Загальна теорія точності механічної обробки

Загальна характеристика методів дослідження точності обробки за допомогою визначення складових загальних похибок. Розрахунки розсіяння розмірів, пов'язані з помилками налагодження технологічної системи. Визначення сумарної похибки аналітичним методом.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 02.05.2011
Размер файла 5,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Відношення одноіменних похибок вихідної заготовки Дв.заг. і обробленої заготовки Добр.заг. прийнято називати уточненням КТС яке визначається за формулою [2]:

. (16)

Величина, обернена уточненню:

(17)

називається коефіцієнтом зменшення похибок.

У загальному випадку на основі формули (15) і співвідношення

Дзаг. = 2(tmax - tmin)

можна записати:

. (18)

Прийнявши в окремому випадку значення показника xp = 1, отримаємо приблизний вираз уточнення:

, (19)

з якого випливає, що уточнення прямопропорційне жорсткості технологічної системи.

Після першого ходу інструменту

,

після другого ходу:

,

після і-го ходу:

. (20)

З формули (20) випливає, що після кожного ходу різця похибка заготовки зменшується обернено пропорційно уточненню та жорсткості технологічної системи і прямопропорційно коефіцієнту зменшення похибок.

У зв'язку з тим, що у більшості випадків при обробці заготовок KТС > 1, а коефіцієнт зменшення похибок Ку < 1, збільшення числа ходів інструмента значно знижує похибку заготовки і підвищує точність обробки.

З формули (20) можна визначити потрібну кількість проходів для усунення похибки вихідної заготовки.

З формули (20) маємо:

, (21)

звідки:

. (22)

Необхідно відмітити, що розрахунок за формулою (20) дає правильні результати тільки до певного числа ходів, коли похибка Дз заготовки більша за похибку, що вноситься впливом даної технологічної системи. Коли частина похибки заготовки, що переноситься з попередніх операцій (ходів), стає зовсім малою, загальна похибка обробленої заготовки виявляється рівною похибці обробки на даному верстаті, яка не може бути знижена подальшим збільшенням числа ходів інструмента.

У тих випадках, коли КТС < 1 (при малій жорсткості технологічної системи), кожен новий хід не тільки не підвищує точність оброблюваної заготовки, але навіть знижує її. Прикладом цього може бути обробка на токарних і шліфувальних верстатах довгих і тонких валів.

Методи визначення та підвищення жорсткості технологічної системи

Методи визначення жорсткості верстатів по цей час носять емпіричний характер, оскільки потрібно враховувати багато факторів.

Принципова схема визначення величини переміщення однієї деталі вузла верстата відносно іншої під дією прикладеної статичної сили показана на рис. 21. В міру збільшення ваги вантажу, що навішується на кінці каната, зростає сила Р, яка прикладається до кінця шпинделя коробки швидкостей. За показами індикатора, розташованого проти прикладання сили Р у напрямку її дії, роблять висновки про величину переміщення кінця шпинделя відносно станини верстата. При кожному збільшенні вантажу, тобто сили Р, за показами індикатора записують величину переміщення кінця шпинделя. Після того, як навантаження досягне розрахункової величини, його поступово зменшують, записуючи одночасно покази індикатора.

Рис. 21. Схема визначення величини переміщення шпинделя коробки швидкостей під дією сили Р (по К.В. Ватинову)

Всі одержанні дані наносять у вигляді точок на графік з координатами сила Р - переміщення у. З'єднуючи точки, одержують криві залежності переміщення від зміни сили Р, як це показано на рис. 22. Дві гілки побудованої таким чином кривої одержали назву: перша - навантажувальної, друга - розвантажувальної. Характер кривих говорить про те, що вузли верстатів є не зовсім пружними ланками системи ВПІД.

Описаним методом, який називається статичним, встановлюють нормативи жорсткості верстатів різних типорозмірів, але ці дані не достатньо точні, тому застосовують також виробничий метод.

Виробничий метод - це метод, коли на верстаті в робочому режимі проводять обробку ступінчастої заготовки чи заготовки, яка має биття.

За величинами уточнення

,

за формулою (19) підраховують

, (23)

де л =Ру / Рz.

Рис. 22. Графік залежності переміщення шпинделя від зміни навантаження

Різниця в j, визначеній цими методами, складає , але застосовують обидва методи: перший - для нових верстатів, другий - безпосередньо у виробництві.

Раніше було показано, що збільшення жорсткості технологічної системи є одним із способів зменшення частини похибки динамічного настроювання і збільшення продуктивності обробки.

Основними шляхами збільшення жорсткості технологічної системи є:

1) скорочення кількості стиків і ланок в розмірних і кінематичних ланцюгах, тобто використання принципу найкоротшого шляху;

2) підвищення якості механічної обробки деталей для скорочення контактних деформацій;

3) підвищення якості складання шляхом належного регулювання та припасування сполучуваних деталей;

4) підвищення власної жорсткості деталей технологічної системи, у тому числі і оброблюваної деталі;

5) стабілізація температури технологічної системи і дія ряду інших факторів чи внесення в технологічну систему поправок, що компенсують вплив температурних та інших деформацій;

6) керування жорсткістю технологічної системи шляхом її зміни в процесі обробки деталей.

6. Складові загального поля розсіяння розмірів заготовок від випадкових похибок

Розсіяння розмірів викликають численні випадкові фактори різноманітного характеру. За своїм походженням ці фактори мажна об'єднати в декілька окремих груп.

6.1 Розсіяння розмірів, пов'язане з видом обробки (похибка методу)

Кожному виду (методу) обробки, що виконується на певному обладнанні, властива своя величина розсіяння розмірів, яка характеризується полем розсіяння Дм. В середині методу обробки Дм змінюється в залежності від конструкції, типорозміру та технічного стану верстата.

Значення Дм змінюється також і в процесі обробки партії заготовок в залежності від стану (величини зношування) різального інструменту (рис. 9).

Поле розсіяння розмірів, що відповідає різним за часом етапам обробки, називається миттєвим розсіянням розмірів. Усереднену похибку Дм називають похибкою методу.

До розрахунків беруть усереднені дані з довідників для окремих методів обробки, або для наборів технологічних переходів.

6.2 Розсіяння розмірів, пов'язане з похибками встановлення заготовок та точністю пристроїв

При встановленні заготовки в пристрій похибка встановлення може бути визначена за формулою:

,

де еб - похибка базування;

ез - похибка закріплення;

епр - похибка пристрою.

Для розрахунку очікуваної точності інженеру-технологу необхідно вміти визначати:

похибки базування в залежності від прийнятої схеми встановлення заготовки у пристрої;

похибки закріплення в залежності від несталості сил затискання, неоднорідності шорсткості поверхонь заготовок, спрацювання установчих елементів пристроїв;

похибки через спрацювання установчих елементів.

Похибка базування, її суть, причини виникнення, методи визначення розглянуті вище (див. тему 4).

Закріплення - це прикладання сил і пар сил до заготовки для забезпечення сталості її положення.

При встановленні заготовки з вивіренням її положення:

,

де евив - похибка вивірення.

Вивірення - процес надання заготовці потрібного положення відносно вибраної системи координат.

Точність вивірення в цілому залежить від досвіду і кваліфікації робітника та від прийнятого методу вивірення. Вивірення може проводитись за поверхнями і за розмітковими штрихами.

Щоб встановлена на столі верстата чи пристрої заготовка не змістилась під дією сил різання, до заготовки прикладають сили, які б були більші від сил різання і забезпечили б постійний контакт заготовки з установчими елементами.

Таке затискання заготовки прийнято називати силовим замиканням.

Під похибкою закріплення ез розуміють величину зсуву заготовки в напрямку витримуваного розміру відносно різального інструменту під дією затискних сил.

Похибка закріплення виникає в результаті пружних деформацій бази заготовки і установчих елементів пристрою під дією сил закріплення.

Похибку закріплення можна розрахувати за формулою:

ез = (уmax - ymin)cosб,

де y - контактна деформація стику заготовка - установчий елемент;

б- кут між напрямками одержаного розміру і прикладання сили затискання.

Похибка закріплення ез - випадкова величина, оскільки зміна сили затискання Q для партії заготовок випадкова.

У загальному випадку контактна деформація стику заготовка - установчий елемент виражається залежністю:

y = Cqm,

де C - коефіцієнт, що залежить від матеріалу та якості поверхні заготовки; q - питомий тиск у місцях контакту; m - показник степеня (визначається експериментально).

Контактні деформації залежать від величини і сталості питомого тиску на стику і від шорсткості цих поверхонь. Так, якщо технологічна база - необроблене литво, ез =0,1…0,15 мм, після чорнової обробки ез = 0,05…0,075 мм, після чистової обробки ез = 0,010…0,015 мм [2].

При закріпленні в призмі заготовок діаметром до 100 мм з шорсткістю поверхні 5…0,32 мкм і твердістю НВ120-250 контактні деформації, які зміщують вісь заготовки, можна визначити за залежністю [2]:

Д = (0,017 + 3/HB + 0,001Rz + 1,7D)P0,7,

де Rz - висота мікронерівностей заготовки, мкм;

D - діаметр заготовки, мм;

Р - сила закріплення на 10 мм довжини твірної, по якій відбувається контакт із призмою, Н.

При розрахунку деформацій затискання використовують положення опору матеріалів і теорії пружності.

Обробляючи партії заготовок, похибки затискання можна звести до мінімуму, застосовуючи затискні механізми, які забезпечують сталу силу затискання (пневматичні, гідравлічні механізми), а також скеровуючи відповідним чином сили затискання та обробляючи базуючі поверхні для збільшення площі контакту. Наприклад, змінюючи точкові опори на плоскі, можна досягти зменшення контактних деформацій.

Похибку закріплення при розрахунках наведено в [2].

Зменшити похибку закріплення можна також такими шляхами:

1) правильний вибір точок прикладання затискних сил (навпроти опор);

2) додержання послідовності прикладання сил;

3) застосування особливих заходів при обробці нежорстких та тонкостінних деталей.

Шляхи зменшення похибок пристроїв:

1) обгрунтоване призначення допусків на розташування опорних поверхонь установчих елементів;

2) дотримання потрібної точності при виготовленні пристрою;

3) періодичний контроль точності пристрою та своєчасна зміна зношених елементів.

Шляхи зменшення похибки вивірення:

1) правильний вибір засобів і методів вивірення;

2) підвищення точності вимірювальних засобів, які застосовують при вивіренні;

3) підвищення кваліфікації робітника.

Похибка виготовлення пристрою епр безпосередньо входить у похибку встановлення. В процесі експлуатації пристрою відбувається спрацювання його установчих елементів, а також елементів для спрямування різального інструменту.

В залежності від ступеня точності оброблюваної заготовки встановлюють гранично допустиме спрацювання установчих елементів. Наприклад, при обробці заготовок середніх розмірів за 6-9 квалітетами точності допустиме спрацювання не повинно перебільшувати 0,015 мм.

Неточність пристрою при його виготовленні в загальному випадку складає 0,25…0,10 допуску відповідного точнісного параметра оброблюваної заготовки.

Лінійне спрацювання u установчих елементів пристрою (опор) визначає похибку Дuu= u - для опор, - для призм, де б - кут призми).

Похибку визначають за рівнянням [2]:

,

де N - кількість встановлюваних заготовок;

Коб - коефіцієнт, який враховує умови обробки;

L - довжина шляху ковзання заготовки по опорах при досиланні її до упора, мм (визначається з умов експлуатації пристрою);

tм- машинний час обробки заготовки в пристрої, хв;

m, m1, m2- коефіцієнти;

П1 - критерій стійкості проти спрацювання;

Q - навантаження на опору, Н;

F - площа дотику опори з базовою поверхнею заготовки, мм2;

HV - твердість матеріалу опори за Віккерсом (1Hv ? 11,6HRCe).

Міжремонтний період П, який визначає необхідність заміни чи відновлення установчих елементів пристрою, визначають за рівнянням [2]:

,

де К - коефіцієнт запасу, який враховує нестабільність спрацювання установчих елементів (К = 0,08…0,85);

[N] - допустима кількість встановлених заготовок до граничного спрацювання установчих елементів, що визначається з рівняння для Дu:

;

де [Дu] - допустима величина спрацювання, мкм:

,

де - сумарна похибка;

Np- річна програма випуску деталей.

Установчі елементи виготовляють з вуглецевих сталей У7А-У10А із загартуванням до твердості HRC 50…51 або зі сталей марки 20, 20Х з цементацією робочих поверхонь на глибину 0,8…1,2 мм і загартуванням до тієї самої твердості, а в деяких випадках наплавляють твердим сплавом, покривають хромом тощо.

6.3 Розсіяння розмірів, пов'язане з похибками налагодження технологічної системи

Загальні поняття

Налагодженням технологічної системи називають процес початкового встановлення потрібної точності відносного руху і положення виконавчих поверхонь інструменту та устаткування (або пристрою) з метою забезпечення потрібної точності оброблюваних заготовок.

До налагодження горизонтально-фрезерного верстата входять: встановлення фрези відносно пристрою, перевірка правильності встановлення, фіксація упорів, що обмежують хід стола.

Під налагодженням розуміють встановлення режиму роботи: частоти обертання шпинделя, хвилинної подачі, подачі на оберт тощо.

Похибка налагодження Дн - це відхилення фактичного положення різального інструменту відносно потрібного в напрямку витримуваного розміру, яке визначається як різниця між потрібним і фактичним положенням різального інструменту (рис. 23).

Рис. 23. Похибка налагодження технологічної системи на обробку

Розрізняють два основних методи налагодження: шляхом обробки пробних заготовок і за еталоном.

Налагодження шляхом обробки пробних заготовок

При цьому методі виконується послідовне наближення до заданого налагоджувального розміру в результаті обробки на верстаті пробних заготовок. За результатами вимірювань оброблених пробних заготовок робиться висновок про величину і напрямок необхідного зміщення інструмента. Розміри оброблюваних деталей - величини випадкові і, підлягаючи тому чи іншому закону розподілу, можуть коливатись в межах поля розсіювання. Тому за результатами вимірювання однієї заготовки не можна сказати, до якої точки поля розсіювання цей розмір належить. Для цього необхідно обробити і виміряти декілька заготовок (зазвичай 3-5) і за середнім значенням їх розмірів можна розв'язати цю задачу.

Налагодження вважається правильним, якщо середнє арифметичне розмірів пробних заготовок збігається з серединою поля допуску, або перебуває від нього в межах допуску на налагодження ТН.

При виконанні налагодження шляхом обробки пробних заготовок похибка налагодження може бути обчислена за формулою:

,

де Дрег - похибка регулювання положення різального інструменту і окремих вузлів верстата;

Двим - похибка вимірювання пробних заготовок;

Дзм - величина зміщення центра групування групових середніх.

Оскільки регулювання положення інструменту ведеться за допомогою лімбів, похибка регулювання Дрег залежить від похибки відліку, викликаної несуміщенням штрихів лімба і покажчика, від ціни поділки лімба, зазору в з'єднанні "гвинт-гайка", маси супорта тощо. Легким постукуванням по ручці лімбу точність регулювання підвищується на 30-40 %. При подачі в стик під тиском повітря, мастила похибка Дрег доходить до 1 мкм, а при використанні магнітострикційних пристроїв для переміщення вузлів Дрег = 0,1 мкм (числові значення наведені в [2]). Похибка вимірювання пробних заготовок Двим залежить від точності вимірювальних засобів (так, для мікрометрів 6-го квалітету Двим = 19 мкм, а для мікрометрів 7-го квалітету - Двим = 18 мкм).

Величина зміщення центра групування групових середніх Дзм залежить від точності методу обробки і кількості m пробних заготовок:

.

Цю похибку проф. А.Б. Яхін називає також похибкою зміщення, маючи на увазі, що розраховане для малої кількості m пробних заготовок середнє арифметичне значення розмірів максимально може відрізнятись (зміщуватись) від середнього арифметичного значення розмірів всієї обробленої партії заготовок не більше, ніж на При цьому з технологічної точки зору середнє арифметичне значення розмірів всієї партії заготовок представляє собою настроювальний розмір.

У середньому Дн може складати 30-70 мкм.

Недоліки налагодження шляхом обробки пробних заготовок:

а) при малій кількості пробних заготовок точність налагодження сильно знижується;

б) налагодження трудомістке;

в) частина пробних заготовок може вийти в брак, що не дозволяється для великих і дорогих заготовок.

Через це метод використовують для верстатів з відносно простим налагодженням і при порівняно невеликих розмірах оброблюваних заготовок.

Налагодження за еталоном

Суть цього налагодження полягає в тому, що в розмірні ланцюги технологічної системи включається точно виготовлена копія оброблюваної деталі - еталон з відповідними розмірами. Часто за еталон використовують раніше оброблену заготовку. При цьому налагодження, наприклад, багаторізцевого токарного напівавтомата, зводиться до встановлення всіх різців у радіальному (ШD1, ШD2) і поздовжньому (A1, A2) напрямках шляхом приведення різальних лез різців до дотику з відповідними поверхнями встановленого замість заготовки еталона (рис. 24, а). Щоб не пошкодити різальні леза інструменту і підвищити точність налагодження між відповідною поверхнею еталона і різальним лезом інструмента встановлюють смужку тонкого цигаркового паперу або щуп необхідної товщини (рис. 24, б). Зближення інструмента і еталона здійснюється доти, поки смужка паперу або щуп не будуть "закушені" (тобто будуть переміщуватись з легким тертям). Розміри еталона виконують меншими за розрахункові на товщину щупа (рис. 24, б).

Рис. 24. Налагодження багаторізцевого токарного напівавтомата на обробку ступінчастого вала: 1 - еталон; 2 - щуп

Іноді для компенсації зміни фактичних розмірів оброблюваних заготовок еталонні деталі виготовляються з відхиленням від креслення заготовки на величину Дпопр Так, для деталей типу тіл обертання будемо мати:

,

де Хо - рівень настроювання; Дпопр - поправка, що враховує деформацію в пружній технологічній системі та жорсткість поверхні еталонної деталі, по якій проводиться налагодження:

Дпопр = Д1 + Д2 + Д3;

Д1= Ру / j

враховує дію сил різання;

j - жорсткість технологічної системи;

Д2 = Rz - враховує шорсткість;

Дz - зазор у підшипниках шпинделя (Дз = 0,04-0,02 мм):

.

При обробці великих заготовок, а також у ряді інших випадків використання еталонів стає громіздким і неефективним. В цих випадках їх замінюють спеціальними елементами, які називаються габаритами (установами), встроюваними у пристрій (рис. 25).

Рис. 2 Приклад застосування установів і щупів при встановленні фрези: а - циліндричної за висотним установом та щупом товщиною (t - зрізуваний припуск); б - кінцевої за кутовим установом; в - фасонні за використанням циліндричних щупів

Похибку налагодження технологічної системи за еталоном можна визначити за формулою:

,

де Дe - похибка виготовлення еталона, Дe = 10…20 мкм;

Дврі - похибка встановлення різального інструмента за еталоном [2].

Для скорочення часу на налагодження в масовому виробництві при обробці на автоматах і напівавтоматах, в гнучких виробничих системах тощо виконують налагодження різальних інструментів поза верстатом. Для цього використовують спеціальні прилади, пристосування та пристрої.

Один із найпростіших пристроїв для налагодження різця на діаметральний розмір показаний на рис. 26. Попередньо пристрій настроюється на потрібний розмір за допомогою еталона або набору кінцевих мір. Довжина різця регулюється за допомогою спеціального болта, розмір контролюється за індикатором.

Рис. 26. Схема пристрою для налагодження інструменту поза верстатом

Переваги налагодження за еталоном і поза верстатом:

а) значне скорочення трудомісткості налагодження і краще використання устаткування в часі;

б) метод не пов'язаний з витратою пробних заготовок;

в) придатність для налагодження автоматичних ліній, багатопозиційних і багатоінструментальних верстатів, верстатів з ЧПК, багатоопераційних верстатів, верстатів гнучких виробничих систем;

г) не потрібні наладчики високої кваліфікації, оскільки засоби контролю точності налагодження прості та надійні.

Недоліки методу:

а) потреба у виготовленні еталонів і допоміжних пристроїв (при налагодженні поза верстатом);

б) необхідність внесення поправки на динаміку процесу при визначенні розмірів еталону, що досить складно, тому при обробці перших заготовок партії необхідне додаткове регулювання положення інструментів і упорів.

Взагалі при будь-якому методі налагодження з достатньою для практичних цілей точністю можна приймати похибку налагодження не більше ніж 0,1 допуску відповідного розмірного параметра.

7. Визначення сумарної похибки обробки розрахунково-аналітичним методом

Розрахунок сумарної похибки обробки звичайно виконують за чотири етапи:

1. Проводять схематизацію реальної операції з відкиданням факторів, які не можуть суттєво впливати на точність (наприклад, для корпусу не враховують похибку форми технологічних баз).

2. Виконують теоретичний аналіз ситуації, встановлюють співвідношення для розрахунку складових похибок Ді.

3. Визначають складові похибки Ді за теоретичними чи емпіричними залежностями.

4. Підсумовуючи за певними правилами складові похибки Ді, визначають сумарну похибку обробки.

При розрахунку за методом максимуму-мінімуму [2]:

(24)

де n - кількість складових похибок.

При розрахунку за ймовірнісним методом:

(25)

де Кі - коефіцієнт відносного розсіювання, який характеризує відмінність між дійсним розсіюванням складової і-ої похибки і розсіювання за нормальним законом.

Для закону Гаусса К = 1,0, для закону рівної ймовірності К = 1,73, для закону Сімпсона (трикутника) К = 1,22, для композиції закону Гаусса і рівної йморівності К = 1,2…1,

Зазвичай при розрахунках невідомий закон розподілу елементарної складової похибки, тому для всіх похибок приймають К = 1,2.

Тоді:
. (26)
Сумарну похибку обробки заготовок на налагоджених верстатах визначають за рівнянням [5]:
(27)
де Дм - похибка методу обробки;
еу - похибка встановлення заготовки;
Дн - похибка налагодження з технологічної системи.

Після визначення сумарної похибки перевіряють можливість обробки без браку за двома умовами (див. п. 6.12).

При невиконанні цих умов необхідно визначити конкретні заходи щодо зменшення Др.

Методика розрахунку елементарних і сумарної похибок обробки на верстатах з ЧПК відрізняється тим, що сумарна похибка складається з більшої кількості елементарних похибок.

До додаткових похибок відносять:

Дп.с - похибка позиціонування супорта, за величиною приймається рівною двом дискретам приводу подач за відповідною координатною; зазвичай Дп.с = 1…2 мкм;

Дn.різ - похибка позиціонування різцетримача (інструментальної головки або блока), для сучасних верстатів Дn.різ = 6-8 мкм;

Дкор - похибка відпрацювання коригування (у випадку роботи з коректором), яка дорівнює двом дискретам приводу подач за відповідною координатою.

Разом з тим, при роботі з коректором із формули може бути виключена систематична похибка від розмірного зношування інструмента Дзн.і, оскільки можна проводити періодичне коригування положення інструмента, при розрахунку похибки розмірного налагодження Дн можна виключити складову Дрег., оскільки вона враховується похибкою корекції Дкор.

Для визначення сумарної похибки обробки, що складається із систематичних та випадкових похибок, потрібно застосовувати графо-аналітичний метод складання. Як відмічалося вище, систематичні похибки (рис. 2.14, б, в) зміщують центр групування дійсних відхилень розмірів від розрахункового настроювального розміру або рівня настроювання Хо, а випадкові похибки викликають розсіяння розмірів відносно (рис. 27), тобто [5]:

Рис. 27. Зміщення вершини кривої розподілу відносно рівня настроювання за наявності систематичних похибок

.

Величина Дсист представляє собою алгебраїчну суму систематичних похибок, що не усуваються при обробці заготовок і впливають на їх розміри, та найбільших значень змінних систематичних похибок.

Використана література

1. Балакшин Б.С. Основы технологии машиностроения. - М., 1969. - 559 с.

2. Бондаренко С. Г. Розмірні розрахунки механоскладального виробництва. - К. 1993. - 544 с.

3. Корсаков В.С. Основы технологии машинобудування. М., 1977. - 415 с.

4. Косилова А.Г., Мещеняков Р.К. Справочник технолога-машиностроителя. Том 1. - М., 198 - 655 с.; Том 2. - М., 1986. - 496 с.

Маталин А.А. Технология машиностроения. - Л. - М., 198 -496 с.

6. Руденко П.А. Теоретические основы технологии машиностроения: Конспект лекций. - Чернигов, 1986. - 258 с.

7. Сборник задач и упражнений по технологии машиностроения. / В.А Аверников, О.А. Горленко, В.Б. Ильецкий и др.; Под общ. ред. О.А. Горленко. - .М., 1988. - 192 с.

8. Справочник технолога-машиностроителя / Под ред. А.Н. Малова. Том 2. - М., - 986. - 446 с.

Размещено на Allbest.ru


Подобные документы

  • Вибір методу обробки. Визначення коефіцієнтів точності настроювання. Визначення кількості ймовірного браку заготовок. Емпірична крива розподілу похибок. Визначення основних параметрів прийнятого закону розподілу. Обробка заготовок різцем з ельбору.

    реферат [400,7 K], добавлен 08.06.2011

  • Проектування технологічних процесів. Перевірка забезпечення точності розмірів по варіантах технологічного процесу. Використання стандартного різального, вимірювального інструменту і пристроїв. Розрахунки по визначенню похибки обробки операційних розмірів.

    реферат [20,7 K], добавлен 20.07.2011

  • Оцінка точності засобів вимірювання, методика обробки прямих, опосередкованих та сумісних вимірювань. Статична та динамічна похибки засобу вимірювання різними методами. Коригування структурних схем, яке забезпечує підвищення точності засобу вимірювання.

    курсовая работа [271,7 K], добавлен 22.11.2012

  • Шляхи підвищення ефективності механічної обробки деталей. Розробка математичної моделі технологічної системи для обробки деталей типу вал як системи масового обслуговування. Аналіз результатів моделювання технологічної системи різної конфігурації.

    реферат [48,0 K], добавлен 27.09.2010

  • Дослідження доцільності використання різних способів виготовлення заготовки даної деталі з метою забезпечення необхідної точності найбільш відповідальних поверхонь при мінімально можливій собівартості. Вибір оптимального способу лиття в разові форми.

    курсовая работа [1,6 M], добавлен 03.03.2015

  • Методи обробки поверхонь деталі. Параметри шорсткості поверхонь. Забезпечення точності розмірів і поворотів. Сумарна похибка на операцію. Розміри різального інструменту. Точність обробки по варіантах технологічного процесу. Точність виконання розміру.

    практическая работа [500,0 K], добавлен 21.07.2011

  • Технічні характеристики компресорної установки. Аналіз технологічності деталі. Вибір та техніко-економічне обґрунтування методу отримання заготовки. Визначення припусків для обробки поверхні аналітичним методом та етапи обробки поверхонь деталі.

    курсовая работа [1,2 M], добавлен 31.10.2013

  • Керування точністю процесу обробки заготовок за вихідними даними. Керування пружними переміщеннями елементів технологічної системи для усунення систематичних та змінних систематичних похибок, які викликають похибки геометричної форми заготовок.

    контрольная работа [365,7 K], добавлен 08.06.2011

  • Складання проекту механічної дільниці для обробки деталі "Корпус". Вивчення типового маршрутного технологічного процесу обробки деталі,розрахунок трудомісткості. Визначення серійності виробництва, розрахунок необхідної кількості верстатів та площ.

    курсовая работа [543,9 K], добавлен 04.07.2010

  • Аналіз технологічних вимог деталі. Розрахунок операційних припусків аналітичним методом та встановлення міжопераційних розмірів та допусків. Маршрут обробки деталі. Розробка технологічних процесів. Вибір різального та вимірювального інструментів.

    курсовая работа [1,6 M], добавлен 08.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.