Основы машиностроения
Определение допустимого параметра нагрузки и расчет перемещения свободного конца консольного стержня переменного сечения. Выбор размеров поперечных сечений балки. Вычисление угла поворота свободного конца вала. Условия прочности заклепочного соединения.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 26.05.2014 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Задача 1
К консольному стержню (рис. 1.1) переменного сечения приложены продольные силы. Построив эпюры нормальной силы и нормальных напряжений, Определить из условия прочности допустимое значение параметра нагрузки Р. При найденном значении Р вычислить перемещение свободного конца стержня.
Принять площадь поперечного сечения А = 2 см2; длину l = 20 см; нормативный коэффициент запаса прочности [n] = 2.
Рисунок 1.1.
Дано: F1 = -P; F2 = 2P; l1 = l; F3 = 2,5P; l2 = l; Сталь 40Х.
Решение:
Составим расчетную схему с учетом исходных данных (рис. 1.2)
Выбираем положительное направление оси z. Разбиваем стержень на участки, начиная от свободного края. Границами участков будут сечения, в которых приложены нагрузки и меняются размеры сечения (рис. 1.2).
Рисунок 1.2
Данный стержень имеет 4 участка. В пределах каждого участка воспользуемся методом сечений:
- Разбиваем стержень на рассматриваемом участке сечением, перпендикулярным оси стержня;
- Мысленно отбрасываем левую часть стержня;
- Заменяем влияние отброшенной части на оставленную внутренней силой N;
- Рассматриваем в равновесии оставленную правую часть стержня под действием внешних сил и внутренней силы N;
- Составляем уравнение равновесия (уравнение статики Z = 0) и, решив его, определяем искомые внутренние силы.
- растяжение
- сжатие
- сжатие
- сжатие
Вычисляем нормальные напряжения на участке
По полученным данным строим эпюру нормальных напряжений.
Из условия прочности при растяжении (сжатии) находим значение нагрузки Р:
где [ур] - допускаемое напряжение при растяжении; МПа.
где уТ = 800 МПа - предел текучести для Стали 40Х.
[n]=2 - нормативный запас прочности .
Тогда
Находим перемещение свободного конца бруса:
т.е. стержень под действием нагрузок сжимается.
Задача 2
Для плоской стержневой системы, изображенной на рис. 2.1 требуется:
1. определить усилия в стержнях (в долях ql);
2. из расчета на прочность найти площади поперечных сечений стержней;
3. считая, что каждый стержень состоит из двух одинаковых равнополочных уголков, подобрать по ГОСТ 8509-72 соответствующий номер профиля.
Принять: материал - сталь Ст. 5; нормативный коэффициент запаса прочности [n] = 1,4; длину l = 0,5 м; интенсивность распределенной нагрузки q = 200 кН/м.
Рисунок 2.1
Дано: а = 1,6l; c = 2l; б = 60?; F = 0,3ql
Решение: Составляем расчетную схему согласно исходных данных. Разрезаем стержни и вводим неизвестные усилия N1, N2 и N3, считая, что стержни растянуты (рис. 2.2).
Для определения неизвестных усилий составляем уравнение равновесия, жесткого стержня:
,(1)
Отсюда
- стержень растянут
, (2)
, (3)
Из уравнения (2) выразим N2
и подставим в уравнение (3)
Отсюда:
- стержень сжат
Тогда
- стержень сжат
Рисунок 2.2
Условие прочности при растяжении (сжатии) имеет вид:
где Ni - усилие в стержне, Н;
Аi - площадь поперечного сечения стержня, мм;
[ур] - допускаемое напряжение, Мпа
где уТ = 280 МПа - предел текучести для стали Ст.5.
[n]=1,4 - нормативный запас прочности
Отсюда
для первого стержня:
по условию каждый стержень состоит из двух равнобоких уголков, поэтому площадь одного уголка будет равна:
по таблице сортамента (ГОСТ 8509-93) принимаем уголок 50х50х6 у которого Атабл1= 5,69 см2
для второго стержня:
по таблице сортамента (ГОСТ 8509-93) принимаем уголок 20х20х3 у которого Атабл2= 1,13 см2
для третьего стержня:
по таблице сортамента (ГОСТ 8509-93) принимаем уголок 20х20х3 у которого Атабл3= 1,13 мм2
Задача 3
Для стальной балки (рис. 3.1) из расчета на прочность по наибольшим нормальным напряжениям подобрать размеры поперечных сечений трех типов (рис. 3.1): 1 - двутавровое; 2 - прямоугольное с отношением высоты к основанию h/b = 2; 3 - круглое сечение.
Вычертить найденные сечения в одном масштабе (можно наложить их друг на друга) и найти соотношение весов соответствующих балок.
Принять: интенсивность поперечной распределенной нагрузки q = 50 кН/м; длину l = 40 см; допускаемые нормальные напряжения [у] = 160 МПа.
Рисунок 3.1
Дано: l1 = 1,8l; F = 3ql; l2 =2,4l; M = -2ql2
Решение:
Составим расчетную схему с учетом исходных данных (рис. 4.2).
Определим действующие нагрузки:
q = 50 кН/м; F = 3ql=3•50•0,4=60 кН; M = 2ql2 = 2•50•0,42= 16 кНм
Определение опорных реакций.
Рисуем на схеме реакции опор А и В, считая их направление положительным. Составляем уравнения равновесия и определяем величину реакций
(1)
(2)
Из уравнения (1) находим RB
Из уравнения (2) находим RА
Сделаем проверку. Для чего приравняем сумму проекций всех сил на вертикальную ось к нулю:
Условие выполняется, опорные реакции определены верно.
Разделим балку на два участка (рис. 3.2)
Находим значения поперечных сил на участках:
На участке 1:
На участке 2 :
при z2 = 0
при z2 = 0,72 м
По найденным значения строим эпюру Qy (рис. 3.2)
Находим значения изгибающих моментов на участках:
На участке 1:
при z1 = 0
при z1 =0,96 м
на участке 2:
при z2 = 0
при z2 = 0,72 м
По полученным значениям строим эпюру изгибающих моментов (рис. 3.2). Опасным является сечение, в котором изгибающий момент принимает наибольшее по модулю значение , т.е. сечение, расположенное над правой опорой балки.
Рисунок 3.2
3. Определение размеров поперечного сечения балки.
Размеры балки определяются максимальными напряжениями в наиболее опасном сечении. В нашей схеме опасное сечение в точке приложения силы F.
Из условия прочности определим момент сопротивления поперечного сечения:
Для балки:
* сечения из двутавра: по ГОСТ 8239-89 выбираем двутавр № 18, имеющий параметры:
Wx=143 см3; S=23,4см2 ; h=18см; b=9 см.
* прямоугольного сечения (h/b=2):
, ,
Принимаем
b=6 cм; h =2•6=12 см; S=6•12=72 см2;
* круглого поперечного сечения:
; ;
принимаем d = 11,5 см;
Изобразим в масштабе (1:5) все расчетные сечения балки (рис. 3.3).
Выбираем оптимальное поперечное сечение с минимальной площадью сечения:
Оптимальным сечением является двутавр №16.
Рисунок 3.2.
Задача 4
К стальному валу переменного круглого сечения (рис. 4.1) приложены скручивающие моменты М и М1.
Определить из условия прочности размеры поперечных сечений и округлить до ближайшей величины по ГОСТ 6636-69.
При найденных размерах вычислить угол поворота свободного конца вала (в градусах).
Принять: М = 3 кН•м; l = 20 см; допускаемое касательное напряжение [ф] = 80 МПа; модуль сдвига G = 8•104 МПа.
Рисунок 4.1
Дано: l1 = 1,5l; D=1,54d; l2 = 2,3l; M1=3,5M
Решение:
Составим расчетную схему с учетом исходных данных (рис. 4.2.)
Пользуясь методом сечений, определяем крутящие моменты в произвольном сечении каждого из участков бруса, по направлению справо налево (рис. 4.2).
Участок I. Условие равновесия: MK1 - 3,5М = 0, отсюда MK1 = 3,5M = 10,5 кНм.
Участок II. Условие равновесия: MК2- 3,5M+М = 0, отсюда MK2 = 2,5M = 7,5 кНм,
Участок III. Условие равновесия: MК3 - 3,5M +M = 0, отсюда MK3 =2,5M = 7,5 кНм,
По полученным данным строим эпюру MK (рис. 4.2)
Определяем значения полярного момента сопротивления и полярного момента инерции по участкам:
Участок I:
Участок II: ;
Участок III: ;
Определяем напряжения по участкам бруса:
Участок I:
Участок II:
Участок III:
Определяем диаметр бруса. Из условия прочности имеем
Принимаем d = 80 мм
Определяем угол поворота свободного конца вала:
Рисунок 4.2
Задача 5
Для соединения, показанного на рис. 5.1, из расчетов на прочность (при растяжении, сжатии, срезе, смятии) найти значения указанных на чертеже размеров и уточнить в соответствии с ГОСТ 6636-69 (нормальные линейные размеры).
Принять: материал - сталь; допускаемые напряжения при растяжении (сжатии) [у] = 100 МПа; на срез [ф]ср = 0,8 [у]; на смятие [у]см = 2,0 [у].
Рисунок 5.1
Дано: F = 70 кН.
Решение:
1) Из условия прочности заклепочного соединения по деформации среза определим диаметр заклепки.
консольный стержень балка вал
где d- диаметр заклепки, мм;
F = 70 кН - растягивающая сила;
m = 2 - количество срезов
n = 5 - количество заклепок.
[ф]ср = 0,8[у] = 0,8•100 = 80 МПа - допускаемое напряжение на срез.
Отсюда
Примем d = 11 мм
2) Из условия прочность заклепочного соединения по деформации смятия определим толщины деталей:
где дmin - наименьшая толщина соединяемых деталей, мм;
n = 5 - количество заклепок.
[у]см= 2,0[у] = 2,0•100 = 200 МПа - допускаемое напряжение на смятие
Отсюда принимаем следующие размеры деталей
t = дmin=7 мм и а = дmin/2=7/2=3,5 мм
3) Из условия прочности при растяжении определим ширины листов:
Для листа шириной b:
Условие прочности по деформациям растяжения:
где Aсеч = a·b - 3·a·d - площадь наиболее ослабленного сечения соединяемых деталей.
[у] = 100 МПа - допускаемое напряжение на растяжение.
Отсюда:
Принимаем b = 100 мм
Ответ: a = 3,5 мм; b = 100 мм; t = 7 мм, d = 11 мм
Размещено на Allbest.ru
Подобные документы
Методика и основные этапы расчета стержня. Построение эпюры нормальных напряжений. Определение параметров статически неопределимого стержня. Вычисление вала при кручении. Расчет консольной и двухопорной балки. Сравнение площадей поперечных сечений.
контрольная работа [477,1 K], добавлен 02.04.2014Оценка размеров поперечного сечения. Нахождение момента инерции относительно центральных осей. Расчет прочно-плотного заклепочного шва. Построение эпюр поперечных сил и изгибающих моментов. Проектный расчет вала при совместном действии кручения и изгиба.
курсовая работа [535,6 K], добавлен 19.11.2012Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.
контрольная работа [1,1 M], добавлен 06.08.2013Определение расчетных значений изгибающих и поперечных моментов балки, высоты из условия прочности и экономичности. Расчет поперечного сечения (инерции, геометрических характеристик). Обеспечение общей устойчивости балки. Расчет сварных соединений и опор.
курсовая работа [1023,2 K], добавлен 17.03.2016Площадь поперечного сечения стержня. Изменение статических моментов площади сечения при параллельном переносе осей координат. Определение положения центра тяжести сечения, полукруга. Моменты инерции сечения. Свойства прямоугольного поперечного сечения.
презентация [1,7 M], добавлен 10.12.2013Расчеты на прочность статически определимых систем растяжения-сжатия. Геометрические характеристики плоских сечений. Анализ напряженного состояния. Расчет вала и балки на прочность и жесткость, определение на устойчивость центрально сжатого стержня.
контрольная работа [1,5 M], добавлен 29.01.2014Определение нагрузки и расчетных усилий, воспринимаемых балками настила до и после реконструкции здания. Подбор сечения балки настила. Усиление балки увеличением сечения. Расчет поясных швов и опорного узла. Проверка прочности и жесткости усиленной балки.
контрольная работа [49,2 K], добавлен 20.01.2015Выполнение проектировочного расчета на прочность и выбор рациональных форм поперечного сечения. Выбор размеров сечения балки при заданной схеме нагружения и материале. Определение моментов в характерных точках. Сравнительный расчет и выбор сечения балки.
презентация [100,2 K], добавлен 11.05.2010Определение сил, действующих на зубчатые колёса (тангенсальной, осевой и радиальной). Расчет сосредоточенного момента и силы зацепления. Построение эпюр внутренних усилий. Поиск диаметров поперечных сечений вала. Подбор сечения вала по условию жесткости.
курсовая работа [938,7 K], добавлен 24.06.2015Определение расчетной нагрузки и реакции опор. Построение эпюры поперечных сил методом характерных точек. Определение необходимого осевого момента сопротивления из условия прочности, оценка рациональной формы поперечного сечения в опасном сечении балки.
контрольная работа [290,8 K], добавлен 09.08.2010