Огнестойкое стекло "Пиран"

Разработка технологической схемы получения органического стекла пониженной горючести с элементами автоматического регулирования процесса. Расчет основных технико-экономических показателей, меры безопасного ведения производства органического стекла.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 20.08.2009
Размер файла 146,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Простое ламинированное стекло включает два листа стекла, соединенные друг с другом промежуточным слоем усиливающего материала - проволока. Промежуточный слой имеет возможность воспринимать ударную нагрузку и удерживать стекло на месте в случае, если оно разбито или треснуло, предотвращая, таким образом, разлет кусочков стекла. С целью повышения жаропрочности и безопасности изделия противостоять ударной нагрузке в стеклообразный продукт вводят усилительную проволочную сетку, состоящую из металлических проволок, соединенных сваркой в точках пересечения. Усилительная проволочная сетка полностью вводится в промежуточный слой.

Изобретение относится к стекольной промышленности и предназначено для использования при создании многослойных птицестойких изделий для объектов авиационной техники и ударопрочных изделий остекления для специальных объектов наземной техники. Повышение ударной прочности при снижении массы изделия достигается тем, что изделие из упрочненных силикатных стекол, содержит наружный, внутренний и тыльный слои, склеенные между собой полиуретанакрилатным материалом, тыльный слой выполнен из упрочненного ионным обменом натрий-кальций силикатного стекла толщиной 3-6 мм, а внутренний слой изготовлен из химически упрочненного стекла.

Изделие содержит стеклоблок из склеенных между собой пластическими материалами силикатных стекол, монопластину из органического стекла и полиуретановый обрамляющий материал толщиной 120 - 180 мкм с выходим на краевую зону тыльной пластины из органического стекла до 10-12 мм. Полиуретановый материал изготовлен на основе сложных олигоэфиров. 1,6 - гексаметилендиизоцианата с использованием катализатора, увеличивающего жизнеспособность полиуретанового материала. Изделие обеспечивает повышение эксплуатационных свойств.

Многослойное изделие содержит тыльную пластину из упрочненного ионным обменом промышленного натрий-кальций-силикатного стекла с прочностью 20-50 кг/мм2 и глубиной сжатого слоя 40-80 мкм, силикатные пластины снабжены защитным покрытием на торцах, в зазоре между краями склеивающей пленки и торцами тыльной и внутренней пластин размещен жгут, а обрамление выполнено из герметика, соединенного с металлической рамкой. Это приводит к повышению прочности изделий при действии механических и термических нагрузок.

Известен способ изготовления органического стекла, включающий полимеризацию чистого метилметакрилата в массе в присутствии инициатора радикального типа и поглотителя электромагнитных волн коротковолновой части ультрафиолетовой области спектра; и деполимеризацию. Полимеризацию осуществляют в две стадии, сначала при температуре 24-40С в течение 3-8 ч, затем при температуре 18-30С до готовности полимера, а после деполимеризации осуществляют термообработку при температуре 145-155С с последующим охлаждением до температуры 40С. При изготовлении ориентированного органического стекла после охлаждения проводят его ориентацию путем плоскостного растяжения листа оргстекла.

В качестве инициатора радикального типа применяют дициклогексил-пероксидикарбонат, дицетилпероксидикарбонат и др. в количестве 0,002-0,04 мас. ч. к метилметакрилату. В качестве поглотителя электромагнитных волн коротковолновой части ультрафиолетовой области спектра применяют фенилсалицилат, 2 - бензотриазол и др. в количестве 0,01-0,4 мас. ч. к метилметакрилату. В состав смеси вводят стеарин в количестве до 0,5 мас. ч. к метилметакрилату.

Получение органического стекла на основе метилметакрилата, включает полимеризацию и / или сополимеризацию метилметакрилата до конверсии 50-98%, с последующей ориентацией, а после ориентации проводят дополнительную полимеризацию до конверсии, близкой к 100%. Это позволяет создать органическое стекло на основе метилметакрилата с улучшенными эксплуатационными свойствами, в частности обладающее более высокой температурой эксплуатации, пониженной усадкой выше температуры стеклования полимера и повышенной ударной вязкостью.

В основе получения многослойного органического стекла на основе метилметакрилата, лежит нанесение на первый слой полимера на основе метилметакрилата хотя бы одного совместимого с первым слоем следующего слоя мономеров и / или полимеров состава иного, чем состав первого слоя. В качестве первого слоя полимера используют слой, полученный полимеризацией и / или сополимеризацией метилметакрилата до конверсии 50-98%, а затем проводят дополнительную полимеризацию в слоях до конверсии, близкой к 100%. Перед нанесением на первый слой хотя бы одного следующего слоя мономеров и / или полимеров производят ориентацию первого слоя. Ориентацию осуществляют вытяжкой до 50%-180% при температуре выше температуры стеклования продукта, подвергаемого вытяжке. Дополнительную полимеризацию осуществляют при 110-170oС или при температуре ниже температуры стеклования продукта, например, фотоинициированием. Ориентацию также осуществляют вытяжкой с предварительным закреплением ориентируемого продукта в зажимах, при этом перед проведением ориентации проводят нагревание части продукта, находящейся в зажимах, до температуры стеклования продукта, с целью проведения дополнительной полимеризации этой части.

В качестве первого слоя полимера может быть использован слой, полученный полимеризацией и / или сополимеризацией метилметакрилата с би- или полифункциональными мономерами. В качестве биплиполифункциональных мономеров используют хотя бы один из мономеров, выбранных из группы, включающей диаллиладипинат, аллилметакрилат, триаллилизоцианурат, аллилметакриловый эфир моноэтиленгликоля, аллилметакриловый эфир диэтиленгликоля, аллилметакриловый эфир триэтиленгликоля, диаллилизофталат, диметакриловый эфир моноэтиленгликоля, диметакриловый эфир триэтиленгликоля, диметакриловый эфир изофталевой кислоты.; из группы, включающей диаллилизофталат, диметакриловый эфир моноэтиленгликоля и аллилметакрилат, диметакриловый эфир изофталевой кислоты.

Существует способ получения органического стекла, включающий заливку исходной мономерной смеси в полимеризационную емкость, содержащую две пластины и размещенный между ними длинномерный Т-образный в сечении уплотнитель расположен по периметру пластин и содержащий перпендикулярно размещенные окантовывающий и разделяющий элементы, причем разделяющий элемент размещен между пластинами, а окантовывающий элемент установлен примыкающим к торцам пластины.

Получение окрашенного огнестойкого органического стекла осуществляется путем полимеризации 5_метилен - 1,3 - диоксолан_4_она или его смеси с винильными мономерами, в массе при температуре 40-150oС в присутствии радикального инициатора, антипирена и красителя; причем краситель и / или пигмент предварительно растворяют или перетирают с антипиреном и полученный раствор или пасту вводят в исходную смесь.

Листового органическое стекло получают в вертикально расположенных формах путем блочной полимеризации метилметакрилата или его смеси с другими мономерами в присутствии радикального инициатора и органических добавок и в условиях теплообмена с теплоносителем. Технологический процесс включает в себя подготовку форм, заливку и вакуумирование исходной смеси, полимеризацию, дополимеризацию, охлаждение и извлечение листов из форм. Полимеризацию проводят при температуре теплоносителя 65-70oС в течение 30-40 мин, а затем при температуре теплоносителя 20-45oС до конверсии мономера 80-85% и дополимеризацию проводят при температуре теплоносителя 75-80oС до конверсии мономера 92-96%. Состав для получения листового органического стекла, включает метилметакрилат, метакриловую кислоту, радикальный инициатор и фенилсалицилат в качестве стабилизатора. В качестве радикального инициатора азодинитрил изомасляной кислоты. Соотношении компонентов следующее, мас.%: Метакриловая кислота - 0,1 - 15, фенилсалицилат - 0,2, азодинитрил изомасляной кислоты - 0,005-0,1, метилметакрилат - остальное.

Получение полимерных продуктов для изготовления органического стекла включает радикальную полимеризацию систем метилметакрилата или его смеси с другими акриловыми мономерами или винилацетатом в присутствии инициатора радикальной полимеризации с образованием систем полимер-мономер, с последующим физико-механическим воздействием и деполимеризацией. В качестве физико-механического воздействия на систему применяют экструдирование, осуществляемое одновременно с деполимеризацией.

Получен прозрачный и теплостойкий материал: высокотермостойкое органическое стекло. Получают его полимеризацией метакрила с метиламином получают полиметакрилметилимид с кольцевыми структурами имида. Для технического применения фирма Rohm имеет два материала типа Pleximid VST-B/50 с теплостойкостью по Вика 150 и 170?С. С увеличением степени имидизации повышается модуль упругости, плотность, вязкость, показатель преломления и водопоглощения. Высокий модуль упругости 4200 МПа делает этот полимер интересным конструкционным материалом. В то же время структура ПММИ обусловливает высокую вязкость расплава, но за счет повышения температуры расплава при хорошей термической стойкости ПММИ вязкость при переработке можно понизить до уровня ПММА.

Предлагаемое органическое стекло на основе СПЛ, полученного из 40-80 % диаллилфталатного мономера, 10-35 % аллилбензоатного мономера, 5-50 % гликольбис мономера, любым методом сополимеризации в присутствии инициаторов. Полученное изобретение применяют для изготовления оптических деталей, обладающих высокими показателем преломления, ударной прочностью, стабильностью размеров, механическими и технологическими свойствами, хорошей окрашиваемостью, большой поверхностной твердостью.

Разработаны композиции для формования прозрачных в толстом слое изделий содержат ароматические ди акрилаты или полиалкиленгликольди акрилаты и в качестве инициаторов фотополимеризации 0,01-1а-дикетонов, имеющих максимум абсорбции лучей длиной 420-500 нм. Также композиции содержат 0,1-0,5% органических пероксидов. При формовании проводят фотополимеризацию под действием лучей видимого света и УФ-лучей в области, ближней к области видимого света.

Разрабатываются новые составы для получения органических стекол, относящихся к классу трудносгораемых. Это обусловило выбор компонентов, содержащих в составе фосфор, галогены и азот, а также способных полимеризоваться в присутствии фотоинициатора. В качестве таких компонентов использовались: имеющий способные к полимеризации ненасыщенные метакриловые группы фосфорсодержащий метилакрилат, P-DMA Fyrol-DMMP и эфиры различных кислот, вводимых в качестве пластификатора полифункционального действия. Полимеризация составов осуществлялось методом УФ-инициирования мономеров между силикатными стеклами. Исследовали поведение применяемых компонентов при воздействии на них повышенных температур с применением метода термогравиметрического анализа.

При исследовании горючести образцов PDMA и многокомпонентного состава определяли кислородный индекс и потери массы при поджигании их на воздухе. Образцы при поджигании на воздухе горение не поддерживают, возникающие потери массы от 19 до 10%, соответственно, связаны с выделением летучих продуктов в процессе термоокислительной деструкцией образцов, КИ возрастает от 24,0 для P-DMA до 31% об. Снижение горючести связано с влиянием P и Cl, содержащихся в составе макромолекул заполимеризованных полимерных композиций на основе P-DMA и Р-DМА+ Fyrol-DMMP + ПХРС. Фосфор, в соответствие с данными ТГА инициирует коксообразование и влияет на физико-химические процессы в конденсированной фазе, а галоген в газовой, за счет разбавления горючих летучих продуктов деструкции, а также связывания радикалов Н, участвующих в процессе горения.

С целью получения УФ-отверждаемых огнестойких смол в работе, метакрилированные фосфаты смешивали в определенных пропорциях с промышлеными эпоксиакрилатами. Огнестойкость и термические свойства к исследовали при горении, определяли предельное значение кислородного индекса и температуры стеклования и термической деструкции. Было установлено, что пик и средняя скорость выделения тепла снижались при добавлении до 17% МАФ. Предельное значение кислородного индекса увеличивалось с увеличением содержания МАФ, а общее выделение тепла снижалось, также как и выделение дыма, потеря массы и температура стеклования благодаря снижению жесткости цепей полимера и плотности поперечных связей отвержденных пленок.

Исследователями было изучено влияние количества и химической структуры Р-, Br- и / или С1_содержащих антипиренов на технологические, физико-химические свойства и горючесть полимеров, полученных отверждением олигоэфирметакрилатов. Содержание Р, Br и С1 в Ан варьировали соответственно в пределах 6,6-13,3, 25,6-51 и 15,1-30,4. влияние химической структуры Ан на горючесть полимеров определяли методом «огневой трубы» и по величине кислородного индекса. Величину кислородного индекса повысили до 29% и снизили потери массы при испытании методом «огневой трубы» до 5-8%. Полимеризационные Ан не оказывают существенного пластифицирующего влияния и мало влияют на физико-механические свойства.

Изобретение применяется в приборо-, самолето-, ракетостроении, строительстве и т.д., где требуется оптически прозрачный полимерный материал с высокой огнестойкостью и низким дымовыделением. Композиция включает поликарбонат или полиэфиркарбонат и 0,005-1,0 мас. ч. соли щелочного или щелочно-земельного металла перфтороксиалкансульфокислоты общей формулы: MeSO3-CF2-CF2-O - R-O - CF2 - - CF3, где R=-CF2 - CF, R=F, CF3; Мещелочной или щелочноземельный; n=0-4. Композиция также может содержать целевые добавки в количестве до 0,5 мас. ч. на 100 мас. ч. полимера. Соль вводят в композицию в суспензии полимера при его выделении из раствора, после чего суспензию обрабатывают на распылительной сушке и поликарбонат гранулируют или готовят концентрат сухим смешиванием соли и порошка полимера с последующим гранулированием.

Разработан состав для получения оргстекла, который содержит 100 мономерной смеси метилметакрилата и метакриловой кислоты, 0,01-1 антиоксиданта фенольного типа, 0,05-3 органической гидроперекиси, 0,03-1 замещенной тиомочевины. Состав может дополнительно содержать УФ-стабилизаторов в количестве 0,1-2 на 100 мономерной смеси, УФ-абсорбер в количестве 0,005-0,5 на 100 мономерной смеси, а также сшивающий агент - полифункциональный акриловый эфир в количестве 0,1-15 на 100 мономерной смеси.

Листовое органическое стекло применяется для нейтральных светофильтров. Его получают путем полимеризации в массе эфиров метакриловой кислоты в присутствии УФ-абсорбера, инициатора радикальной полимеризации и светопоглощающей добавки, включающую форполимеризацию мономера и последующую деполимеризацию смеси в плоскопараллельной форме. В качестве эфиров метакриловой кислоты используют метилметакрилат или смесь метилметакрилата с акриловой кислотой или их эфирами, а в качестве светопоглощающей добавки используют продукт разложения метана в плазме высоковольтного разряда атмосферного давления с насыпной плотностью 0,65-0,85 г./см3 и удельным объемом пор 0,4-0,5 см/см3 в количестве 0,001-0,01 на 100 мономера. Добавку смешивают с предварительно полученным форполимером, воздействуют на полученную смесь ультразвуком и затем полимеризуют её в плоскопараллельной форме до полной конверсии. Изобретение позволяет улучшить оптические характеристики листового стекла за счет более равномерного светопропускания стекла в видимой части спектра.

Разработана композиция, обладающая хорошей прозрачностью, атмосферостойкостью, повышенными механическими свойствами и огнестойкость. В её состав входит: СПЛ, состоящий из 40-88 метилметакрилата, 1-15а-метилстирола, 5-15 метакриловой кислоты; 3-40 галогенсодержащего фосфата и 0,1-8 кислого алкилфосфата.

Для понижения горючести в прозрачные полимеры вводят 10-40% полигалогенированного триметилфенилиндана, содержащего 3-9 атомов брома или брома и хлора. Полученная композиция имеет класс горючести на образцах толщиной 3,2 и 1,6 мм v_0. КМ сохраняет прозрачность вплоть до содержания 40% ПММА и 15% ПС и имеют класс горючести v_2.

В работе термической и радиационной полимеризацией был получен ПММА, модифицированный ионами металлов редкоземельных элементов. В результате исследований было установлено, что термическая устойчивость материалов повышается на 10-15?С в присутствии модификаторов.

Исследована полимеризация метилметакрилата в присутствии Р-Н-кислот, а также этилен-бис-тио а. Выяснено, что участие фосфора в инициировании полимеризации позволяет вводить его фрагменты в полимерную молекулу, что сказывается на термостабильности полимера. При инициировании полимеризации ДАК в присутствии исследованных в данной работе соединений происходит образование более термостабильного ПММА.

Фотополимеризация метилметакрилата в присутствии ДАК и 4_азидобензола приводит к получению полимера с повышенной термоокислительной стабильностью.

Изучены процессы деструкции ПММА, содержащего различные соединения фосфора, и связанные с этим процессом величины скорости газовыделения и температуры поверхностного слоя полимеров в зависимости от содержания в них фосфора. Показано ингибирующее действие фосфора на процесс высокотемпературного пиролиза ПММА, что выражается в снижении скорости газовыделения с введением фосфора при реализации на поверхности полимеров одинаковых температурных режимов.

Изучена зависимость молекулярно-массовых характеристик и термостойкости ПММА от содержания ферроцена в полимеризующейся системе. Обнаружено, что влияние ферроцена на термостойкость ПММА определяется природой применяемого инициатора. Температура начала разложения ПММА, полученного в присутствии пероксида бензоила, с ростом концентрации ферроцена увеличивается.

В работе исследованы однородность, светостойкость, термостойкость, радиационная стойкость и антистатические свойства полиметилметакрилата, синтезированного в присутствии сульфокидных комплексов металлов, полученные в присутствии добавок оптически однородное листовое и блочное органические стекла имеют физико-механические характеристики, не уступающие стандартным требованиям для соответствующих стекол. термостойкость полученных стекол увеличивается на 20-50?С.

Был синтезирован новый полимерный антипирен на основе третичного фосфина. Паратрисфосфаталлилтрифенилфосфонийгалогениды были синтезированы взаимодействием трифенилфосфина с аллилгалогенидом в среде инертного растворителя, дальнейшим фосфорилированием катализаторами Фриделя-Крафтса. Синтезированный продукт очищали перекристаллизацией. Введение его небольшого количества в состав ПММА, ЭД_20, АВС-пластики - заметно увеличивается значение кислородного индекса. Кроме того, было выявлено, что одновременно с понижением горючести снижается дымообразование при горении. Также установлено, что ингибирование процесса горения полимеров обусловлено проявлением огнезащитных характеристик в основном в газовой фазе, и возможность синтеза и радикальной полимеризации нового аллилфосфониевого мономера с высокими огнезащитными характеристиками.

В работе исследовано влияние природы антипирена на водостойкость образцов ПММА, модифицированных высокомолекулярными и низкомолекулярными антипиренами. Антипирены вводили в состав промышленного полимера в количестве от 0,5 до 3 вес.%. Анализ результатов показал, что при модифицировании полимерным антипиреном ПММА достигается повышение водостойкости промышленного полимера, за счет повышения плотности упаковки надмолекулярной структуры макромолекул, а также локализацией дефектных участков, который отсутствует в случае применения низкомолекулярных антипиренов.

Исследования авторов направлены на снижение горючести промотированием обугливания поверхности изделий из полимеров. Образования обугленной корки при горении снижает количество летучих и горючих продуктов пиролиза, раздувающих пламя в газовой фазе. Корка также препятствует подводу тепловой энергии полимеру, является барьером передвижения массы и разложения путем химических реакций. Физическая структура корки играет важную роль. Толстый, пористый, обугленный слой оказывает более сильное сопротивление горению, чем тонкий и хрупкий процесс обугливания появляется при температуре выше температуры переработки полимера и ниже, или при температуре, когда происходит быстрая газификация полимера. Утверждают, что силикагель в комбинации с карбонатом калия является эффективным антипиреном для ПП, ПА_6.6, ПММА, ПВС и в меньшей степени для ПС и СПЛ стирола и акрилонитрила. С таким антипиреном при горении полимеров мало выделяется дыма и угарного газа, а антипирен действует в конденсационной, а не в газовой фазе, при пониженной скорости массопотерь.

Существует установка для изготовления многослойного стекла, содержащая разъемный в горизонтальной плоскости корпус, нижняя половина которого подвижна; вакуум- и пневмопроводы, систему обогрева. Вакуумная камера снабжена пневмокамерами, обращенными внутрь стенки, которые имеют вид эластичных диафрагм. Разъём половин вакуумной камеры имеет уплотнение, а нагреватели для поддержания температуры пакетов смонтированы в корпусе половин вакуумной камеры. Недостатком этого устройства является низкая его надежность, обусловленная повышенными требованиями к герметичности. Наличие сдвига нижней половины камеры значительно усложняет конструкцию, учитывая, что вес сдвигаемой половины очень значителен. Кроме того, отсутствие в устройстве средств загрузки пакетов стекла и их выгрузки ведет к необходимости использования ручного труда. Повышение надежности реализуется тем, что в устройстве для изготовления многослойного стекла, содержащем корпус, герметичные дверки, вакуум- и пневмоприводы, диафрагмы и средства для загрузки и выгрузки пакетов, корпус выполнен из двух фасонных плит по конфигурации стекла, образующих проходную щель в виде вакуум-камеры, снабженную снизу по краям двумя впадинами, причём герметичные дверки снабжены фигурными выступами, повторяющими конфигурацию проходной щели, закреплены на шарнирах, а средства для загрузки и выгрузки пакетов имеют вид двух штанг, установленных в эксцентричных втулках с возможностью совместного поворота и одновременного передвижения по впадинам вакуум-камеры. В устройстве для изготовления многослойного стекла поверхности фасонных плит обрезинены и имеют вид диафрагм, что дает возможность осуществитть прессование при подаче в зазор между плитами и резиной высокого давления и возможность плотного прилегания к плитам при образовании в зазорах вакуума.

Способ изготовления многослойных стеклоизделий, основанный на формировании пакета из необходимого количества листов силикатного стекла с прослойками между ними из клеящей пленки. Сформированный таким образом пакет устанавливают в индивидуальный резиновый мешок, из которого осуществляют отсос газов, а следовательно, и из пакета. Затем мешок с пакетом устанавливают в автоклав, например водяной для нагрева и опрессовки.

С целью повышения качества стеклоизделий, снижения трудоемкости их изготовления и упрощения конструкции при повышении качества изготавливаемых стеклоизделий предложено осуществлять вакуумирование в вакуумной камере с эластичными прессами и нагревательными элементами, с одновременным отсосом газов из этой камеры и эластичных прессов до давления 5•10-3 Па и при нагреве, а также тем, что оно снабжено платформой с установленными на ней пуансоном и матрицей, между которыми в свою очередь установлены узел для опрессовки пакета и узел для его нагрева, автоклав выполнен в виде вакуумной камеры с подставками из ячеистого материала для установки платформы между ними, а эластичные оболочки выполнены с нагревательными элементами.

Изобретение относится к технике изготовления изделий остекления, склеенных с применением жидких композиций, фотополимеризующихся в процессе отверждения. Сущность изобретения в том сборку стеклопакета ведут, устанавливая на первое стекло калибры, определяющие внутренний зазор, затем к первому стеклу прикладывают второе стекло и обклеивают торец стеклопакета липкой пленкой, одновременно вынимая калибры из полости стеклопакета и фиксируя зазор внешними опорами, после чего в собранный стеклопакет подают фотоотверждаемую композицию таким образом, что по мере заполнения стеклопакета он погружается в жидкость так, чтобы линия заполнения стеклопакета совпадала с линией уровня жидкости в технологической ванне, а после заполнения стеклопакета производят фотоотверждение в технологической ванне. В качестве жидкости для технологической ванны используют воду, глицерин, этиленгликоль, полиоксиэтиленгликоли, полметилсилоксаны. В качестве липкой пленки используют липкие пленки на основе полиэтилена, лавсана, полипропилена, поливинилбутираля или поливинилхлорида.

Анализ литературы показал, что большинство разработанных полимерных составов для органического стекла являются пожароопасными и в настоящее время в мировой практике отсутствует промышленное производство огнестойкого оргстекла пониженной горючести. И при оценке вышеизложенной информации прослеживается только тенденция в области разработок составов для получения органического стекла пониженной горючести. Исходя из этого, в современных условиях основными направлениями по созданию огнестойких полимеров и полимерных композиций можно считать следующие:

1) Полимерные композиционные материалы, содержащие в качестве замедлителей горения фосфор и его соединения;

2) Полимерные композиции, содержащие традиционные неорганические замедлители горения;

3) Синтез огнестойких высокомолекулярных соединений и химическое модифицирование как способы повышения огнестойкости полимеров.

Однако наиболее перспективным является первое направление, на котором основываются исследования, представленные в данном дипломном проекте.

Задачи патентных исследований: исследование тенденций развития производства органического стекла пониженной горючести. Целью исследований является изучение современных направлений снижения горючести органического стекла, поиск новых составов и технологий его получения.

Краткое обоснование регламента поиска на этапе выбора направления исследования по теме «Органическое стекло пониженной горючести».

По результатам предварительно проведенного поиска по реферативному изданию «Химия. Технология полимерных материалов», «Изобретения. Полезные модели» и при использовании Интернет выявлено, что ведущими странами в разработке оргстекла пониженной горючести является Российская Федерация, Франция, Германия. Эти страны выбраны в качестве стран поиска.

Глубина поиска по источникам патентной и научно-технической информации принята 20 лет исходя из потребностей для решения поставленных задач. Начало поиска 01.01.06 г. Поиск проводится по фондам ЭТИ СГТУ. Поиск проведен по следующим материалам табл. 1.3:

Таблица 1.3. Поиск патентной и научно-технической документации

Предмет поиска

Страны поиска

Классификационные индекса

Наименование источников информации, по которым проводился поиск

Научно-техническая документация

Патентная документация

1) Способы получения органического стекла

2) составы органического стекла пониженной

горючести

Российская Федерация, Франция, Германия

МПК6 В29D 7/00;

МПК6 C08G 65/08;

МПК6 С08K5/03, 5/42;

МПК6 С08L 69/00;

МПК7 В29С 39/02;

МПК7 В32В 27/30;

МПК7 С08А 265/06;

МПК7 С08F 2/02, 2/44, 2/56,20/14, 20/18, 120/18, 220/14, 222/20

МПК7 C08J 5/18;

РЖ. ВИНИТИ «ХИМИЯ.

19Т. Технология полимерных материалов».

С №1,1998 - 2,2006

Бюллетень «Изобретения. Полезные модели». С 1,2001 г. по 20,2006 г.

WWW.fips.ru

с 1995 г.

по 2006 г.

Патентная и научно-техническая документация, отобранная для последующего анализа.

А.с. 687818 СССР, МПК6 C08F220/14. Способ получения органического стекла / заявители Радбиль Т.И., Фомин В.А., Этлис В.С., Михалев Н.А., Гладышев Ю.И., Сорокина Г.Н., Штаркман Б.П. - №2543597/05; заявл. 15.11.77; опубл. 10.10.95 // WWW.fips.ru

Способ получения органического стекла путем полимеризации в массе форполимера метиметакрилата в присутствии инициатора радикального типа, отличающийся тем, что с целью интенсификации и обеспечения постоянной скорости процесса и снижения хрупкости стекла, в качестве инициатора используют соединение общей формулы

ROCOOCOR

¦ ¦

C C, где R=C6H5CH2-

В количестве 0,25-0,65 мас. ч на 100 мас. ч. форполимера.

Способ получения огнестойкого органического стекла путем полимеризации 5_метилен - 1,3 - диоксолан_4_она или его смеси с винильными мономерами, в массе при температуре 40-150oС в присутствии радикального инициатора и антипирена, отличающийся тем, что, с целью получения огнестойкого окрашенного органического стекла, краситель и / или пигмент предварительно растворяют или перетирают с антипиреном и полученный раствор или пасту вводят в исходную смесь.

Использование: для получения изделий экструзией, выдувным формованием или литьем под давлением, применяемых в приборо-, самолето-, ракетостроении, строительстве и т.д., где требуется оптически прозрачный полимерный материал с высокой огнестойкостью и низким дымовыделением. Сущность: композиция включает поликарбонат или полиэфиркарбонат и 0,005-1,0 мас. ч. соли щелочного или щелочно-земельного металла перфтороксиалкансульфокислоты общей формулы: MeSO3-CF2-CF2-O - R-O - CF2 - - CF3, где R=-CF2 - CF, R=F, CF3; Мещелочной или щелочноземельный; n=0-4. Композиция может содержать целевые добавки в количестве до 0,5 мас. ч. на 100 мас. ч. полимера. Соль вводят в композицию в суспензии полимера при его выделении из раствора, после чего суспензию обрабатывают на распылительной сушке и поликарбонат гранулируют или готовят концентрат сухим смешиванием соли и порошка полимера с последующим гранулированием.

1. Способ получения органического стекла, включающий заливку исходной мономерной смеси в полимеризационную емкость, содержащую две пластины и размещенный между ними длинномерный уплотнитель, отличающийся тем, что исходную мономерную смесь заливают в полимеризационную емкость, включающую в качестве уплотнителя Т-образный в сечении уплотнитель, расположенный по периметру пластин и содержащий перпендикулярно размещенные окантовывающий и разделяющий элементы, причем разделяющий элемент размещен между пластинами, а окантовывающий элемент установлен примыкающим к торцам пластин.

2. Используют уплотнитель, содержащий разделяющий элемент, выполненный в форме сплошной плоской ленты или бруска. Свободный торец разделяющего элемента уплотнителя содержит по крайней мере две части, отогнутые по разные стороны от плоскости уплотнительного элемента. Уплотнитель может быть выполнен из гибкого материала, полимерного материала или из сополимера этилена с винилацетатом или поливинилхлорида.

3. Устройство для осуществления способа получения органического стекла, включающее две пластины и размещенный между пластинами длинномерный уплотнитель, отличающееся тем, что уплотнитель выполнен Т-образным в сечении, содержит перпендикулярно расположенные окантовывающий и разделяющий элементы и расположен по периметру пластин, причем разделяющий элемент размещен между пластинами, а окантовывающий элемент установлен примыкающим к торцам пластин. Также устройство может содержать разделяющий элемент, выполненный в виде сплошной плоской ленты или бруска. Окантовывающий элемент может быть выполнен разрезанным в местах его изгибов. Уплотнитель выполнен длинномерным и имеет Т-образную в сечении форму, содержит перпендикулярно расположенные окантовывающий и разделяющий элементы.

Через превращение полимеризата метакрила с метиламином получают полиметакрилметилимид с кольцевыми структурами имида. Для технического применения фирма Rohm имеет два материала типа Pleximid VST-B/50 с теплостойкостью по Вика 150 и 170?С. С увеличением степени имидизации повышается модуль упругости, плотность, вязкость, показатель преломления и водопоглощения. Высокий модуль упругости 4200 МПа делает этот полимер интересным конструкционным материалом. В то же время структура ПММИ обусловливает высокую вязкость расплава, но за счет повышения температуры расплава при хорошей термической стойкости ПММИ вязкость при переработке можно понизить до уровня ПММА.

Способ получения листового органического стекла в вертикально расположенных формах путем блочной полимеризации метилметакрилата или его смеси с другими мономерами в присутствии радикального инициатора и органических добавок и в условиях теплообмена с теплоносителем, включающий подготовку форм, заливку и вакуумирование исходной смеси, полимеризацию, дополимеризацию, охлаждение и извлечение листов из форм, отличается тем, что полимеризацию проводят при температуре теплоносителя 65-70oС в течение 30-40 мин, а затем при температуре теплоносителя 20-45oС до конверсии мономера 80-85% и дополимеризацию проводят при температуре теплоносителя 75-80oС до конверсии мономера 92-96%. Состав для получения листового органического стекла, включающий метилметакрилат, метакриловую кислоту, радикальный инициатор и фенилсалицилат в качестве стабилизатора, отличающийся тем, что он содержит в качестве радикального инициатора азодинитрил изомасляной кислоты при следующем соотношении компонентов, мас.%: Метакриловая кислота - 0,1-15, фенилсалицилат - 0,2, азодинитрил изомасляной кислоты - 0,005-0,1, метилметакрилат - остальное. Вертикально расположенные формы содержат блок, состоящий из теплопроводящих плит с каналами для прохода теплоносителя и укрепленных на них формующих листов, уплотняющих прокладок и запирающих средств. Расположенные над блоком горизонтальные направляющие и способные перемещаться вдоль них ролики, связанные с охватывающими плиты рамами, систему нагрева и охлаждения с трубопроводами и насосами, вакуумную систему отличающется тем, что рамы, охватывающие плиты, выполнены в виде скоб, концы которых шарнирно связаны с боковыми торцами плит в их средней части.

В прозрачные полимеры вводят 10-40% полигалогенированного триметилфенилиндана, содержащего 3-9 атомов брома или брома и хлора. Полученная композиция имеет класс горючести на образцах толщиной 3,2 и 1,6 мм v_0. КМ сохраняет прозрачность вплоть до содержания 40% ПММА и 15% ПС и имеют класс горючести v_2.

1. Способ получения многослойного органического стекла на основе метилметакрилата, включающий нанесение на первый слой полимера на основе метилметакрилата хотя бы одного совместимого с первым слоем следующего слоя мономеров и / или полимеров состава иного, чем состав первого слоя, отличающийся тем, что в качестве первого слоя полимера используют слой, полученный полимеризацией и / или сополимеризацией метилметакрилата до конверсии 50%-98%, а затем проводят дополнительную полимеризацию в слоях до конверсии, близкой к 100%.

2. Способ по п. 1, отличающийся тем, что перед нанесением на первый слой хотя бы одного следующего слоя мономеров и / или полимеров производят ориентацию первого слоя. Ориентацию осуществляют вытяжкой до 50%-180% при температуре выше температуры стеклования продукта, подвергаемого вытяжке. Дополнительную полимеризацию осуществляют при 110-170oС или при температуре ниже температуры стеклования продукта, например, фотоинициированием. Ориентацию также осуществляют вытяжкой с предварительным закреплением ориентируемого продукта в зажимах, при этом перед проведением ориентации проводят нагревание части продукта, находящейся в зажимах, до температуры стеклования продукта, с целью проведения дополнительной полимеризации этой части.

3. Способ по п. 1, отличающийся тем, что в качестве первого слоя полимера используют слой, полученный полимеризацией и / или сополимеризацией метилметакрилата с би- или полифункциональными мономерами. В качестве биплиполифункциональных мономеров используют хотя бы один из мономеров, выбранных из группы, включающей диаллиладипинат, аллилметакрилат, триаллилизоцианурат, аллилметакриловый эфир моноэтиленгликоля, аллилметакриловый эфир диэтиленгликоля, аллилметакриловый эфир триэтиленгликоля, диаллилизофталат, диметакриловый эфир моноэтиленгликоля, диметакриловый эфир триэтиленгликоля, диметакриловый эфир изофталевой кислоты.; из группы, включающей диаллилизофталат, диметакриловый эфир моноэтиленгликоля и аллилметакрилат, диметакриловый эфир изофталевой кислоты.

1. Способ изготовления органического стекла, включающий полимеризацию чистого метилметакрилата в массе в присутствии инициатора радикального типа и деполимеризацию, отличающийся тем, что полимеризацию проводят в присутствии поглотителя электромагнитных волн коротковолновой части ультрафиолетовой области спектра в две стадии, сначала при температуре 24-40С в течение 3-8 ч, затем при температуре 18-30С до готовности полимера, а после деполимеризации осуществляют термообработку при температуре 145-155С с последующим охлаждением до температуры 40С.

2. Способ изготовления ориентированного органического стекла, включающий полимеризацию чистого метилметакрилата в массе в присутствии инициатора радикального типа и деполимеризацию, отличающийся тем, что полимеризацию проводят в присутствии поглотителя электромагнитных волн коротковолновой части ультрафиолетовой области спектра, а после дополимеризации осуществляют термообработку при температуре 145-155С с последующим охлаждением до температуры 40С и последующую ориентацию путем плоскостного растяжения листа оргстекла.

3. В качестве инициатора радикального типа применяют дициклогексил-пероксидикарбонат, дицетилпероксидикарбонат и др. в количестве 0,002-0,04 мас. ч. к метилметакрилату. В качестве поглотителя электромагнитных волн коротковолновой части ультрафиолетовой области спектра применяют фенилсалицилат, 2 - бензотриазол и др. в количестве 0,01-0,4 мас. ч. к метилметакрилату. В состав смеси вводят стеарин в количестве до 0,5 мас. ч. к метилметакрилату.

4. Способ по любому из пп. 1-4, отличающийся тем, что деполимеризацию проводят при температуре 120-125С в течение 3-10 ч.

Способ получения органического стекла на основе метилметакрилата, включающий полимеризацию и / или сополимеризацию метилметакрилата до определенной конверсии с последующей ориентацией. Согласно изобретению полимеризацию и / или сополимеризацию метилметакрилата осуществляют до конверсии 50-98%, а после ориентации проводят дополнительную полимеризацию до конверсии, близкой к 100%. Это позволяет создать органическое стекло на основе метилметакрилата с улучшенными эксплуатационными свойствами, в частности обладающее более высокой температурой эксплуатации, пониженной усадкой выше температуры стеклования полимера и повышенной ударной вязкостью.

Исследовано влияние на снижение горючести органических стекол фосфор-, азото-, хлорсодержащих органических соединений. В качестве Р и С1_содержащих соединений использованы фосфорсодержащие диметилакрилаты, эфиры различных кислот.

Композиции для формования прозрачных в толстом слое изделий содержат ароматические ди акрилаты или полиалкиленгликольди акрилаты и в качестве инициаторов фотополимеризации 0,01-1а-дикетонов, имеющих максимум абсорбции лучей длиной 420-500 нм. Также композиции содержат 0,1-0,5% органических пероксидов. При формовании проводят фотополимеризацию под действием лучей видимого света и УФ-лучей в области, ближней к области видимого света.

Способ получения листового органического стекла для нейтральных светофильтров путем полимеризации в массе эфиров метакриловой кислоты в присутствии УФ-абсорбера, инициатора радикальной полимеризации и светопоглощающей добавки, включающую форполимеризацию мономера и последующую деполимеризацию смеси в плоскопараллельной форме. В качестве эфиров метакриловой кислоты используют метилметакрилат или смесь метилметакрилата с акриловой кислотой или их эфирами, а в качестве светопоглощающей добавки используют продукт разложения метана в плазме высоковольтного разряда атмосферного давления с насыпной плотностью 0,65-0,85 г./см3 и удельным объемом пор 0,4-0,5 см/см3 в количестве 0,001-0,01 на 100 мономера. Добавку смешивают с предварительно полученным форполимером, воздействуют на полученную смесь ультразвуком и затем полимеризуют её в плоскопараллельной форме до полной конверсии. Изобретение позволяет улучшить оптические характеристики листового стекла за счет более равномерного светопропускания стекла в видимой части спектра.

Состав содержит 100 мономерной смеси метилметакрилата и метакриловой кислоты, 0,01-1 антиоксиданта фенольного типа, 0,05-3 органической гидроперекиси, 0,03-1 замещенной тиомочевины. Состав может дополнительно содержать УФ-стабилизаторов в количестве 0,1-2 на 100 мономерной смеси, УФ-абсорбер в количестве 0,005-0,5 на 100 мономерной смеси, а также сшивающий агент - полифункциональный акриловый эфир в количестве 0,1-15 на 100 мономерной смеси.

Способ получения полимерных продуктов для изготовления органического стекла включает радикальную полимеризацию систем метилметакрилата или его смеси с другими акриловыми мономерами или винилацетатом в присутствии инициатора радикальной полимеризации с образованием систем полимер-мономер, с последующим физико-механическим воздействием и деполимеризацией. В качестве физико-механического воздействия на систему применяют экструдирование, осуществляемое одновременно с деполимеризацией.

Анализ патентной и научно-технической документации показал наличие небольшого количества данных, посвященных проблеме снижения горючести органического стекла. Получение органического стекла пониженной горючести это длительный и трудоемкий процесс, который осуществляется путем блочной полимеризации в присутствии радикального инициатора. Полимеризация может быть как термической, так и под действием УФ-лучей. В заявке 2850658 органическое стекло предлагают получать УФ-полимеризацией. В заявке 0964027 и статье Носковой А.Л. огнезащитный эффект органического стекла достигается при использовании галоген- и фосфорсодержащих соединений. Поэтому в качестве исходных компонентов для состава органического стекла пониженной горючести я предлагаю использовать ММА, содержащий фосфор и галогенсодержащие антипирены, а для интенсификации процесса полимеризации применять фотоинициатор; при УФ облучении. Получаемое органическое стекло может быть использовано главным образом в строительстве и транспорте в качестве негорючих, прозрачных перегородок.

1.1.3 Цели и задачи работы и объекты исследования

Цель работы: разработка полимерных составов для органических стекол пониженной горючести.

Задачи исследования:

1. Выбрать компоненты, обеспечивающие создание органических стекол пониженной горючести;

2. Изучить свойства компонентов и взаимодействие их в композиции;

3. Выбрать соотношение компонентов и параметров полимеризации;

4. Оценить свойства разработанных органических стекол.

Объекты исследования

Глицидилметакрилат

CH3

¦

CH2 - CHCH2O C - C= CH2

\ / ¦

O O

- горючая бесцветная жидкость, легко растворимая в большинстве органических растворителей, растворимость в воде 2,75%, малолетучая жидкость. ММ = 142,16; температура плавления = -65°C; теплота сгорания = 3710 кДж/моль; температура вспышки = 88°C; температура воспламенения = 370°C; вязкость = 2,75 мПа*с; плотность при 20°C - 1,0726 г/см3; показатель преломления - 1,4505.

Три Производитель ОАО «Химпром» г. Новочебоксарск

3 P=O

Содержит Cl - 36,3 - 37,5% масс. P - 10,3 - 11,3% масс.; массовая доля воды не более 0,07%; кислотное число не более 0,05,

Применяется в качестве пластификатора и замедлителя горения в производстве полимерных материалов. Физические свойства: бесцветная жидкость растворимая в воде, Ткип = 106-108°C; плотность 1,420-1,433 г./см3 при температуре t=20°С; вязкость динамическая при 25°C = 31-36 мПА.с; ПДКр.з.=10 мг/м3. Класс опасности - III.

Фосфорная кислота; удельная электропроводность 0,078 ом-1см-1; вязкость 47 спз.

Фотоинициатор -2,2 диметилокси_2 фенилацетофенол, производитель фирма Ciba

Гексаметиловый эфир гексаметилолмеламина - - циклическое азотсодержащее соединение, азота 15-18%, бесцветная, прозрачная легкоподвижная жидкость, рН - 7,5-8,5

Н3СОН2С N СН2ОСН3

N - С С - N

Н3СОН2С СН2ОСН3

N N

C

Н3СН2СОН2С - N - СН2ОСН2ОСН3

1.1.4 Методы и методики исследования

Испытание на растяжение

При испытании по ГОСТ 11262-80 проводят растяжение испытуемого образца с установленной скоростью деформирования, при которой определяют следующие показатели:

1. Предел текучести при растяжении ?рт. Для определения ?рт растягивающую нагрузку Fрт относят к площади поперечного сечения образца Ао: ?рт = Fрт о

2. Прочность при разрыве или разрушающее напряжение при растяжении ?рр, т.е. отношение нагрузки Fрр, при которой разрушился образец к площади поперечного сечения образца Ао.

3. Прочность при растяжении ?рм - отношение максимальной нагрузки Fрм, которую выдерживает образец при растяжении к площади поперечного сечения Ао.

4. Относительное удлинение при максимальной нагрузке ?рт:

?рт = *100%,

где ?lот - приращение расчётной длины образца в момент достижения предела текучести, мм; lо - начальная длина образца, мм

5. Относительное удлинение при разрыве ?рр,

?рр =*100%,

где ?lор - приращение расчетной длины образца в момент разрыва.

Определение степени отверждения

Навеска мелко измельченного материала в количестве 1 г заливается 20 мл ацетона и экстрагируется в течение 24 часов. Затем ацетон сливается, материал высушивается. Сухой остаток взвешивается с точностью до 0,0001 г. Изменение массы рассчитывается по формуле:

где mн - начальная масса навески, г; mк - масса навески материала после экстрагирования и сушки, г.

Степень отверждения: Х = 100 - ?m

Определение теплостойкости по способу Вика

Сущность способа по ГОСТ 15088-83 состоит в определении температуры, при которой наконечник прибора, имеющий цилиндрическую форму, вдавливается в образец на глубину 1 мм под действием постоянной нагрузки.

Для испытания применяют образцы толщиной не менее 3 мм. Образцы с меньшей толщиной складывают вместе для достижения указанной толщины, причем верхняя пластинка, соприкасающаяся с наконечником прибора, должна быть не тоньше 1,5 мм.

Испытания производят на приборе Вика. Образец устанавливают в приборе так, чтобы отшлифованная плоскость наконечника находилась в центре образца и соприкасалась с ним. После этого дают нагрузку на образец и включают обогрев прибора. Температура в термошкафу перед испытанием должна быть 20±2?С. В термошкафу при помощи терморегулирующего устройства обеспечивается постоянное повышение температуры со скоростью 50?С в 1 ч. Температура контролируется двумя термометрами, установленными в приборе.

Температура, при которой наконечник вдавится в образец на глубину 1 мм, является показателем теплостойкости материала по Вика.

Прибор снабжен звуковой сигнализацией, которая автоматически включается, как только наконечник вдавится в образец на заданную глубину. Испытания проводят на трех образцах, и за результат принимают среднее арифметическое этих определений.

Определение потери массы образца при поджигании на воздухе

Метод «Огневая труба» является экспресс-методом для определения группы твердых горючих материалов. Его проводят в соответствии с ГОСТ 21793-89. Установка состоит из камеры горения, держателя образца, газовой горелки диаметром 7 мм, смотрового зеркала диаметром 50 мм, подвижно укрепленного на штативе. Камера горения представляет собой стальную трубу диаметром 50 мм; длиной 165 мм; толщиной стенки 0,5 мм, которая вертикально закрепляется на штативе.

Для испытаний изготавливают шесть образцов шириной 35 мм, длиной 150 мм и фактической толщиной, не превышающей 10 мм. Предварительно взвешенные образцы подвешивают вертикально в центре трубы таким образом, чтобы его конец выступал на 5 мм и находился на 10 мм выше горелки. Под образец по его центру устанавливают горелку с высотой пламени 40 мм, одновременно включают секундомер и определяют время зажигания, обеспечивающее устойчивое горение образца.

Через 2 минуты действия пламени источник зажигания удаляют и фиксируют время самостоятельного горения и тления образца. После остывания до комнатной температуры образец взвешивают и определяют потери массы в % от исходной:

? m = / mн,

где mн и mк - массы образца до и после испытания, г.

Определение кислородного индекса

Испытания ведут по ГОСТ 12.1.044-89. Сущность метода заключается в нахождении минимальной концентрации кислорода в потоке кислородно-азотной смеси, при которой наблюдается самостоятельное горение вертикально расположенного образца, зажимаемого сверху. Для испытаний применяют образцы размерами: ** мм.

Установка для определения кислородного индекса включает следующие элементы: вентиль предварительной регулировки; смеситель; расходомер; реакционную камеру; держатель образца; кислородный анализатор. Реакционная камера, представляющая собой термостойкую прозрачную трубу, установленную вертикально на основании. На дно камеры монтируют приспособление для равномерного распределения газовой смеси, состоящее из стеклянных или металлических шариков различного диаметра. Держатель образца необходим для закрепления его в вертикальном положении в трубе. Металлическое проволочное сито размером ячейки 1,0-1,6 мм помещено над шариками для улавливания падающих частиц. Баллоны содержат газообразный кислород и азот или очищенный воздух с концентрацией кислорода 20,9% объемных.


Подобные документы

  • Разработка рациональной технологической схемы производства строительного закалённого стекла. Закалочные среды и способы закалки стекла; ассортимент выпускаемой продукции. Расчет материального баланса, подбор оборудования. Контроль качества продукции.

    курсовая работа [2,0 M], добавлен 27.03.2013

  • Технологическая схема производства светотехнического стекла. Сырьевые материалы для производства стекла. Расчет шихты по листовому стеклу. Пересчет состава стекла из весовых процентов в молярные, метод А.А. Аппена. Расчет режима отжига стеклоизделия.

    реферат [40,4 K], добавлен 08.11.2012

  • Физические свойства стекла, его классификация. Современные технологии получения стекла. Характеристика листового стекла различного ассортимента, его использование в строительстве и производстве. Теплоизоляционные и звукоизоляционные стекломатериалы.

    курсовая работа [57,2 K], добавлен 26.01.2015

  • Стекло, его производство и свойства. История возникновения стеклоделия. Технологии изготовления, виды стекла. Свойства, характеристики стекол. Разработка, изготовление установки для проверки стекла на прогиб. Исследование различных видов стекла на прогиб.

    курсовая работа [1,0 M], добавлен 26.04.2009

  • Характеристика листового стекла, его свойства и составы. Описание технологической схемы его производства на флоат-линиях. Анализ сырьевых материалов. Обоснование состава шихты. Расчет стекловаренной печи. Подбор основного и вспомогательного оборудования.

    курсовая работа [114,1 K], добавлен 06.12.2012

  • История производства стекла. Основные стеклообразующие вещества. Различные виды стекол и их основные свойства. Тонированное, цветное, художественное, защитное, узорчатое и зеркальное стекла. Применение стекла в оптической и строительной промышленности.

    презентация [5,2 M], добавлен 20.04.2013

  • Производство листового стекла. Заливочная, пленочная технология изготовления триплекса. Безавтоклавная пленочная технология. Описание физического процесса растрескивания стекла. Составление операционной карты. Разработка устройства для захвата стекла.

    дипломная работа [1,3 M], добавлен 22.11.2015

  • Свойства, структура, классы стекла. Методы получения и область применения ситаллов. Выбор состава и подготовка шихты стекла для конденсаторного ситалла. Варка и кристаллизация стекла, прессование стекломассы. Расчет диэлектрических потерь и проницаемости.

    курсовая работа [493,0 K], добавлен 24.08.2012

  • Проект цеха по производству жидкого стекла с производительностью 50000 т/год. Номенклатура продукции и ее характеристика. Исходное сырье (кварцевый песчаник, поташ). Технология производства жидкого калиевого стекла. Технико-экономические показатели.

    курсовая работа [306,0 K], добавлен 18.10.2013

  • Первенство Египта в производстве стекла. "Египетский фаянс" - изделия, покрытые зеленовато-голубой глазурью. Изготовление различных изделий из стекла на Руси. Классификация стекла, технологии его плавки. Особенности плавки различных видов стекла.

    презентация [8,5 M], добавлен 22.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.