презентация [531,7 K], добавлен 06.10.2012Направления развития станкостроительной отрасли: повышение производительности металлорежущих станков и их технологическая характеристика. Узлы и компоновки станков, их классификация по степени специализации, управляющему устройству, точности и массе.
курсовая работа [1,1 M], добавлен 16.06.2011Разработка коробки скоростей сверлильного станка со шпинделем и механизмом переключения скоростей. Построение структурной сетки и графика частот вращения шпинделя. Расчёт крутящего момента на валах и модуля зубчатых колёс. Построение эпюр моментов.
курсовая работа [902,3 K], добавлен 15.10.2013Инструмент и приспособления для шлифовки и полировки. Размеры и радиусы кривизны. Станки для обработки оптических деталей. Кривошипно-шатунный механизм. Станки для предварительной обработки сферических поверхностей заготовок оптических деталей.
реферат [1,9 M], добавлен 09.12.2008Металлорежущие станки как основной вид заводского оборудования. Классификация фрезерных станков, их предназначение. Описание механизмов станка и режимов обработки. Выбор систем управления электропривода. Технико-экономические показатели проекта.
дипломная работа [1,6 M], добавлен 21.01.2010Токарные станки - металлорежущее оборудование, их предназначение для обработки тел путем снятия слоя материала (стружки). Классификация токарных станков. Универсальные и специализированные токарные станки. Двухстоечный токарно-карусельный станок.
реферат [2,0 M], добавлен 22.05.2013История металлорежущих станков. Их классификация, конструкция, характеристика основных узлов. Принципы токарной обработки материалов. Виды станочных приспособлений, вспомогательных устройств и их назначение. Способы достижения заданной точности обработки.
презентация [2,7 M], добавлен 07.02.2016Управление ткацким станком. Конструкция остова станка. Общая система предотвращения образования пусковых полос. Автоматизация процесса зевообразования. Ткацкие станки от отечественных предприятий, от компании "Toyota Industries Corporation", "Picanol".
реферат [33,1 K], добавлен 14.07.2015