Элементы конструирования печатных плат

Методы конструирования печатных плат, необходимые материалы и правила их компоновки в зависимости от ожидаемого результата. Порядок разработки корпусов микросхем, монтаж кристаллов на подложку. Характеристика основных элементов проводящего рисунка.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 03.08.2009
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

где i - коэффициент использования монтажного поля платы выводами микросхем.

Положив / = 0,5, оценим суммарную длину соединений в платах

Отношения к площади платы L2 суммарного числа выводов микросхем Мп и суммарной длины соединений Л в ней будем называть соответственно плотностью монтажа и плотностью соединений:

Используя и, получаем соотношение между плотностями соединений и монтажа

Таким образом, увеличение плотности размещения монтажных элементов и линейных размеров плат требует пропорционального увеличения плотности соединений. С другой стороны, плотность соединений определяется плотностью трассировки, т.е. числом проводников п, прокладываемых между отверстиями и коэффициентом использования трасс *, а в МПП - еще и числом сигнальных слоев т:

с

где Т - шаг сквозных отверстий, между которыми трассируется п проводников.

В односторонних печатных платах единственный слой проводящего рисунка используется для размещения монтажного поля, цепей питания и межсхемных соединений. Поэтому на этих платах невозможно удовлетворить противоречивые требования увеличения плотности монтажа и плотности соединений. Частично эти противоречия разрешаются в двусторонних печатных платах. И только применение МПП позволяет обеспечить специализацию слоев. МПП имеют наружные монтажные слои, которых, естественно, не может быть больше двух, тс сигнальных слоев с ортогональным принципом трассировки проводников в преимущественных направлениях А'или Y слои тэ с цепями земли и питания, выполняющие одновременно роль электрических экранов, заземленных по высокой частоте. Экранные слои размещаются между сигнальными, поэтому

Коэффициент использования трасс принимает значения в пределах 0 <з< 1 в зависимости от степени взаимной независимости направлений трассировки соединений. Значения ¦ приближаются к единице с увеличением числа переходных отверстий, создающих возможность обхода пересечений трасс. В МПП особенно эффективны межслойные переходы в шаге трасс двусторонних внутренних слоев со строго ортогональной трассировкой.

Таблица 2.9. Коэффициент использования трассировочного пространства

п

ч>

Внутренние слои без межслоиных переходов

Двусторонние слои

с межслойными переходами в шаге трасс

1

0,6

0,9

2

0,52

0,82

3

0,45

0,80

4

0,38

0,75

В табл. 2.9 даны значения коэффициента з для сигнальных слоев МПП с различным числом трасс проводников птр между сквозными отверстиями. Из этих данных видно, что без межслоиных переходов увеличение плотности трасс не дает пропорционального эффекта.

Дефицит межслойных переходов проявляется в досадном для технологов явлении: первая пара слоев заполнена проводниками на 80%, вторая только на 30%, третья на 7% и четвертая на 2%. Т.е. усилия производства в увеличении плотности трасс и слойности МПП не вознаграждаются соответствующим увеличением плотности межсоединений при дефиците межслойных соединений. Гораздо эффективнее увеличивать количество межслойных соединений.

5. Быстродействие

Производительность, на которую рассчитана система, является ее важным техническим параметром, который следует учитывать при выборе принципа межсоединений. Многие цифровые системы работают на тактовых частотах, приближающихся к 100 МГц, а другие уже давно перешагнули этот порог. Повышение быстродействия систем требует от разработчиков правильного выбора структур межсоединений в печатных платах и материалов, используемых в качестве подложки печатных плат.

5.1 Задержка сигналов

Скорость распространения сигнала обратно пропорциональна квадратному корню диэлектрической проницаемости материала подложки. Время распространения сигнала, так называемая конструктивная задержка, прямо пропорционально длине проводников и должно быть как можно меньше, чтобы оптимально обеспечить электрическую производительность системы. Задержка в линиях связи:

где г - конструктивная задержка времени распространения сигнала на единицу длины, L и С - индуктивность и емкость на единицу длины, тд - задержка на единицу длины при передаче сигналов в вакууме, е - диэлектрическая проницаемость среды, в которой распространяется сигнал, - магнитная проницаемость среды. Поскольку в цепях передачи сигналов используются в большинстве случаев немагнитные материалы, скорость распространения сигналов зависит главным образом от относительной диэлектрической проницаемости, значения которой у современных диэлектриков печатных плат лежат в диапазоне 2,5…6. Следовательно, задержка сигналов в линии может превышать 6 нс/м.

Емкостные нагрузки, создающиеся ответвлением трасс, вносят дополнительные задержки сигналов. Поэтому соединения нескольких приемников сигналов, как правило, выполняют не разветвлениями, а последовательным обходом, чтобы предотвратить это рассогласование.

Использование диэлектриков с улучшенными характеристиками дает незначительный выигрыш в задержке. Поэтому в общем случае конструктивная задержка сигналов зависит от длины сигнальных трасс.

5.2 Погонная емкость

Емкость проводников, отнесенных к единице длины:

Для проводников, располагаемых в одной плоскости:

где В-ширина проводника, см; Н - толщина межслойной изоляции, см; S - расстояние между краями проводников, см.

Если толщина печатной платы составляет больше 10% ширины проводника, необходимо вводить поправку на краевой эффект добавлением к вычисленному значению погонной емкости значение краевой емкости, значение которой может составлять до 20%.

5.3 Волновое сопротивление

Для систем, работающих при частоте выше 25 МГц, межсоединения должны иметь такие характеристики линий передачи, чтобы потери сигналов и искажения были минимальны. Правильный расчет линий передачи требует внимательного учета расстояния между проводниками и экранами и соблюдения точности их размеров, чтобы предотвратить рассогласование линий передач и в, конечном итоге, обеспечить быстродействие системы. Существует два основных типа линий передачи:

открытые линии, когда сигнальная трасса находится над единственным экраном;

закрытые линии, когда сигнальные трассы располагаются между экранами.

И та и другая линии могут быть реализованы только в многослойных структурах, и уже только это определяет необходимость их использования.

Волновое сопротивление линии (Ом) рассчитывается, исходя из следующих выражений:

для открытой линии:

где В-ширина проводника, см; Н - толщина межслойной изоляции, см; Л - толщина проводника, см; кс и кн - коэффициенты, учитывающие особенности конструкции экранов открытых и закрытых линий; q - коэффициент, учитывающий эксцентриситет положения печатного проводника относительно экранных слоев в закрытых линиях.

Задача согласования линий связи решается технологическим обеспечением воспроизведения заданного значения их волнового сопротивления, т.е. нормированием всех дестабилизирующих факторов, свойственных производству печатных плат. По результатам анализа влияния этих факторов можно сделать заключение о приемлемости дисперсий волнового сопротивления печатных проводников, реализуемых в производстве печатных плат, или принять решение о необходимости дополнительного контроля всех или отдельных конструктивных параметров печатных плат, оказывающих наибольшее влияние на разброс волнового сопротивления, если эта величина больше приемлемого допуска. По результатам дисперсионного анализа реального производства можно сделать заключение, что при соблюдении обычных норм контроля за технологическим процессом обеспечивается погрешность воспроизведения волнового сопротивления линий связи в МПП в пределах + 15%, при управлении процессом воспроизводства ширины проводников и толщины межслойной изоляции - 8… 10%.

6. Энергопотребление

Увеличение производительности электронных устройств и интеграции микросхем приводит к соответствующему увеличению энергопотребления. Некоторые микросхемы потребляют до 30 Вт. Такая мощность потребления в сочетании с низким напряжением питания делает узлы и блоки электронных систем чувствительными к, так называемым, перекосам напряжения в пределах одной платы. Это обуславливает задачу обеспечения равномерного распределения питания и заземления в платах за счет низкого сопротивления этих цепей, работающих при напряжениях 5; 3,3; 2,8 В.

6.1 Цепи питания

Очевидно, что цепи питания должны иметь низкоомное сопротивление, чтобы распределение потенциалов было равномерным по всей плоскости платы. В некоторых случаях требуются даже отдельные навесные шины, чтобы избежать заметного падения напряжения питания в схемах с мощным энергопотреблением.

Но кроме низкого сопротивления от цепей питания и заземления требуется еще и низкая индуктивность для ослабления импульсных помех, определяемых скоростью переключения в схемах с высоким быстродействием. В двусторонних платах цепи питания неизбежно имеют большой контур потокосцепления, а значит и большую индуктивность.

Наиболее удачно эти проблемы решаются в МПП, изготавливаемых методом металлизации сквозных отверстий, где есть возможность выделить для цепей земли и питания отдельные слои, играющие одновременно роль электрических экранов, заземленных по высокой частоте. Вместе с тем, экраны, выполненные в виде параллельных металлических плоскостей, имеют хорошую развязывающую емкость и низкую индуктивность за счет ничтожно малой площади контура, сосредоточенного между слоями земли и питания.

6.2 Сопротивление цепей

Расчет сопротивления печатных проводников при проектировании печатных плат требуется в основном для того, чтобы избежать недопустимо большого падения напряжения в сигнальных и потенциальных цепях, которое может приводить к потере мощности сигнала и к неравномерному распределению напряжения питания по рабочему полю платы, перегреву слабых элементов соединений. При тестировании печатных плат омическое сопротивление элементов соединений может служить критерием их качества.

Расчет сопротивления элементов соединений производится, исходя из общеизвестных соотношений. Применительно к плоским проводникам печатных плат и размерностям, используемым в технике печатного монтажа, можно использовать соотношение:

г= 17,5/5/1,

где г - погонное сопротивление, мОм/мм; В-ширина проводника, мм; А - толщина фольги, мкм.

Таблица 2.10 Реальные значения металлической толщины проводников

Масса единицы площади

Номинальная толщина,

Толщина

на внутренних

слоях

(без металлизации).

Толщина на внешних слоях после металлизации.

Унция/ кв. фут

г/ кв. м

мкм

мкм

мкм

0,5 OZ

152,5

17,2

12

45

1 OZ

305

34,3

28

60

2oz

610

68,6

64

100

3 oz

915

103,0

98

130

4 oz

1220

137,0

130

170

Исследования показывают, что в ряде случаев результаты расчетов сопротивлений элементов соединений по их геометрии и стандартным удельным характеристикам материалов не полностью соответствуют реальным значениям. Это объясняется наличием множества побочных факторов. Основными из них являются значительные разбросы геометрических характеристик элементов соединений, отличие удельных сопротивлений химической и гальванической металлизации в отверстиях и на проводниках от известного значения для натуральной металлической меди, Омсм: чистая отожженная медь - 1,72-106, медная фольга - 1,75-106, медное гальванопокрытие - -106, химически осажденная медь - -106. Поэтому поиски точных расчетных соотношений для определения активного сопротивления элементов соединений печатных плат не оправданы. В табл. 2.10 показано, например, как отличается толщина реальных проводников от номинальных значений толщины фольги.

6.3 Токонесущая способность проводников

Для надежной работы необходимо, чтобы нагрев проводников под действием тока не приводил к физико-химическим изменениям, как в элементах соединений, так и в окружающем их диэлектрике. Сами печатные проводники, благодаря своей плоской форме, хорошо отдают тепло и допускают большие плотности тока без каких-либо для них последствий. Поэтому площади поперечного сечения проводников определяются, в первую очередь, необходимостью обеспечить низкое сопротивление цепей. И если это обеспечено, токонесущая способность проводников будет обеспечена с большим запасом. Чаще всего с ограниченной токонесущей способностью проводников приходится считаться в точках ввода питания в плату, откуда большие токи распределяются по соответствующим цепям. Если этих точек мало, и они не распределены по периметру платы, могут возникнуть локальные температурные перегрузки, вызывающие термодеструкцию диэлектрика. С другой стороны, большие сечения проводников в местах токоподвода затрудняют пайку. Поэтому лучше иметь много маломощных вводов, чем один мощный.

О токонесущей способности проводников чаще приходится говорить при тестировании плат когда для диагностики надежности используют нагрузку тестируемых цепей большими токами.

Чтобы учесть все факторы, влияющие на кинетику нагрева проводников током, представим физическую модель, условно показанную на рис. 2.14.

Условно выделенный элемент проводника с массой т и удельной теплоемкостью с имеет в исходном состоянии при температуре окружающей среды Тв сопротивление го. При прохождении через проводник тока / на сопротивлении го выделяется мощность Р. Температура проводника повышается на Т. Условия теплоотдачи проводника определяется тепловым сопротивлением F. Нагрев проводника вызывает дополнительное увеличение сопротивления, соответствующее температурному коэффициенту сопротивления.

Взаимосвязи термодинамического процесса нагрева проводника можно описать системой уравнений:

мощность, выделяемая на сопротивлении проводника R, зависящим от температуры перегрева T относительно первоначальной температуры окружающей среды; T = T - То - перегрев проводника относительно первоначальной температуры окружающей среды То\ T = Q/c - температура проводника, где - количество тепла, накапливаемое в элементе проводника;

P = P - Р - разность между выделяемой P и отводимой Р 0) мощностями, обуславливающая изменение температуры элемента проводника T\ Р = T/F - мощность, отводимая от элемента проводника через тепловое сопротивление F.

Уравнение, связывающее выделяемую мощность с накапливаемой в теплоемкости элемента и отводимой через тепловое сопротивление, можно представить следующим образом:

Решение дифференциального уравнения имеет вид:

где Fm - тепловое сопротивление в установившемся режиме; г - постоянная времени термодинамического процесса нагрева, равная

Начальная скорость нарастания температуры

т.е. в начальной стадии нагрев проводника током - процесс адиабатический, не зависящий от характеристик внешней среды, окружающей проводник. Характер дальнейшего развития процесса нагрева зависит от знака корня уравнения р = PRgFa: при р>0 процесс сводится к установившемуся значению, а изменение температуры во времени

при р<0 температура проводника неограниченно растет, пока не будет выключен ток или не перегорит проводник; при р = 0 процесс нагрева характеризуется линейным во времени возрастанием температуры:

Линейный режим является граничным между устойчивым и неустойчивым режимами нагрева. Поэтому он определяет критическое значение тока:

Если ток не ограничивается во времени и превышает значение /, то происходит разрушение соединения. Процесс остывания проводника при 1 = 0 характеризуется постоянной времени

и определяется выражением:

где AT - температура, на которую был нагрет проводник в момент выключения тока.

Тепловое сопротивление Fw теплоемкость тс связаны с геометрией проводника, характеристикой окружающей его среды и характером процесса нагрева проводника. В установившемся процессе нагрева, когда тепловыделение и теплоотдача уравновешиваются, тепловое сопротивление теплоотдачи связано, в основном, с сопротивлением от поверхности платы в окружающую среду, так как тепловое сопротивление диэлектрика в этой теплопередаче составляет доли градуса.

В переходном режиме тепловое сопротивление и теплоемкость меняются во времени. В начальный момент времени, после включения тока, тепловое сопротивление теплоотвода определяется сопротивлением теплопередачи от нагревающегося проводника в область диэлектрика, находящуюся в непосредственной близости от его поверхности. В этот момент нагревается преимущественно тело элемента проводника, т.е. процесс нагрева близок к адиабатическому. С течением времени нагреваются все большие и большие массы материала вокруг проводника, границы теплоотвода отодвигаются, следовательно, меняются значения теплоемкости C = mc и теплового сопротивления F. Стадии нагрева проводника током показаны на рис. 2.16.

Для удобства расчетов максимальной температуры перегрева можно воспользоваться упрощенным соотношением:

где J - плотность тока. А/мм2; В-ширина проводника, мм; / коэффициент теплопередачи, средние значения которого:

для двусторонних печатных плат и наружных слоев МПП составляет Ш200 А2/;

для проводников внутренних слоев МПП - 250…320А2/.

7. Элементы кондуктивного теплоотвода

Вся энергия, подводимая для питания интегральных микросхем, должна быть эффективно выведена из системы, чтобы обеспечить ее работоспособность в течение длительного времени. Отвод тепла от системы является одной из самых трудных задач при разработке конструкций электронных устройств. В большинстве из них для отвода тепла используют огромные по сравнению с размерами микросхем радиаторы, часто снабженные дополнительным вентилятором, а в некоторых применяют гигантские системы с жидкостным охлаждением. Реально существуют даже системы с погружным охлаждением. И чем меньше по объему электронные устройства, тем большие плотности энергии в них сосредотачиваются и тем сложнее вывести это тепло во внешнюю среду, иначе устройство просто сгорит. Поэтому наряду с электрическим конструированием приходится считаться с проблемами теплового конструирования электронной аппаратуры.

Хотя сами по себе печатные платы не являются источником нагрева, компоненты, смонтированные на них нуждаются в отводе тепла. Конечно, если используется воздушное или погружное охлаждение, печатные платы выполняют пассивную роль. От них требуется лишь устойчивость к воздействию внешней среды, которую несет внутрь аппаратуры воздушный поток или среда погружения. Конструкция печатной платы становится активной в теплопередаче, если в нее введены элементы кондуктивного теплоотвода: сквозные технологические отверстия или навесные металлические шины, на которые устанавливаются теплонагруженные компоненты, теплоотводящие слои с выходом на периферию платы с тепловыми клиньями для теплопередачи на корпус устройства. Тогда платы можно физически изолировать от внешней среды и избежать тем самым ее вредного воздействия на надежность печатных узлов или ослабить защиту плат от внешних воздействий.

8. Себестоимость

Себестоимость конечного продукта стала наиболее важным критерием при разработке любых электронных систем. Независимо оттого, что при разработке следует учитывать все функциональные и эксплуатационные требования, все же определяющим критерием для инженера-разработчика должна оставаться себестоимость, и он должен анализировать все возможные компромиссы в целях достижения наилучшего соотношения цена / качество конечного продукта.

Учет требований процессов производства печатных плат и сборки печатных узлов в процессе разработки изделия может обеспечить снижение расходов на сборку на 35%, а себестоимости печатных плат - на 25%.

Структура прямых расходов на производство печатных плат, определяющая их себестоимость, показана в табл. 2.11. Наиболее большие затраты приходятся на базовые материалы и инструмент. Тем более, что здесь приведены данные, связанные с импортом. Использование импортных поставок удорожает печатные платы на 50…60% относительно их себестоимости за рубежом, но создает устойчивость производства и качества, что всегда больше ценится производителем: меньше издержек на брак при изготовлении и сборке, большие гарантии надежности, возможность своевременного выполнения заказа и др.

Обозначения: ДПП - двухсторонние печатные платы, МПП, МПП и МПП - многослойные печатные платы сквозной металлизации 4-, 6 и 8-слойные, МПП - 8-слойные с 4 слоями послойного наращивания.

Из таблицы можно увидеть, что в первых строчках расходов стоят материалы и инструмент. Трудозатраты, энерго- и водообеспече-ние не занимают большой доли в себестоимости плат, что выгодно отличает отечественное производство от зарубежного. В табл. 2.12 показаны сравнительные характеристики этих статей расхода, чтобы видеть, как может позиционироваться Российская электронная индустрия в международном разделении труда. Из анализа этих данных становится очевидной актуальность организации высококачественного отечественного производства полуфабрикатов, инструмента и материалов для производства печатных плат.


Подобные документы

  • Конструкторско-технологическое обеспечение производства ЭВМ. Характеристики печатных плат, экономические показатели их производства и выбор материалов. Основные виды печатных плат, требования к их качеству. Типы материалов оснований для печатных плат.

    курсовая работа [1,7 M], добавлен 20.12.2013

  • Материалы для изготовления печатных плат (ПП). Изготовление оригиналов и фотошаблонов ПП. Получение заготовок, монтажных и переходных отверстий. Подготовка поверхности, нанесение защитного рельефа и паяльной маски на ПП. Маркировка и испытание ПП.

    курсовая работа [1,2 M], добавлен 26.12.2011

  • Субтрактивный метод как наиболее распространенный для простых и сложных конструкций печатных плат. Схема стандартного субтрактивного (химического) метода. Механическое формирование зазоров (оконтуривание проводников). Нанесение токопроводящих красок.

    реферат [5,6 M], добавлен 01.08.2009

  • Изготовление печатных плат с учетом современной практики печатного монтажа. Метод металлизации сквозных отверстий - сочетание химического метода в изготовлении внутренних слоев и позитивного метода при металлизации отверстий и изготовлении наружных слоев.

    контрольная работа [10,7 M], добавлен 01.08.2009

  • Конструкции, методы и этапы изготовления двусторонних печатных плат (ПП). Механическая обработка в процессах изготовления ПП. Химическая металлизация, получение защитного рельефа. Гальванические процессы, травление меди. Маркировка ПП для идентификации.

    дипломная работа [5,2 M], добавлен 10.12.2011

  • Технологический процесс сборки печатных плат для стабилизатора напряжения вычислительных систем. Характеристики схем и конструктивные особенности изделия, поиск аналогов и выбор оборудования для производства. Контроль монтажа и функциональный контроль.

    курсовая работа [1,3 M], добавлен 03.12.2010

  • Особенности и свойства многослойных печатных плат: достоинства и недостатки. Основные способы получения по методу создания электрических межслойных соединений. Базовые технологические процессы получения МПП, химическая и электрохимическая металлизация.

    курсовая работа [2,8 M], добавлен 01.04.2011

  • Анализ существующих технологических процессов монтажа на поверхность. Общие сведения и методы пайки. Очистка плат после пайки. Контроль печатных плат. Пайка расплавлением дозированного припоя с инфракрасным нагревом. Технология нанесения припойной пасты.

    курсовая работа [4,3 M], добавлен 10.12.2011

  • Комбинированные методы монтажа МПП. Многопроводной монтаж фиксируемыми проводами. Суть многопроводного неупорядоченного монтажа незакрепленными проводами. Стежковый монтаж. Преимущества плат с теплоотводом перед МПП. Тканые коммутационные устройства.

    реферат [505,4 K], добавлен 04.12.2008

  • Принцип действия манипулятора "мышь". Описание технологичности изделия. Характеристика типового технологического процесса монтажа печатных плат с применением SMD-компонентов. Сетевой граф сборочного процесса. Инструменты, необходимые для его обеспечения.

    курсовая работа [1,8 M], добавлен 10.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.