Привод рабочей машины
Кинематический и энергетический расчет привода. Расчет клиноременной и червячной передач. Конструирование и определение размеров зубчатых колес и элементов корпуса редуктора. Проектирование и расчет валов. Расчет шпоночных соединений и выбор подшипников.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 01.03.2010 |
Размер файла | 242,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
привод рабочей машины
Пояснительная записка и расчеты
к курсовому проекту
по дисциплине „Детали машин и механизмов”
прм-6900.04.400.000.000 пз
2008
Содержание
1 Кинематический и энергетический расчет привода
2 Расчет передач
2.1 Расчет клиноременной передачи
2.2 Расчет червячной передачи
2.3 Расчет цепной передачи
3 Конструирование и определение размеров зубчатых колес и элементов корпуса редуктора
3.1 Конструирование червяка и червячного колеса
3.2 Конструирование элементов корпуса редуктора
4 Проектирование и расчет валов
4.1 Ориентировочный расчет валов
4.2 Проверочный расчет валов
5 Расчет шпоночных соединений.
6 Выбор подшипников.
7 Описание системы смазки.
8 Литература
Исходные данные
Тяговое усилие на барабане Ft = 6900 Н
Окружная скорость барабана V = 0,4 м/с
Диаметр барабана D = 400 мм
Режим работы 0
Суммарное время работы 20000 часов
1 - электродвигатель
2 - ременная передача
3 - червячный редуктор
4 - цепная передача
5 - барабан
1. Кинематический и энергетический расчет привода
Мощность привода:
,
где - КПД привода:
= рем черв цеп подш,
где рем = 0,96 - КПД ременной передачи,
черв = 0,8 - КПД червячной передачи,
цеп = 0,95 - КПД цепной передачи,
.
Предварительная мощность привода:
кВт.
Частота вращения барабана:
,
мин-1.
Приближенное передаточное отношение привода:
u/= uр uцеп uрем,
где up - передаточное отношение редуктора, принимаем up = 20,
uцеп - передаточное отношение цепной передачи, uцеп = 2,
uрем - передаточное отношение клиноременной передачи, uрем = 2.
.
Предварительная частота вращения двигателя:
,
мин-1.
По таблице выбираем двигатель серии А4 тип А4 100S2У3/1435, мощность P = 4,0 кВт, частота вращения 2880 мин-1.
Действительное передаточное отношение:
,
.
Действительное передаточное отношение цепной передачи при up=20 и upem=2:
,
.
Мощности на валах:
кВт,
кВт,
кВт,
кВт.
Частота вращения валов:
мин-1,
мин-1,
мин-1,
мин-1.
Крутящий момент на валу электродвигателя:
,
где д -угловая скорость двигателя:
,
с-1,
Нм.
Крутящие моменты на валах:
Нм,
Нм,
Нм,
Нм.
Вал |
P, кВт |
n, мин-1 |
T,кН·м |
u |
||
I |
3,8 |
2880 |
12,6 |
2203,7 |
0,960,80,95 |
|
II |
3,65 |
1440 |
24,2 |
|||
III |
2,9 |
72 |
387,3 |
|||
IV |
2,8 |
19,1 |
1391,36 |
2. Расчет передач
2.1 Расчет клиноременной передачи
Исходные данные:
мощность на входном валу P1 = 3,8кВт,
частота вращения входного вала n1 = 2880 мин -1,
передаточное отношение u = 2,
Тип ремня - А (назначаем по графику рис.12.23 1).
По графику рис. 12.25 1 назначаем диаметр меньшего шкива d1 = 100 мм , при этом номинальная мощность, передаваемая одним ремнем кВт.
Диаметр большего шкива:
мм.
Принимаем значение межосевого расстояния при u = 2:
мм.
Длина ремня:
мм.
По стандарту принимаем мм.
Уточненное межосевое расстояние:
мм
Угол обхвата:
.
Проверяем условия:
,
где h - высота поперечного сечения ремня (для типа А h = 8 мм)
600 мм 259,7 мм 173 мм.
Мощность, передаваемая одним ремнем в условиях эксплуатации:
,
где - коэффициент угла обхвата,
- коэффициент длины ремня,
- коэффициент передаточного отношения,
- коэффициент режима нагрузки (односменная, постоянная)
Н.
Число ремней:
,
где - коэффициент числа ремней,
.
Принимаем 3 ремня.
Предварительное натяжение одного ремня:
,
где окружная скорость ремня:
м/с
дополнительное натяжение при периодическом подтягивании ремня , так как v < 20 м/с (автоматическое натяжение).
Н
Сила, действующая на вал:
,
где - угол между ветвями ремня:
Н.
Ресурс наработки ремней:
,
где K1 =1 - коэффициент режима нагрузки (умеренные колебания),
K2 =1 - коэффициент климатических условий (центральные зоны)
Tcp = 20000 ч - ресурс наработки при среднем режиме нагрузки
часов.
2.2 Расчет червячной передачи
Исходные данные:
Мощность на входном валу P1 = PII= 3,65 кВт,
частота вращения входного вала n1 = nII= 1440 мин -1,
передаточное отношение u = 20.
Число заходов червяка при u = 20 z1 = 2
Число зубьев колеса:
Приближенная скорость скольжения
м/с.
Выбор материалов:
материал червяка - сталь 40Х, закалка до 54HRC, витки шлифованные и полированные,
материал колеса - бронза БрАЖ9, T = 200 МПа, B = 400 МПа.
Допускаемые контактные напряжения:
.
МПа.
Допускаемые напряжения изгиба:
,
МПа.
Стандартное значение коэффициента диаметра червяка:
,
q = 8.
Приведенные модуль упругости:
,
где E1 = 2,1105 МПа - модуль упругости червяка (сталь),
E2 = 0,9105 МПа - модуль упругости червячного колеса (бронза).
МПа.
Межосевое расстояние:
,
мм.
По стандарту принимаем aw = 146 мм.
Модуль передачи:
,
мм.
По стандарту принимаем m = 6,3 мм.
Коэффициент смещения:
,
.
Условие не соблюдается, изменим число зубьев колеса z2 = 39. При этом действительное передаточное отношение , а коэффициент смещения
.
Делительные диаметры:
червяка
,
мм,
червячного колеса
,
мм.
Угол подъема винтовой линии:
,
.
Окружная скорость червяка:
,
м/с.
Скорость скольжения:
,
м/с.
Так как разница между ориентировочной и действительной скоростью скольжения незначительна, выбранный материал колеса сохраняем.
Угол обхвата червяка колесом =500 = 0,8727 рад.
Коэффициент, учитывающий уменьшение длины контактной линии =0,75.
Торцевой коэффициент перекрытия в средней плоскости червячного колеса:
,
.
Коэффициент динамической нагрузки = 1,2 (приVs > 3 м/с)
Коэффициент концентрации нагрузки = 1 .
Коэффициент расчетной нагрузки:
,
.
Контактные напряжения:
,
МПа.
Так как H = 178,5 МПа < H = 182 МПа, следовательно контактная прочность достаточна.
Окружная сила на колесе:
,
Н.
Осевая сила на колесе
,
Н.
Радиальная сила
Нормальный модуль:
,
мм.
Ширина колеса при z1 = 2:
,
мм.
Число зубьев эквивалентного колеса:
,
.
Коэффициент формы зуба YF =1,5.
Напряжения изгиба:
,
МПа.
Так как F = 17,1 МПа < F = 82 МПа, следовательно изгибная прочность достаточна.
Диаметр вершин червяка:
,
мм.
Диаметр впадин червяка:
,
мм.
Длина нарезанной части червяка при X = 0,4:
,
мм.
Для шлифованного червяка при m = 6,3мм < 10 мм увеличиваем b1 на 25 мм.
b1= 90 ммм.
Диаметр вершин колеса:
,
мм.
Диаметр впадин колеса:
,
мм.
Наружный диаметр колеса при z1 = 2:
,
= 260 мм.
Степень точности 8 (среднескоростная передача).
2.3 Расчет цепной передачи
Исходные данные:
мощность на входном валу P1 = PIII= 2,9 кВт,
частота вращения входного вала n1 = nIII= 72 мин -1,
передаточное отношение u = 3,7,
линия центров передачи находится под углом 300 к горизонту, передача открытая, работает в пыльном помещении в одну смену, регулируется передвижением оси малой звездочки, цепь роликовая.
Назначаем число зубьев ведущей звездочки z1=25,
число зубьев ведомой звездочки
.
Назначаем межосевое расстояние
Расчетная мощность
,
где Kэ - коэффициент эксплуатации:
,
где Kд 1- коэффициент динамической нагрузки(нагрузка близкая к равномерной),
Kа = 1 - коэффициент межосевого расстояния или длины цепи,
Kн = 1- коэффициент наклона цепи к горизонту (до 600),
Kрег =1 - коэффициент способа регулировки натяжения цепи (одной из звездочек),
Kс =1,3 - коэффициент смазки и загрязнения передачи (запыленное помещение),
Kреж =1 - коэффициент режима или продолжительности работы в течение суток (односменный).
.
Kz - коэффициент числа зубьев,
,
,
Kn - коэффициент частоты вращения,
,
.
кВт.
По ГОСТ 13568-75* для принятых мин-1 и кВт назначаем роликовую однорядную цепь ПР-25,4-56700 с шагом мм.
При этом мм, мм (по рекомендациям 1, стр.284).
Скорость цепи:
,
м/с.
По таблице 13.3 1 назначаем густую внутришарнирную смазку с удовлетворительным качеством смазки.
Число звеньев цепи (длина цепи в шагах):
,
Округляем до целого числа .
Уточненное межосевое расстояние:
Так как передача лучше работает при небольшом провисании холостой ветви цепи рекомендуют уменьшать межосевое расстояние на 4,4мм. Окончательно назначаем a =1352 мм.
Диаметры звездочек:
,
мм,
мм,
Окружная сила:
,
Н
Натяжение от центробежных сил:
,
где q - масса единицы длины цепи по каталогу, q=1,9 кг/м.
Н
Сила предварительного натяжения от массы цепи:
,
где Kf - коэффициент провисания, при горизонтальном положении Kf = 6,
a - длина свободной ветки цепи, приближенно равная межосевому расстоянию.
Н.
Обе силы Fv и F0 малы по сравнению с Ft, что оправдывает принятые ранее допущения.
Критическая частота вращения:
,
где F1 - натяжение ведущей ветви, F1 Fеt .
мин-1<мин -1.
Резонанс отсутствует.
3. Конструирование и определение размеров зубчатых колес и элементов корпуса редуктора
3.1 Конструирование червяка и червячного колеса
Червяк выполняем стальным и за одно целое с валом при длине нарезанной части b1= 90 мм.
Червячное колесо конструируем составным: центр колеса - из стали, венец - из бронзы БрАЖ9-4. Зубчатый венец соединяем с центром посадкой с натягом. Колесо насажено на вал, закрепляется с помощью шпонки и распорного кольца.
Конструктивные размеры:
ширина колеса b = 38 мм,
диаметр ступицы колеса dст = 1,6dв = 64 мм,
длина ступицы колеса мм,
ширина торцов центра колеса мм, мм,
толщина диска мм,
ширина торцов зубчатого венца мм,
размер фаски мм.
3.2 Конструирование элементов корпуса редуктора
Назначаем материал корпуса редуктора: чугун СЧ-15.Корпус редуктора разъемный с нижним расположением червяка.
Таблиця 3.1 - Основные размеры корпуса редуктора
Толщина стенки корпуса редуктора: |
д = 0,04awt + 2 |
8 мм |
|
Толщина стенки крышки редуктора: |
д1=0,032 awt + 2 |
8 мм |
|
Толщина верхнего фланца корпуса |
s=(1,5...1,75) д |
12 мм |
|
Толщина нижнего фланца корпуса |
s2=2,35 д |
20 мм |
|
Толщина фланца крышки редуктора |
s1=(1,5...1,75) д1 |
12 мм |
|
Диаметр фундаментных болтов |
d1=(0,03…0,36) awt +12 |
18 мм |
|
Диаметр болтов, стягивающих корпус и крышку у бобишек |
d2=(0,7…0,75) d1 |
14 мм |
|
Диаметр болтов, стягивающих фланцы корпуса и крышки |
d3=(0,5...0,6) d1 |
10 мм |
|
Толщина ребер корпуса |
с1=(0,8...1) d1 |
18 мм |
|
Минимальный зазор между колесом и корпусом |
b=1,2д |
10 мм |
|
Координата стяжного болта d2 у бобишки |
с2 ? (1,0...1,2 d2) |
14 мм |
Таблица 3.2 - Розмеры для компоновочного чертежа редуктора
Расстояние от внутренней стенки редуктора до вращающейся детали |
е1 = (1,0...1,2)д |
10 мм |
|
Расстояние от торцаподшипника до внутренней стенки корпуса редуктора |
е |
10 мм |
|
Найменшый зазор между внутренней стенкой крышки редуктора и колесом |
b? 1,2д |
12 мм |
|
Расстояние от окружности вершин червяка до днища |
b0 = (5...10)m, |
50 мм |
|
Расстояние между подшипниками вала червяка |
l = (0,8…1,0)d2 |
200 мм |
|
Расстояние от оси червяка до внутренней поверхности днища корпуса редуктора |
Н1? (2,0...2,5)d |
100 мм |
|
Толщина крышки подшипника |
д2= d4 |
10 мм |
|
Толщина фланца и стенки стакана |
д3 = д4 = д2 |
10 мм |
|
Толщина упорного буртика стакана |
д5= д2 |
10 мм |
Остальные размеры принимаем конструктивно по рекомендациям 3, 4 или по справочнику 2.
4. Проектирование и расчет валов
4.1 Ориентировочный расчет валов
Ориентировочно диаметр вала определяем из условия прочности при кручении в случае понижения допускаемых напряжений.
,
где T- крутящий момент на валу,
= 20 Мпа - допускаемые напряжения на кручение материала вала.
Вал II (вал червяка).
Диаметр выходного конца вала червяка:
мм.
В соответствии со стандартом принимаем мм.
Диаметр вала под уплотнения мм.
Расстояние между подшипниками червяка: мм.
Применяем конструкцию с двумя радиально-упорными подшипниками, установленными по разные стороны червяка. мм.
Диаметр мм.
Вал III (вал червячного колеса).
Средний диаметр вала червячного колеса:
мм.
В соответствии со стандартом принимаем мм.
Диаметр вала под уплотнения мм.
Диаметр вала в месте установки подшипника мм.
Диаметр вала в месте посадки колеса мм.
Диаметр упора для колеса мм.
После определения конструкции валов, червячного колеса и корпуса выполняем компоновочный чертеж редуктора. По результатам компоновочного чертежа выполняем проверочный расчет валов.
4.2 Проверочный расчет валов
Исходные данные:
Силы в зацеплении:
на колесе окружная Н,
осевая Н,
радиальная Н,
Нагрузка от цепной передачи Н.
Моменты на валах Н.
Вал III (вал колеса).
Вертикальная плоскость:
Под действием осевой силы возникает изгибающий момент
Нм.
Реакции в опорах:
Н
Н
Горизонтальная плоскость:
Н
Н
Опасными являются сечения I-I, ослабленное шпоночным пазом, и сечение II-II ослабленное проточкой.
Расчет на статическую прочность выполняем по 4-ой теории прочности:
,
допускаемые напряжения МПа.
Нормальные напряжения:
МПа
МПа.
Касательные напряжения :
МПа,
МПа,
Эквивалентные напряжения:
МПа= 520 МПа.
Статическая прочность сечения I-I достаточна.
МПа= 520 МПа.
Статическая прочность сечения II-II достаточна
Расчет на сопротивление усталости .
Запас сопротивления усталости:
,
- запас сопротивления усталости по изгибу,
- запас сопротивления усталости по кручению,
где МПа - предел выносливости при изгибе,
МПа - предел выносливости при кручении,
- амплитуда циклов напряжений при изгибе (переменная составляющая цикла), , МПа, МПа
- среднее напряжение цикла (постоянная составляющая цикла), =0,
- амплитуда циклов напряжений при кручении (переменная составляющая цикла), , 5,8 МПа, 7,8 МПа,
- среднее напряжение цикла (постоянная составляющая цикла), , 5,8 МПа, 7,8 МПа,
, - коэффициенты, корректирующие влияние постоянной составляющей цикла напряжений по сопротивлению усталости,
- коэффициент концентрации напряжений при изгибе, =1,7, =1,8,
- коэффициент концентрации напряжений при кручении, =1,4, =1,35
- масштабный фактор,= 0,72, = 0,75,
- фактор шероховатости поверхности, для шлифованного вала = 1.
Для сечения I-I:
,
.
Для сечения II-II:
,
Прочность по сопротивлению усталости сечений вала достаточна.
5. Расчет шпоночных соединений
Шпоночное соединение червячного колеса с валом.
Диаметр вала d = 55 мм.
Выбираем призматическую шпонку 16 Х 10. см=110 МПа. Длину шпонки определяем из условия прочности на смятие:
мм.
Принимаем длину шпонки 28 мм.
Шпоночное соединение шкива ременной передачи с ведущим валом.
Диаметр вала d = 30 мм.
Выбираем призматическую шпонку 8 Х 7. см=110 МПа. Длину шпонки определяем из условия прочности на смятие:
мм.
Принимаем длину шпонки 12 мм.
Шпоночное соединение звездочки цепной передачи с ведомым валом.
Диаметр вала d = 45 мм.
Выбираем призматическую шпонку 14 Х 9. см=110 МПа. Длину шпонки определяем из условия прочности на смятие:
мм.
Принимаем длину шпонки 36 мм.
6. Выбор подшипников
Выходной вал редуктора. Колесо устанавливаем на роликовых конических подшипниках 7210Н, поставленных враспор.
Паспортная динамическая грузоподъемность C = 52,9 кН.
Паспортная статическая грузоподъемность C0 = 40,6 кН.
Реакции опор:
,
На опоре А
Н.
На опоре В
Н
.
Суммарная осевая составляющая:
Н
Н
< e, следовательно X =1, Y= 0.
> e, следовательно X =0,4, Y= 5,72.
Коэффициент безопасности Kб=1 (спокойная нагрузка).
Температурный коэффициент Kт=1 (температура до 1000).
Эквивалентная нагрузка:
Н.
Н
Выполняем расчет для опоры В как более нагруженной. (постоянный режим нагружения).
Эквивалентная долговечность:
,
где Lh - суммарное время работы подшипника.
часов.
Ресурс подшипника:
,
где n = 72 мин-1 - частота вращения.
млн. об.
Динамическая грузоподъемность:
,
где a1 = 1 - коэффициент надежности,
a2 = 1 - коэффициент совместного влияния качества материала и условий эксплуатации.
кН
C > C паспорт, следовательно условие проверки по динамической грузоподъемности выполняется. Эквивалентная статическая нагрузка:
,
где X0 = 0,5 и иY0 = 0,22ctg = 3,15 - для радиально-упорных подшипников.
Н < C0.
Условие проверки по статической грузоподъемности выполняется
7. Описание системы смазки
Система смазки комбинированная.
Смазка червячной передачи осуществляется путем окунания червяка в масло, заливаемое внутрь корпуса. Глубина погружения в масло червяка до половины диаметра.
Смазка подшипников осуществляется разбрызгиванием масла. Во избежание попадания в подшипник продуктов износа червячных колес, а также излишнего полива маслом подшипники защищаются маслозащитными шайбами.
Требуемая вязкость масла при скорости скольжения 4,8 м/с и контактных напряжениях 208,5 МПа - 2510-6 м2/с.
Применяем авиационное масло МС-20 с вязкостью 20,510-6 м2/с при t = 1000 С.
8. Литература
1. Иванов М.Н. Детали машин. - М. : Высшая школа, 1984.-336 с.
2. Анурьев В.И. Справочник конструктора-машиностроителя. - Т.1-3.М.: Машиностроение, 1978.
3. Киркач Н.Ф., Баласанян Р.А. Расчет и проектирование деталей машин. - Харьков: Вища школа, 1988.
4. Дунаев П.Ф., Леликов О.П. Детали машин. Курсовое проектирование. - М.: Высшая школа, 1984.
5. Решетов Д.Н. Детали машин. -М.: Машиностроение, 1989.
6. Детали машин: Атлас конструкций/ Под ред. Д.Н. Решетова. - М.: Машиностроение, 1979.
7. Методические указания к выполнению курсового проекта по дисциплине «Детали машин и основы конструирования». - Харьков, 1989.
8. Методические рекомендации по изучению дисциплины «Детали машин и основы конструирования». - Харьков, 1996.
Подобные документы
Выбор электродвигателя и его обоснование. Кинематический и силовой расчет привода, его передач. Размеры зубчатых колес, корпуса редуктора. Проверка долговечности подшипников, шпоночных соединений. Уточненный расчет валов. Выбор посадок деталей редуктора.
курсовая работа [1,3 M], добавлен 19.06.2014Энергетический и кинематический расчет привода, выбор материала, определение допускаемых напряжений для зубчатых передач. Расчет и выбор тихоходной и быстроходной зубчатых передач, валов, подшипников качения, шпоночных соединений, муфт; смазка редуктора.
курсовая работа [173,4 K], добавлен 08.09.2010Кинематический расчет привода. Предварительный и уточненный подбор закрытой косозубой цилиндрической передачи редуктора, валов, подшипников и шпоночных соединений. Конструирование зубчатых колес и корпуса редуктора. Выбор смазки колес и подшипников.
курсовая работа [426,8 K], добавлен 28.10.2012Определение силовых характеристик на валах привода. Расчет цепной, ременной и червячной передач, валов, размеров колес, корпуса редуктора, шпоночных соединений. Подбор подшипников качения. Выбор смазки и смазочных материалов. Тепловой расчет редуктора.
курсовая работа [12,6 M], добавлен 08.03.2015Кинематический расчет привода. Расчет зубчатых передач редуктора, ременной передачи, валов редуктора. Предварительный расчет валов. Конструктивные размеры корпуса редуктора. Проверка подшипников на долговечность. Проверка прочности шпоночных соединений.
курсовая работа [555,6 K], добавлен 20.12.2014Энергетический, кинематический и силовой расчеты привода. Расчет зубчатой передачи и валов редуктора, силовая схема нагружения. Конструирование зубчатых колес и эскизная компоновка редуктора. Проверочный расчет подшипников качения и шпоночных соединений.
курсовая работа [767,6 K], добавлен 25.06.2011Выбор электродвигателя и кинематический расчет. Расчет клиноременной передачи привода, зубчатых колес редуктора, валов редуктора. Конструктивные размеры шестерни и колеса, корпуса редуктора. Компоновка редуктора. Проверка долговечности подшипников.
курсовая работа [505,0 K], добавлен 11.11.2008Выбор электродвигателя и кинематический расчет привода. Подбор подшипников тихоходного вала. Оценка прочности шпоночных соединений. Конструирование элементов корпуса редуктора. Расчет червячной передачи, валов редуктора и крутящих моментов на них.
курсовая работа [1,2 M], добавлен 07.06.2010Выбор электродвигателя, кинематический и силовой расчет привода. Ориентировочный расчет валов и выбор подшипников. Конструктивные размеры зубчатых колес и корпуса редуктора. Проверка прочности шпоночных соединений. Выбор посадок деталей редуктора.
курсовая работа [2,0 M], добавлен 18.12.2010Кинематический расчет привода: выбор электродвигателя, определение частот вращения. Расчет закрытых передач, выбор материала зубчатых колес и определение допускаемых напряжений. Расчет валов и подшипников, корпуса редуктора. Смазка и сборка редуктора.
курсовая работа [460,3 K], добавлен 10.10.2012