Огнестойкое стекло "Пиран"
Разработка технологической схемы получения органического стекла пониженной горючести с элементами автоматического регулирования процесса. Расчет основных технико-экономических показателей, меры безопасного ведения производства органического стекла.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 20.08.2009 |
Размер файла | 146,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Источник зажигания обеспечивает на пропане высоту пламени 16 мм и свободно входит в камеру через верхний открытый конец. Учет времени проведения испытаний ведут посредством секундомера с погрешностью измерений не более 1 секунды.
Перед испытанием образцы кондиционируют не менее 8 часов в стандартной атмосфере 23/50 по ГОСТ 12423. Время между изготовлением исследуемого материала и началом испытаний должно быть не менее 72 часов. Испытание проводят при температуре 23 0С. Образец закрепляют в вертикальном положении в держателе в центре колонки так, чтобы верхний край образца находился на расстоянии не менее 100 мм от верхнего края колонки. Систему продувают газовой смесью не менее 30 секунд перед испытанием и поддерживают концентрацию кислорода постоянной до конца испытаний.
Далее осуществляют зажигание образцов. Для этого подводят самую нижнюю часть пламени горелки к верхней горизонтальной поверхности образца, медленно перемещая так, чтобы пламя покрывало ее полностью и не касалось вертикальных поверхностей или граней образца. Длительность воздействия пламени на образец составляет 30 секунд с короткими перерывами через каждые 5 секунд. Образец считается воспламененным, если после отвода горелки через 5 секунд вся его поверхность горит.
После воспламенения образца включают секундомер и наблюдают за распространением пламени. Если горение прекращается и не возобновляется в течение 1 секунды, то выключив секундомер, определяют время горения и длину сгоревшей части образца. По ходу испытания отмечают процессы, сопровождающие горение: падение частиц, обугливание, неравномерное горение, тление. Гасят и вынимают образец из реакционной камеры.
Кислородный индекс в % вычисляют по формуле:
КИ = {/ +}*100%,
Где - минимальная концентрация кислорода в кислородно-азотной смеси, необходимая для горения образца.
Метод термогравиметрического анализа
Испытания проводят в соответствии с ГОСТ 21553 - 76. Термогравиметрия - это динамический метод непрерывного взвешивания образца в зависимости от температуры при постоянной скорости нагрева. Деривативная термогравиметрия представляет собой метод, в котором получают первую производную изменения веса по времени как функцию температуры при постоянной скорости нагрева.
Изменение массы, скорости изменения массы и величин тепловых эффектов при нагреве образцов волокон изучалось методом термогравиметрического анализа с использованием дериватографа системы «Паулик - Паулик - Эрдей» фирмы МОМ марки Q_1500D.
Условия эксперимента: навеска - 200 мг; среда - воздух; интервал нагрева - до 1000С; скорость нагрева - 10С/мин.
Относительная ошибка не превышает 1%.
Энергия активации термодеструкции материалов определялась методом Г.О. Пилояна по кривой ДТА по формуле:
,
где Е - энергия активации, Дж/моль;
R - универсальная газовая постоянная, Дж/градмоль;
Т - температура, К;
С' - константа.
Уравнение можно представить в виде:
,
,
где 2,3 - модуль перевода натурального логарифма в десятичный.
Это уравнение можно представить в виде Y=а·Х+b, где а - угловой коэффициент, который равен тангенсу угла наклона прямой к оси абсцисс.
Графически энергию активации определяют по тангенсу угла наклона прямой построенной в координатах lg l = f, где l - длина отрезка между нулевой линией и кривой ДТА.
Отсюда
Метод инфракрасной спектроскопии
Взаимодействие компонентов композиции изучает посредством метода инфракрасной спектроскопии, выполняемой на приборе «Spekord» с приставкой «MJR_4» с призмой КRS - 5 с 18 отражениями. Образцы готовили в виде таблеток, полученных прессованием при давлении 2 МПа из смеси, содержащей 4 мг образца и 200 мг бромистого калия или в виде пасты, помещенной между двумя пластинами из хлористого натрия или бромистого калия. Исследования проводили в области длин волн 400 - 4000 см-1, ширина щели равна 3.
1.1.5 Результаты эксперимента и их обсуждение
Органические стекла находят широкое применение в различных областях промышленности для остекления автомобильного, железнодорожного, авиационного транспорта, в приборной технике и т.д. Такие материалы прочны, эластичны, травмобезопасны, характеризуются высокой светопрозрачностью. В производстве органических стекол используют полиметакрилаты, полиакрилаты, полистирол, поликарбонаты и другие полимеры. Существенным недостатком является высокая горючесть, что ограничивает область их применения. В связи с этим разрабатываются новые составы органических стекол, относящихся к классу трудносгораемых. Для снижения горючести используются различные модифицирующие добавки, содержащие в составе фосфор, галогены, азот.
Выбор компонентов полимерных заливочных составов, обеспечивающих создание органических стекол с пониженной горючестью обусловлен предъявлением комплекса требований к полимерному составу: способности к сополимеризации; текучести, обеспечивающей заполнение форм; прозрачности на уровне силикатных стекол; способности к карбонизации, обеспечивающей формирование кокса с необходимыми теплозащитными свойствами. Составы для органических стекол должны обладать высоким комплексом физико-механических свойств.
В связи с предъявляемым комплексом требований нами в качестве структурообразующего компонента композиций исследовался ГМА.
Для снижения горючести в составы вводились ЛИМ, ТХЭФ.
Составы, содержащие фотоинициатор, полимеризовали между двумя силикатными стеклами методом УФ-полимеризации при мощности облучения 60 Вт/м2.
Полимеризация ГМА осуществляется по радикальному механизму за счет раскрытия двойных связей, что подтверждается уменьшением интенсивности полосы валентных колебаний связи >C=C<. Разрыв связи >C=C< обеспечивает также участие атома С в межмолекулярной сшивке с образованием трехмерной структуры. Содержание нерастворимой гель-фракции в полимеризате ГМА - 90%. В заполимеризованном ГМА отмечено наличие колебаний связи гидроксильных групп, отсутствующих у незаполимеризованного ГМА, связаных с раскрытием эпоксидного кольца и присоединенного атома водорода, от гидроксила воды, содержащийся в ГМА в количестве 0,5% масс. Это подтверждается отсутствием в заполимеризованном ГМА, колебаний связи эпоксидной группы, имеющейся в незаполимеризованном ГМА при 945 см-1.
ГМА способен к УФ - инициируемой полимеризации. ЛИМ и ТХЭФ в условиях фотоинициируемой полимеризации не полимеризуются.
В связи с тем, что процессам горения предшествуют процессы пиролиза или термолиза при создании материалов пониженной горючести оценено поведение каждого из компонентов при термоокислительной деструкции. При воздействии повышенных температур с применением ТГА.
Из анализа данных термогравиметрии, табл. 1.4 следует, что все компоненты относятся к коксообразующим. Однако ГМА, полимеризующийся под УФ-воздействием имеет большое значение кажущейся энергии активации процесса деструкции.
Таблица 1.4. Параметры процесса пиролиза компонентов
Вещество |
Параметры процесса деструкции |
Потери массы при температуре, ?С |
Еа, кДж/моль |
|||||
Тн - Тк, ?С Тmax |
Выход КО при Тк, % |
200 |
300 |
400 |
500 |
|||
ГМА |
210 - 345 280 |
23 |
2,5 |
63 |
81 |
83 |
110 |
|
ЛИМ |
150 - 370 180, 360 |
57 |
20 |
41 |
67 |
90 |
100 |
|
ТХЭФ |
242 - 350 310 |
23 |
3 |
43 |
83 |
83 |
- |
В ТХЭФ, содержащем хлор, деструкция сопровождается дегидрохлорированием, которое завершается в интервале температур 160-240?С и потери массы соответствуют содержанию хлора в ТХЭФ - 35% масс. Процесс дегидрохлорирования эндотермический, однако, деструкция сопровождается, по данным ДТА, выделением тепла. Видимо, одновременно с дегидрохлорированием протекают процессы структурирования, это подтверждается образованием коксового остатка. В интервале температур 240-320?С протекает разложение структурированных структур.
Для получения органических стекол с необходимым комплексом свойств осуществлялось последовательное совмещение компонентов. В органическом стекле должны сочетаться жесткость и эластичность, обеспечивающие необходимые прочностные характеристики. В качестве основного компонента использовался глицидилметакрилат. учитывалось, что ГМА при полиме ризации образует жесткую структуру с невысокими физико-механическими свойствами ? р =17МПа.
Для снижения жесткости ГМА использовали введение ТХЭФ - это пластификатор полифункционального действия, который в своем составе содержит хлор и фосфор.
Для оценки взаимодействия компонентов ГЭМА, ТХЭФ и ФК исследовались как незаполимеризованный так и подвергнутый УФ-воздействию составы.
В образце незаполимеризованного состава отмечено наличие пиков валентных колебаний ОН-групп, относящихся к ФК, являющейся катализатором процесса сополимеризации ГЭМА и ТХЭФ. В спектрограмме имеются также пики валентных колебаний связей групп СН3, СН2, СО, ?Р-О -, ССl, входящих в состав образца.
В спектрограмме полимеризата данного состава существенно увеличился пик валентных колебаний связи ОН-группы и уменьшился пик валентных колебаний связи >С=С<. Появление в спектре заполимеризованного состава колебаний чётных последовательностей n , отсутствующих в незаполимеризованном образце, может свидетельствовать о присоединении молекулы ТХЭФ к ГЭМА по типу «голова к голове».
Анализ спектрограмм позволил предположить, что взаимодействие ГЭМА с ТХЭФ в присутствии ФИ и катализатора, осуществляется в процессе УФ-инициируемой полимеризации по следующей схеме.
Выбор соотношения компонентов и параметров полимеризации проводился по оценке содержания нерастворимой в ацетоне гель-фракции. Для составов, содержащих 49ГМА+49ТХЭФ+1ФК+0,4 ин+ ЛИМа% масс. исследовались зависимости содержания гель-фракции в полимеризате от времени полимеризации. Как видно из графиков, с увеличением времени полимеризации содержание гель-фракции.
При исследовании содержания гель-фракции от времени хранения для состава с 1% содержанием ЛИМа рис. 1.6 кр. 1,2 отмечено снижение количества нерастворимой фракции определенной в полимеризате, через 40 суток после полимеризации. Для образцов, содержащих 2% ЛИМа содержание гель-фракции при хранении возрастает рис. 1.6 кр. 3,4, что может быть связано с недостатком ионного инициатора сополимеризации - ФК.
Сравнительный анализ спектограмм образцов состава 49ГМА+49ТХЭФ+1ФК+1ЛИМ с разным временем полимеризации показал,
Анализ данных термогравиметрии образцов состава 49ГМА+49ТХЭФ+1ФК+1ЛИМ показал, что все образцы относятся к коксообразующим и параметры деструкции мало зависят от времени полимеризации. Однако, следует отметить возрастание термоустойчивости образцов при времени полимеризации 60 мин, что видимо связано с завершенностью процессов структурообразования. Скорости потери массы для всех составов приблизительно одинаковы рис. 1.8.
Таблица 1.5. Изменение параметров процесса деструкции от времени полимеризации состава 49 ГМА+49 ТХЭФ +1 ЛИМ+1ФК+0,4 ин
Время полимеризации, мин |
Параметры процесса деструкции |
Потери массы, при температуре, ?С |
|||||||||
, ?С |
, % |
Темературный интервал, ?С |
100 |
200 |
300 |
400 |
500 |
600 |
700 |
||
20 |
100 |
1 |
4 |
55 |
73 |
76 |
82 |
90 |
|||
40 |
100 |
1 |
3 |
61 |
72 |
76 |
82 |
89 |
|||
60 |
90 |
1 |
3 |
60 |
74 |
78 |
84 |
93 |
|||
80 |
170 |
1 |
5 |
65 |
72 |
78 |
82 |
89 |
Так как исследуемые составы не обеспечивают жесткости, необходимой для органического стекла, то в них увеличивали содержание ФК, являющейся катализатором сополимеризации.
При введении ФК в количестве 4-5% масс. образцы приобретали твердость, а при содержании ФК выше 5% масс. на поверхности образцов выделяется жидкость, видимо, полиметафосфорная кислота и образцы имеют желтоватый оттенок.
Также возрастает содержание гель-фракции от времени хранения образца, что свидетельствует о протекании процесса структурирования.
При изменении соотношения компонентов 57ГМА+37ТХЭФ+3ЛИМ+3ФК содержание гель-фракции составило 73,2%, образцы прозрачные и эластичные. При дальнейшем увеличении ГМА и понижении ТХЭФ образцы непрозрачны.
Уменьшение содержания ГМА и увеличение ТХЭФ обеспечивает содержание гель фракции 53,7%, состав 28ГМА+66ТХЭФ+3ЛИМ+3ФК не полимеризуется.
Таблица 1.6. Исследуемые составы
Состав |
ЛИМ |
ФК |
Образец |
Содержание гель-фракции, % |
Содержание гель-фракции, % через 40 дней |
|
50% ГМА + 50% ТХЭФ |
1 |
1 |
Эластичный |
57 |
59,1 |
|
3 |
Твердый |
- |
- |
|||
5 |
Твердый, желтый |
- |
- |
|||
9 |
Твердый, желтый |
68 |
- |
|||
2 |
1 |
Эластичный |
48 |
58,6 |
||
4 |
Твердый |
|||||
3 |
1 |
Эластичный |
57,2 |
- |
||
2 |
Эластичный |
60 |
73,9 |
|||
3 |
Эластичный |
61 |
64,5 |
|||
4 |
Твердый |
62 |
- |
|||
5 |
Твердый |
64,7 |
- |
|||
41ГМА+41ТХЭФ |
15 |
3 |
твердый |
64 |
- |
|
57ГМА+37ТХЭФ |
3 |
3 |
Эластичный |
73,2 |
- |
|
66ГМА+28ТХЭФ |
Твердый, непрозрачн. |
- |
- |
|||
37ГМА+57ТХЭФ |
Твердый |
53,7 |
- |
|||
66ГМА+28ТХЭФ |
Не полимеризуется |
- |
- |
Как было уже замечено, что при увеличении количества ФК образцы приобретают твердость, а увеличение ЛИМа придает им эластичность, что и необходимо для органического стекла, в котором должны сочетаться жесткость и эластичность, но также обеспечивать необходимые прочностные характеристики. Поэтому для дальнейших исследований выбран состав 41ГМА+41ТХЭФ+15ЛИМ+3ФК, так как он обладает оптимальными свойствами для органического стекла.
В составе 41ГМА+41ТХЭФ+15ЛИМ+3ФК+0,4 ин варьировали количество инициатора от 0,4 до 3%. С увеличением количества фотоинициатора содержание нерастворимой гель-фракции снижается, образцы обретали желтоватый оттенок и имели большое количество воздушных включений. Возможно, это связано с увеличением скорости полимеризации, вследствие чего возрастает вязкость композиции, и движение макромолекул затрудняется, происходит обрыв цепи.
Рис. 1.9 Зависимость содержания нерастворимой гель-фракции от количества фотоинициатора для состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК
Для состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК+0,4 ин была определена зависимость содержания нерастворимой гель-фракции от времени полимеризации. Как видно из графика с увеличением времени полимеризации до 40 мин содержание гель-фракции увеличивается, а после достижения 40 мин снижается.
Рис. 1.10 Зависимость содержания нерастворимой гель-фракции от времени полимеризации состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК
Для состава 41ГМА+41ТХЭФ+15ЛИМ+3ФК+0,4 ин была определена зависимость вязкости состава от времени его приготовления. Из графика рис. 1.11 можно сделать вывод, что с течением времени вязкость раствора увеличивается.
Рис. 1.11 Зависимость вязкости от времени приготовления состава
Составы не поддерживают горение на воздухе и имеет невысокие потери массы, это позволяет отнести его к классу трудногорючих материалов. Кислородный индекс исследуемого состава 30% объем.
1.1.6 Выводы и практические рекомендации
1. В результате проведенной работы исследованы свойства исходных компонентов, используемых в составе композиции для органического стекла. Определен механизм полимеризации ГМА. Показано, что полимеризация ГМА происходит с раскрытием двойных связей и эпоксидного кольца с образованием трехмерной структуры. Выход гель-фракции составляет 90%. Предложена схема полимеризации.
2. Оценена методом ТГА устойчивость исходных компонентов при воздействии повышенных температур. Установлено, что все компоненты относятся к коксообразующим и деструкция которых протекает в приблизительно одинаковом температурном интервале.
3. Установлен анализом данных ИКС механизм сополимеризации ГМА и ТХЭФ и предложена схема сополимеризации.
4. Осуществлен выбор времени полимеризации для составов, содержащих ГМА, ТХЭФ, ЛИМ и ФК на основании данных ИКС, ТГА и по содержанию гель-фракции в полимеризате. Показано сохранение ненасыщенности полимеризата до времени полимеризации 60 мин. При этом увеличивается содержание гель-фракции. Увеличение продолжительности полимеризации приводит к процессу деструкции.
5. Исследована зависимость внешнего вида образцов и содержания гель-фракции от состава композиции.
6. Выбран состав 41ГМА+41ТХЭФ+15ЛИМ+3ФК, который обладает оптимальными свойствами для органического стекла. Для него исследована зависимоть содержания гель-фракции от времени полимеризации и от количества фотоинициатора в составе, определена вязкость состава.
1.2 Технологическая часть
1.2.1 Характеристика сырья, материалов и готовой продукции
Таблица 1.7. Характеристика сырья, материалов и готовой продукции
№ п/п |
Материалы, свойства |
ГОСТ, ТУ |
Ед.изм |
Показатели свойств |
|
1 |
2 |
3 |
4 |
5 |
|
1 |
ГМА |
ТУ 2435-331-0584-2324-96 |
|||
Внешний вид |
бесцветная прозрачная жидкость |
||||
Содержание основного вещества |
|||||
Плотность |
г/ см3 |
1,0726 |
|||
Молекулярная масса |
142,16 |
||||
Температура плавления |
°C |
-65 |
|||
вязкость |
мПа*с |
2,75 |
|||
Растворимость в воде |
%, |
2,75 |
|||
Температура воспламенения |
°C |
370 |
|||
Показатель преломления |
1,4505 |
||||
Температура вспышки |
°C |
88 |
|||
2 |
ТХЭФ |
ТУ 2494 - 319 - 0576344 |
|||
Внешний вид |
бесцветная жидкость |
||||
Содержит: Cl- |
%масс |
37,5 |
|||
P- |
%масс |
11,3 |
|||
Воды |
%масс |
0,07 |
1.2.2 Описание технологического процесса
Технологический процесс производства органического стекла является периодическим и включает следующие стадии:
1. Входной контроль материалов
2. Обработка стеклянных листов.
3. Сборка стеклопакета
4. Подготовка компонентов и установки полимеризации
5. Полимеризация
6. Контроль, хранение и упаковка изделия.
Технологическая схема представлена на рис. 1.12.
При входном контроле материалов по сопроводительной документации проверяют срок годности компонентов заливочного состава. Также проверяют соответствие всем требованиям партии трубки ПВХ и двухсторонней клеящей ленты.
Для изготовления органического стекла применяют отполированное с обеих сторон листовое стекло высшего качества. Стекло проверяют на наличие трещин. Силикатные стекла, поступающие в производство, обязательно подвергают обработке в моечно-сушильном конвейере, сначала круглыми капроновыми щетками, смоченными 1%-ным раствором соды, после чего ополаскивают под душем - для очистки и обезжиривания.
Пройдя через моечную зону, стёкла оказываются в сушильной зоне, где высушиваются идущим навстречу тёплым воздухом. После чего из них изготавливают полимеризационные формы.
При изготовлении форм должна соблюдаться абсолютная чистота. Поэтому работа должна проводиться в условиях полного отсутствия пыли. Рабочие помещения следует оборудовать воздухоочистительной установкой с кондиционным аппаратом и поддерживать в них небольшое избыточное давление воздуха. Затем вымытое стекло обрабатывают раствором антиадгезива, в качестве которого используется полиэтиленсилоксановая жидкость.
Обработанное стекло укладывают на ложемент для сборки стекла, затем устанавливают с зазором до 3 мм внешнее стекло и по периметру вводят эластичную герметизирующую прокладку), а в точке сжатия стекла защемляют калибром. Расстояние между силикатными стеклами определяет толщину листов органического стекла. Таким образом, постепенно вводя трубку и устанавливая прозрачные калибры, герметизируют стеклопакет, оставляя открытой зону подачи смеси.
Транспортировка исходных продуктов осуществляется в закрытых герметичных емкостях. Выгрузка ГМА, ТХЭФ, H3PO4 производится в герметичные емкости и с помощью весовых мерных дозаторов, компоненты подают в смеситель. Ввиду малого количества инициатора дозирование производится вручную. Навеска определяется с помощью электронных весов.
Соотношения выбирают в зависимости от сорта получаемого оргстекла. Ниже приведены соотношения компонентов при получении прозрачного негорючего органического стекла ч.:
ГМА……………….…41 H3PO4 …………….…3
ТХЭФ…………….…41 ЛИМ……………….…….15
Фотоинициатор……. 0,4
Компоненты состава перемешивают в смесителе в течение 1 часа при температуре 20±5°С, затем вводят H3PO4 и перемешивают ещё 10-20 минут. По окончании гомогенизации с целью обезвоздушивания смесь вакуумируют в том же смесителе. Вакуум создается компрессором, при этом воздух предварительно проходит очистку на каплеуловителе, после чего газо-воздушная смесь поступает на доочистку в термокаталитическую установку. Вакуумирование проводят в течение 10 минут.
После вакуумирования весовым мерным дозатором отмеряются точные дозы смеси, поступающие в формы. Для чего форму поворачивают, устанавливают воронку 10 и выливают определённую порцию композиции. После опорожнения воронки, её снимают, герметизируют зону подачи смеси ПВХ-трубкой и переводят заполненный стеклопакет в горизонтальное положение и одновременно с помощью иглы удаляют воздушные пузыри.
После этого деталь снимают с ложемента сборки - заливки и устанавливают на профилированную форму, которая поступает на конвейер фотоотверждения, где изделие отверждается, а затем выходит из зоны облучения. Время засветки выбирают исходя из времени полимеризации состава. Затем стеклопакет выходит из зоны облучения. Калибры снимают, изделие извлекают из формы, проверяют габаритные размеры полученного изделия с помощью рулетки, контролируют и упаковывают.
Контроль качества негорючего органического стекла основан, прежде всего, на испытании термостойкости, способности выдерживать резкие перепады температур, определении физико-механических свойств. Определяются устойчивость при высоких температурах, светопроницаемость, светостойкость, огнестойкость, оптическое искажение, предел прочности, твердость по Бринеллю.
Заготовки следует хранить таким образом, чтобы не ухудшать их качество. Обычно изделия хранят в стеллажах с вертикально расположенными ячейками шириной до 30 см.
1.2.3 Основные параметры технологического процесса
Таблица 1.8. Параметры технологического процесса производства органического стекла
Параметры |
Значения |
|
Время гомогенизации, мин |
80 |
|
Время полимеризации, мин |
60 |
|
Температура,°С |
20±5 |
|
Давление, мм. рт. ст. |
740 - 760 |
|
Давление вакуумирования, мм. рт. ст |
340 - 400 |
1.2.4 Материальные расчеты
Таблица 1.9. Рецепт заливочного состава
Наименование компонентов |
Концентрация, % |
Количество, масс. ч. |
Количество, % |
|
ГМА |
100 |
41 |
40,84 |
|
ТХЭФ |
100 |
41 |
40,84 |
|
ЛИМ |
100 |
15 |
14,94 |
|
Фосфорная кислота |
87 |
3 |
2,99 |
|
Фотоинициатор |
100 |
0,4 |
0,39 |
Таблица 1.10. Расчет по рецепту для получения 31640 стекол в год
Наименование компонентов |
По рецепту, кг |
Технологические потери, кг |
С учетом технологических потерь, кг |
|
ГМА |
1684,4 |
23,58 |
1707,98 |
|
ТХЭФ |
1684,4 |
23,58 |
1707,98 |
|
ЛИМ |
601,16 |
5,89 |
607,05 |
|
Фосфорная кислота |
123,4 |
0,37 |
123,77 |
|
Фотоинициатор |
15,82 |
0,08 |
15,9 |
|
Всего |
4109,18 |
53,5 |
4162,68 |
Таблица 1.11. Материальный баланс для 31640 стекол в год на 1 тонну заливочного состава с учетом технологических потерь
Приход |
Расход |
|||
Состав |
Количество на 31640 стекол, кг |
Состав |
Количество на 1 тонну, кг |
|
ГМА |
1684,4 |
Технологические потери а) при приеме и подготовке компонентов ГМА ТХЭФ ЛИМ Фосфорная кислота Фотоинициатор б) при заливке состава ГМА ТХЭФ ЛИМ Фосфорная кислота Фотоинициатор |
11,79 11,79 2,945 0,185 0,04 11,79 11,79 2,945 0,185 0,04 |
|
ТХЭФ |
1684,4 |
1. |
||
ЛИМ |
601,16 |
|||
Фосфорная кислота |
123,4 |
|||
Фотоинициатор |
15,82 |
|||
Всего потерь |
53,5 |
|||
Всего |
4109,18 |
Итого |
4162,68 |
Заключение
Анализ литературы показал, что большинство разработанных полимерных составов для органического стекла являются пожароопасными. И при оценке выше изложенной информации прослеживается только тенденция в области разработок составов для получения органического стекла пониженной горючести. Исходя из этого, в современных условиях основными направлениями по созданию огнестойких полимеров и полимерных композиций можно считать следующие:
1) Полимерные композиционные материалы, содержащие в качестве антипиренов фосфор и его соединения;
2) Полимерные композиции, содержащие традиционные неорганические антипирены;
3) Синтез огнестойких высокомолекулярных соединений и химическое модифицирование как способы повышения огнестойкости полимеров.
Однако наиболее перспективным является первое направление, на котором основываются исследования, представленные в данной дипломной работе.
Разработаны составы и технология, обеспечивающие получение органического стекла пониженной горючести с высокой механической прочностью.
В дипломном проекте разработана технологическая схема производства органического стекла пониженной горючести. Осуществлен расчет материальных затрат на 1 тонну заливочного состава. Оценена безопасность и экологичность проекта. Предусмотрена автоматизация процесса и безопасное его ведение.
Показана экономическая эффективность представленных показателей дипломного проекта.
Подобные документы
Разработка рациональной технологической схемы производства строительного закалённого стекла. Закалочные среды и способы закалки стекла; ассортимент выпускаемой продукции. Расчет материального баланса, подбор оборудования. Контроль качества продукции.
курсовая работа [2,0 M], добавлен 27.03.2013Технологическая схема производства светотехнического стекла. Сырьевые материалы для производства стекла. Расчет шихты по листовому стеклу. Пересчет состава стекла из весовых процентов в молярные, метод А.А. Аппена. Расчет режима отжига стеклоизделия.
реферат [40,4 K], добавлен 08.11.2012Физические свойства стекла, его классификация. Современные технологии получения стекла. Характеристика листового стекла различного ассортимента, его использование в строительстве и производстве. Теплоизоляционные и звукоизоляционные стекломатериалы.
курсовая работа [57,2 K], добавлен 26.01.2015Стекло, его производство и свойства. История возникновения стеклоделия. Технологии изготовления, виды стекла. Свойства, характеристики стекол. Разработка, изготовление установки для проверки стекла на прогиб. Исследование различных видов стекла на прогиб.
курсовая работа [1,0 M], добавлен 26.04.2009Характеристика листового стекла, его свойства и составы. Описание технологической схемы его производства на флоат-линиях. Анализ сырьевых материалов. Обоснование состава шихты. Расчет стекловаренной печи. Подбор основного и вспомогательного оборудования.
курсовая работа [114,1 K], добавлен 06.12.2012История производства стекла. Основные стеклообразующие вещества. Различные виды стекол и их основные свойства. Тонированное, цветное, художественное, защитное, узорчатое и зеркальное стекла. Применение стекла в оптической и строительной промышленности.
презентация [5,2 M], добавлен 20.04.2013Производство листового стекла. Заливочная, пленочная технология изготовления триплекса. Безавтоклавная пленочная технология. Описание физического процесса растрескивания стекла. Составление операционной карты. Разработка устройства для захвата стекла.
дипломная работа [1,3 M], добавлен 22.11.2015Свойства, структура, классы стекла. Методы получения и область применения ситаллов. Выбор состава и подготовка шихты стекла для конденсаторного ситалла. Варка и кристаллизация стекла, прессование стекломассы. Расчет диэлектрических потерь и проницаемости.
курсовая работа [493,0 K], добавлен 24.08.2012Проект цеха по производству жидкого стекла с производительностью 50000 т/год. Номенклатура продукции и ее характеристика. Исходное сырье (кварцевый песчаник, поташ). Технология производства жидкого калиевого стекла. Технико-экономические показатели.
курсовая работа [306,0 K], добавлен 18.10.2013Первенство Египта в производстве стекла. "Египетский фаянс" - изделия, покрытые зеленовато-голубой глазурью. Изготовление различных изделий из стекла на Руси. Классификация стекла, технологии его плавки. Особенности плавки различных видов стекла.
презентация [8,5 M], добавлен 22.10.2013