Свойства металлов. Основные параметры при закалке стали

Определение температуры закалки, охлаждающей среды и температуры отпуска деталей машин из стали. Превращения при термической обработке и микроструктура. Состав и группа стали по назначению. Свойства и применение в машиностроении органического стекла.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 28.08.2011
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • 1. Назначьте температуру закалки, охлаждающую среду и температуру отпуска деталей машин из стали 40Х, которые должны иметь твердость 28.35 HRC. Опишите сущность происходящих превращений при термической обработке, микроструктуру и свойства
  • 2. Для изготовления разверток выбрана сталь ХВСГ. Укажите состав и определите группу стали по назначению. Назначьте и обоснуйте режим термической обработки. Опишите микроструктуру и свойства разверток после термической обработки
  • 3. В котлостроении используется сталь 12X1МФ. Укажите состав и группу стали по назначению. Назначьте режим термической обработки, приведите его обоснование и опишите структуру стали после термической обработки. Как влияет температура эксплуатации на механические свойства данной стали?
  • 4. Для изготовления деталей путем глубокой вытяжки применяют латунь Л68. Укажите состав и опишите структуру сплава. Назначьте режим термической обработки, применяемый между отдельными операциями вытяжки, и обоснуйте его выбор. Приведите общие характеристики механических свойств сплава
  • 5. Органическое стекло. Опишите его свойства и область применения в машиностроении
  • Литература

1. Назначьте температуру закалки, охлаждающую среду и температуру отпуска деталей машин из стали 40Х, которые должны иметь твердость 28.35 HRC. Опишите сущность происходящих превращений при термической обработке, микроструктуру и свойства

Среднеуглеродистая сталь, легированная хромом состоит из 0,4% углерода, 0,17-0,37% кремния, 0,50-0,80% марганца, 0,8-1,1% хрома. Максимальное содержание серы - 0,035%, фосфора - 0,035%.

Основные параметры при закалке - температура нагрева и скорость охлаждения. Температуру нагрева для сталей определяют по диаграммам состояния, скорость охлаждения - по диаграммам изотермического распада аустенита.

Для средненагруженных деталей небольших размеров применяют хромистые стали 40Х. С увеличением содержания углерода возрастает прочность, но снижаются пластичность и вязкость. Влияние температуры отпуска на механические свойства сталей показано на рис.1.

Рис.1. Отжиг поковок различного сечения из углеродистых и низколегированных сталей 40Х

Прокаливаемость хромистых сталей 40Х невелика. Хромистые стали склонны к отпускной хрупкости, поэтому после высокого отпуска охлаждение должно быть быстрым; для мелких деталей - в масле и для крупных - в воде.

Температура закалки. Доэвтектоидные стали нагревают до температуры выше критической точки Ас3 на 30-50°С. Если такие стали нагреть до температуры между критическими точками Асг и Ас3 и охладить, то в структуре закаленной стали, кроме мартенсита, будет присутствовать феррит, что существенно ухудшает свойства. Такая закалка называется неполной. Время нагрева зависит от размеров детали и теплопроводности стали, и его обычно определяют экспериментально. Для определения времени нагрева в справочниках приведены полуэмпирические формулы.

Превращение перлита в аустенит сопровождается полиморфным превращением Fe Fe, а также растворением цементита Fe3C в аустените. Превращение начинается с зарождения центров аустенитных зерен на поверхности раздела феррит-цементит. Экспериментально аустенит обнаруживается уже при небольших перегревах и очень малых выдержках. Это объясняется тем, что в стали поверхность раздела феррит-цементит сильно развита.

Образующиеся зерна аустенита вначале имеют такую же концентрацию углерода, как и исходная фаза - феррит, так как полиморфное превращение протекает с большей скоростью, чем диффузия углерода. Затем в аустените начинает растворяться вторая фаза перлита - цементит, содержание углерода в аустените увеличивается. К концу превращения в тех местах, где находились пластинки цементита, концентрация углерода в аустените становится более высокой по сравнению с участками, в которых до превращения был феррит. Поэтому для выравнивания состава аустенита требуется некоторое время, зависящее от температуры - чем выше температура, при которой совершалось превращение П А, тем быстрее завершится диффузионный процесс перераспределения углерода в аустените. На скорость превращения перлита в аустенит влияет степень дисперсности перлита - чем мельче пластинки цементита, тем быстрее образуется аустенит, так как в этом случае больше межфазная поверхность феррита с цементитом. Перлито-аустенитное превращение сопровождается уменьшением удельного объема примерно на 1%, поэтому происходит фазовый наклеп аустенита, т.е. деформация его кристаллической решетки. Таким образом, превращение совершается только в стали эвтектоидного состава. Доэвтектоидные стали после нагрева выше Ас1, состоят из аустенита и феррита и только после нагрева выше А~3 сталь приобретает строение однородного аустенита.

В углеродистых сталях образование аустенита и его гомогенизация протекают достаточно быстро - в течение нескольких минут. В легированных сталях для этих процессов требуется больше времени, так как концентрация легирующих элементов в феррите и карбидах различна, поэтому образующийся аустенит неоднороден не только по углероду, но и по концентрации легирующих элементов, скорость диффузии которых на несколько порядков меньше скорости диффузии углерода.

Начальные зерна аустенита всегда мелкие, так как в каждой перлитной колонии одновременно зарождается несколько центров кристаллизации аустенита. При дальнейшем нагреве зерна аустенита растут, причем в различных сталях с разной скоростью.

Стали различают по склонности к росту зерна аустенита при нагреве. Если зерно аустенита начинает быстро расти, даже при незначительном нагреве выше Av то сталь считают наследственно крупнозернистой; если зерно растет только при большом перегреве, то сталь является наследственно мелкозернистой. Даже стали одной марки, но разных плавок могут сильно различаться по склонности к росту аустенитного зерна. Это объясняется тем, что они содержат неодинаковое количество неметаллических включений (оксидов, нитридов, сульфидов и т.п.), которые могут затруднять рост аустенитного зерна при нагреве. Таким образом, склонность к росту аустенитного зерна является плавочной характеристикой.

Такие элементы, как ванадий, титан, молибден, вольфрам, алюминий, уменьшают склонность к росту зерна аустенита, а марганец и фосфор увеличивают ее. В стали 40Х присутствуют именно марганец и фосфор. Как правило, заэвтектоидные стали менее склонны к росту зерна. Условия выплавки стали также имеют большое значение, например, кипящая сталь обычно бывает наследственно крупнозернистой.

При последующем охлаждении зерна аустенита не измельчаются. Это следует учитывать при назначении режимов термической обработки, так как от размеров зерна существенно зависят механические свойства. Так, ударная вязкость мелкозернистой стали может в несколько раз превышать ударную вязкость крупнозернистой стали той же марки.

Различают величину зерна наследственного и действительного. Для определения наследственного зерна образцы нагревают до 930°С и затем определяют размер зерна. От размера зерна аустенита зависит поведение нагретой стали в различных процессах термической обработки и пластической деформации. Особенно чувствительна к размеру зерна аустенита ударная вязкость.

Действительная величина зерна - это размер зерна при обычных температурах, полученный после той или иной термической обработки.

Существует стандартная шкала величины зерна, согласно которой величину зерна характеризуют номером по восьмибалльной системе. Величину зерна определяют под микроскопом при увеличении в 100 раз и сравнивают с размерами зерна стандартной шкалы. Стали, имеющие зерно до номера 4, считают крупнозернистыми, а имеющие номер 5-8 - мелкозернистыми.

Превращения в стали при охлаждении. Если сталь охлаждать очень медленно, то происходящие превращения можно установить, пользуясь диаграммой состояния Fe-Fe3C. Термодинамическим условием этого превращения является некоторая степень переохлаждения (охлаждение ниже А1), когда свободная энергия перлита становится меньше свободной энергии аустенита.

сталь закалка металл свойство

При охлаждении стали с большей скоростью, кинетику и механизм превращения аустенита выясняют с помощью постановки специальных экспериментов. Превращение аустенита можно легко обнаружить с помощью наблюдений за изменениями магнитных характеристик образца, так как аустенит парамагнитен, а образующаяся механическая смесь феррита и цементита обладает ферромагнитными свойствами. С увеличением степени переохлаждения устойчивость переохлажденного аустенита уменьшается, но, достигнув минимума при переохлаждении ниже At на 150-200°С, вновь увеличивается.

Следовательно, это превращение является диффузионным. Время устойчивости аустенита и скорость его превращения зависят от разности свободных энергий, т.е. от степени переохлаждения. Скорость диффузии и разность свободных энергий зависят от степени переохлаждения противоположно: скорость диффузии экспоненциально уменьшается по мере понижения температуры превращения, а разность свободных энергий увеличивается. Максимальная скорость превращения соответствует переохлаждению ниже Ах на 150-200°С, т.е. соответствует минимальной устойчивости аустенита. При дальнейшем понижении температуры значительно уменьшается скорость диффузии, благодаря чему увеличивается устойчивость аустенита.

2. Для изготовления разверток выбрана сталь ХВСГ. Укажите состав и определите группу стали по назначению. Назначьте и обоснуйте режим термической обработки. Опишите микроструктуру и свойства разверток после термической обработки

Сталь ХВСГ - инструментальная легированная сталь с содержанием 1% углерода. Содержание легирующих элементов (хрома, вольфрама, марганца) - в пределах 1-1,5%. Серы и фосфора - не более 0,035%. Имеет высокие: твердость, прочность и износостойкость. Используется для изготовления режущего и измерительного инструментов, штампов и т.д. Твердость и вязкость зависят от содержания в сплаве углерода. Основой этой стали является инструментальная углеродистая сталь марки У10А, легированная хромом (X), вольфрамом (В), ванадием (Ф), кремнием (С) и другими элементами. После термической обработки твердость стали составляет HRC 62-64; их красностойкость 250-300° С.

Механические свойства развертки, после термической обработки, зависят главным образом от содержания углерода. С ростом содержания углерода в стали увеличивается количество цементита и соответственно уменьшается количество феррита, т.е. повышаются прочность и твердость и уменьшается пластичность. Происходит это потому, что образующаяся по границам зерен в заэвтектоидных сталях сетка вторичного цементита снижает прочность стали.

Кроме углерода, есть еще другие элементы - примеси, присутствие которых обусловлено разными причинами. Различают постоянные, скрытые, случайные и специально введенные примеси.

Постоянные примеси - это кремний, марганец, фосфор и сера. Марганец и кремний вводят в процессе выплавки в сталь для ее раскисления, т.е. для удаления FeO, поэтому их также называют технологическими примесями. Кроме того, марганец способствует уменьшению содержания сульфида железа FeS в стали: FeS + Mn MnS + Fe. Марганец и кремний растворяются в феррите, повышая его прочность; марганец может также растворяться и в цементите.

Сера - вредная примесь - попадает в сталь главным образом с исходным сырьем - чугуном. Сера нерастворима в железе, она образует с ним соединение FeS - сульфид железа. При взаимодействии с железом образуется эвтектика (Fe +FeS) с температурой плавления 988оС. Поэтому при нагреве стальных заготовок для пластической деформации выше 900°С сталь становится хрупкой. При горячей пластической деформации заготовки разрушаются. Это явление называется красноломкостью. Одним из способов уменьшения влияния серы является введение марганца. Соединение MnS плавится при 1620°С, эти включения пластичны и не вызывают красноломкости.

Фосфор попадает в сталь главным образом также с исходным чугуном, использованным для выплавки стали. До 1,2% фосфора растворяется в феррите, уменьшая его пластичность. Фосфор обладает большой склонностью к ликвации, поэтому даже при незначительном среднем количестве фосфора в отливке всегда могут образовываться участки, богатые фосфором. Располагаясь вблизи границ зерен, фосфор повышает температуру перехода в хрупкое состояние, т.е. вызывает хладноломкость. Поэтому фосфор, как и сера, является вредной примесью. Чем больше углерода в стали, тем сильнее влияние фосфора на ее хрупкость.

Так называют присутствующие в стали газы - азот, кислород, водород - ввиду сложности определения их количества. Газы попадают в сталь при ее выплавке. В твердой стали они могут присутствовать, либо растворяясь в феррите, либо образуя химические соединения (нитриды, оксиды). Газы могут находиться и в свободном состоянии в различных несплошностях. Даже в очень малых количествах азот, кислород и водород сильно ухудшают пластические свойства стали.

В результате вакуумирования стали их содержание уменьшается, свойства улучшаются. Случайной примесью может быть любой элемент (медь, алюминий, вольфрам, никель), который попал в шихту вместе с металлоломом или чугуном при выплавке стали. Содержание этих элементов ниже тех пределов, когда их вводят специально как легирующие добавки. Легирование осуществляют с целью улучшения механических свойств - прочности, пластичности и т.д. Кроме того, при введении в сталь легирующих элементов меняются физические, химические и другие ее свойства.

Нужный комплекс свойств достигается не только легированием, но и рациональной термической обработкой, в результате которой получается необходимая структура. Высокая прочность развертки, выполненной из легированной инструментальной стали ХВСГ может быть получена и за счет применения термомеханической обработки (ТМО). Объясняется это тем, что частичное выделение углерода из аустенита при деформации облегчает подвижность дислокаций внутри кристаллов мартенсита, что и способствует повышению пластичности.

Таким образом, развертки, выполненные из стали марки ХВСГ после термической обработки имеют высокие механические свойства. Отсутствие склонности к деформациям и трещинам, высокие режущие свойства, допустимую скорость резания 15-25 м/мин.

3. В котлостроении используется сталь 12X1МФ. Укажите состав и группу стали по назначению. Назначьте режим термической обработки, приведите его обоснование и опишите структуру стали после термической обработки. Как влияет температура эксплуатации на механические свойства данной стали?

Высококачественная сталь 12Х1МФ перлитного класса состоит из 0,8-0,15% С, 0,9-1,2% - хрома, 0,25-0,35% - молибдена, 0,15-0,30% - ванадия. Передел длительной прочности (МПа) при = 80 МПа и =60 МПа. Указанная сталь относится к группе конструкционных сталей с низким содержанием углерода, т.к. детали котлов и строительных материалов, для которых она используется, подвергаются сварке. А углерод ухудшает свариваемость. Эту сталь используют также для изготовления деталей машин, подвергаемых цементации. Наличие легирующих элементов увеличивает температурный интервал кристаллизации. Кроме того, диффузионные процессы в легированных сталях протекают медленно. В результате увеличивается склонность таких сталей к дендритной ликвации и полосчатости в структуре. Устраняется дендритная ликвация диффузионным отжигом.

Применяют также поверхностную закалку. Поверхностная закалка является одним из способов увеличения твердости поверхностных слоев изделия. Одновременно повышаются сопротивление истиранию, предел выносливости и т.п. Общим для всех способов поверхностной закалки является нагрев поверхностного слоя детали до температуры закалки с последующим быстрым охлаждением. Эти способы различаются методами нагрева изделий. Толщина закаленного слоя при поверхностной закалке определяется глубиной нагрева, прокаливаемость играет второстепенную роль или вообще не имеет значения.

Можно предложить закалку токами высокой частоты (закалка ТВЧ). Чем больше частота тока, тем тоньше получается закаленный слой. Обычно в практике применяют машинные генераторы с частотой 500-15 000 Гц и ламповые генераторы с частотой более 106 Гц (глубина закалки при таких частотах получается до 2 мм). Индукторы изготавливают из медных трубок, внутри которых непрерывно циркулирует вода, благодаря чему они сами не нагреваются. Форма индукторов соответствует внешней форме изделия, при этом необходимо соблюдать постоянное расстояние между индуктором и поверхностью изделия. Каждая установка имеет комплект индукторов.

Нагрев детали ТВЧ происходит за 3-5 с. После нагрева в индукторе деталь быстро перемещается в специальное охлаждающее устройство - спрейер, через отверстия которого на нагретую поверхность разбрызгивается закалочная жидкость (иногда нагретые детали сбрасываются в закалочные баки).

Высокая скорость нагрева смещает фазовые превращения в область более высоких температур. Кроме того, вследствие непродолжительных выдержек диффузия углерода не успевает произойти и в образовавшемся аустените наблюдается неоднородность его распределения. Чтобы ускорить диффузионные процессы, повышают температуру нагрева. Поэтому температура закалки при нагреве ТВЧ для одной и той же стали должна быть выше, чем при обычном нагреве.

При правильном режиме получается мелкоигольчатый или бесструктурный мартенсит, имеющий меньшую хрупкость и повышенную прочность. Твердость повышается на 2-3 единицы по сравнению с обычной закалкой, а также возрастает износостойкость и предел выносливости, который может увеличиваться в 1,5-2 раза.

Можно использовать пламенную поверхностную закалку, которую применяют главным образом для закалки изделий с большой поверхностью, при индивидуальном производстве и ремонте, иногда для закалки стальных и чугунных прокатных валков. Нагрев изделий осуществляется пламенем газовых или кислородно-ацетиленовых горелок. При нагреве изделий с большой поверхностью горелки с охлаждающим устройством перемещаются вдоль изделия или изделие движется, а нагревательное устройство неподвижно.

Толщина закаленного слоя при этом способе нагрева получается равной 2-4 мм. К недостаткам метода следует отнести сложность регулирования температуры нагрева.

Наиболее высокие значения длительной прочности достигаются после закалки и высокого отпуска. Температура отпуска должна быть выше рабочей, чаще 660-700°С. В процессе эксплуатации сталей протекают процессы коагуляции карбидов М3С, образование карбидов типа М23Св и М2С и твердый раствор обедняется молибденом. Все это снижает механические свойства. Для котельных установок, работающих при температуре 560°С и давлении 25,5 МПа чаще применяется сталь 12Х1МФ, обладающая хорошими технологическими свойствами и хорошей теплостойкостью

(= 140 МПа и =110 МПа).

4. Для изготовления деталей путем глубокой вытяжки применяют латунь Л68. Укажите состав и опишите структуру сплава. Назначьте режим термической обработки, применяемый между отдельными операциями вытяжки, и обоснуйте его выбор. Приведите общие характеристики механических свойств сплава

Латунь Л68 является многокомпонентным деформируемым сплавом меди и цинка с добавлением алюминия (специальная латунь). Формула: CuZn29Al. В её составе: меди - 68%, цинка - 29%, алюминия - 0,5-2,0%. Структура латуни Л68 состоит из -фаз (твердый раствор цинка в меди с кристаллической решеткой меди ГЦК). По содержанию цинка сплав относится к гомогенному типу латуни. Предельное напряжение - 6-16 кгс. мм-2, предел прочности - 15-50 кгс. мм-2, пластичность - 10-15%, твердость 50-110 МН/м2по Бринеллю. Сплав отличается благоприятным сочетанием прочностных свойств при высокой коррозионной стойкости. Временное сопротивление на разрыв 68 кгс-мм-2. Относительное удлинение при разрыве определяется содержанием цинка и уменьшается с увеличением степени холодной деформации (величина удлинения 29%). Имеет высокую стойкость против коррозионного растрескивания в присутствии аммиака. Применение зависит от эксплуатационных требований. Используется для изготовления труб, гильз, проволоки, винтов, деталей часов. Сплав характеризуется отличной деформируемостью в холодном состоянии при комнатной температуре. Но, чтобы уменьшить хрупкость сплава, а также для снятия внутренних напряжений его необходимо подвергнуть отжигу до температуры 700оС, а затем - деформации вытяжкой. Эта процедура уменьшит склонность к коррозионному растрескиванию. Быстрое охлаждение после отжига позволит избежать повышенной хрупкости. Для получения мелкого зерна перед глубокой вытяжкой полосы и ленты отжигают при более низкой температуре (450-550°С).

Таким образом, для изготовления деталей из латуни Л68 путем глубокой вытяжки рекомендуется следующая последовательность действий: отжиг до 700оС, растяжение заготовки до нужной длины и толщины и быстрое охлаждение.

5. Органическое стекло. Опишите его свойства и область применения в машиностроении

Органическое стекло - это прозрачный аморфный термопласт на основе сложных эфиров акриловой и метакриловой кислот. Чаще всего применяется полиметилметакрилат, иногда пластифицированный дибутилфталатом. Материал более чем в 2 раза легче минеральных стекол (1180 кг/м8), отличается высокой атмосферостойкостью, оптически прозрачен (светопрозрачность 92%), пропускает 75 % ультрафиолетового излучения (силикатные - 0,5 %). При температуре 80°С органическое стекло начинает размягчаться; при температуре 105-150°С появляется пластичность, что позволяет формовать из него различные детали. Критерием, определяющим пригодность органических стекол для эксплуатации, является не только их прочность, но и появление на поверхности и внутри материала мелких трещин, так называемого серебра. Этот дефект снижает прозрачность и прочность стекла. Причиной появления "серебра" являются внутренние напряжения, возникающие в связи с низкой теплопроводностью и высоким коэффициентом расширения.

Органическое стекло стойко к действию разбавленных кислот и щелочей, углеводородных топлив и смазочных материалов. Старение органического стекла в естественных условиях протекает медленно. Недостатком органического стекла является невысокая поверхностная твердость.

Увеличение термостойкости и ударной вязкости органического стекла достигается ориентированием; при этом увеличивается в несколько раз ударная вязкость и стойкость к "серебрению"; сополимеризацией или привитой полимеризацией полиметилмета-крилата с другими полимерами получают частично сшитую структуру (термостабильные стекла); применением многослойных стекол ("триплексов").

Органическое стекло (термопласт) относится к синтетическим конструкционным неметаллическим материалам. Область его применения и свойства идентичны другим подобным материалам. Применение их в машиностроении является одним из эффективных путей снижения металлоемкости конструкций, уменьшения их массы, повышения надежности и долговечности.

Оргстекло широко используют в машиностроении, авиации, радиотехнической и электротехнической промышленности и во многих других отраслях. При его формировании можно целенаправленно влиять на прочность, деформативность, теплопроводность, химическую стойкость и другие свойства.

Следует обратить внимание на определенную ошибочность существующего до сего времени мнения о том, что оргстекло как и все пластмассы является заменителем металла. Пластмассы, как и другие неметаллические материалы, по ряду свойств являются серьезными конкурентами металлов. Так, прочность на разрыв ориентированных стеклопластиков и углепластиков составляет 1600-2100 МПа. Многие из них по химической стойкости превосходят коррозионностойкие металлы и сплавы и являются превосходными материалами для химического и нефтяного машиностроения.

Тем не менее, нужно иметь в виду, что оргстекло как и в целом неметаллические материалы уступает металлам по прочности. Это ограничивает их самостоятельное применение в условиях действия повышенных механических нагрузок - статических, динамических и циклических. Оргстекло можно эксплуатировать при температурах, не превышающих 150-200°С, а то и ниже. Невысокие тепло - и электропроводность оргстекла, являясь важными характеристиками в электро - и радиотехнике, в других областях ограничивают его применение.

Значит речь должна идти не о заменителе металлов вообще (хотя в определенной мере, в определенных конструкциях это и так), а о материале, имеющем самостоятельное назначение или дающее хороший эффект в сочетании с металлами. Сильное различие в коэффициентах линейного термического расширения оргстекла и металлов требует от конструктора разработки мероприятий по компенсации изменений линейных размеров или возникающих от этого напряжений при создании этих материалов.

Техническая и экономическая целесообразность применения оргстекла в машиностроении и других областях техники определяется, с одной стороны, не сокращающимся дефицитом на металлы, особенно на никель и молибденсодержащие стали, цветные металлы и сплавы, с другой стороны, достаточной сырьевой базой, (а в некоторых случаях практически неисчерпаемой), более низкой себестоимостью, снижением монтажных и эксплуатационных затрат, более высокой долговечностью, особенно в изделиях, эксплуатируемых в условиях агрессивного воздействия окружающей среды (химическая, нефтяная, газовая, нефтехимическая и другие отрасли промышленности), малой массой изделия по сравнению с металлическим, что важно в таких отраслях, как самолетостроение, судостроение, автомобилестроение и т.п. Из него изготовляют светотехнические детали, оптические линзы и др. На основе полиметилметакрилата получают самоотверждающиеся пластмассы: ACT, стиракрил, АКР. Указанные материалы применяют для изготовления штампов, литейных моделей и абразивного инструмента.

Важным обстоятельством являются значительно меньшие энергетические затраты на производство изделий из оргстекла, чем из металлов. Себестоимость оргстекла превышает себестоимость конструкционных углеродистых сталей и находится на уровне стоимости высоколегированных сталей и сплавов. Однако экономический эффект c его применением достигается в результате резкого снижения массы изделия, затрат на изготовление и монтаж конструкции, эксплуатационных расходов.

Таким образом, оргстекло применяется в машиностроении в силу своей легкости, экономичности, практичности.

Литература

1. Геллер, Ю.А. Материаловедение. Методы анализа, лабораторные работы и задачи / Ю.А. Геллер, А.Г. Рахштадт; Под общ. ред. проф.А.Г. Рахштадта. - Изд.5-е, доп. и перераб. - М.: Металлургия, 1983. - 384 с.

2. Материаловедение: учебник для втузов / Под ред. Б.Н. Арзамасова. - М.: Машиностроение, 1986. - 236 с.

3. Научные основы материаловедения / Под ред. Б.Н. Арзамасова. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1994. - 366 с.

4. Технология конструкционных материалов: учебник для вузов. - М.: Машиностроение, 1977. - 664 с.

5. Технология металлов и материаловедение / Б.В. Кнорозов, Л.Ф. Усова, А.В. Третьяков и др.; Под ред. Л.Ф. Усовой. - М.: Металлургия, 1987. - 800 с.

6. Циммерман, Р. Металлургия и материаловедение: справочник / Р. Циммерман, К. Гюнтер; Под ред.П.И. Полухина, М.Л. Бернштейна; Пер. с нем. Б.И. Левина, Г.М. Ашмарина. - М.: Металлургия, 1982. - 480 с.

Размещено на Allbest.ru


Подобные документы

  • Марочный химический состав стали по ГОСТ. Превращения переохлажденного аустенита в изотермических условиях и при непрерывном охлаждении. Определение критической скорости закалки и температуры начала мартенситного превращения. Режимы термической обработки.

    курсовая работа [4,4 M], добавлен 13.02.2013

  • Группы изделий, требующие для их успешной эксплуатации "своих" специфических комплексов вязкостно-прочностных свойств. Способы отпуска закаленной стали. Влияние отпуска на прочность и пластичность стали. Основные сравнительные свойства для стали 45.

    статья [63,0 K], добавлен 24.06.2012

  • Повышение твердости стали за счет образования мартенситной структуры. Превращение перлита в аустенит. Нагрев заэвтектоидной стали до температуры выше критической точки. Основные фазовые превращения, протекающие в сталях при нагреве и охлаждении.

    доклад [19,3 K], добавлен 17.06.2012

  • Расшифровка марки стали 25, температуры критических точек, химический состав, механические свойства и назначение. Построение графика химико-термической обработки стальной детали с указанием температуры нагрева, времени выдержки и скорости охлаждения.

    курсовая работа [444,5 K], добавлен 20.05.2015

  • Процессы, протекающие в стали 45 во время нагрева и охлаждения. Применение стали 55ПП, свойства после термообработки. Выбор марки стали для роликовых подшипников. Обоснование выбора легкого сплава для сложных отливок. Способы упрочнения листового стекла.

    контрольная работа [71,5 K], добавлен 01.04.2012

  • Характеристика стали 60С2А, химический состав и механические свойства. Структурные превращения в стали при термической обработке. Выбор оборудования для обработки детали. Разработка технологии термообработки и маршрутной технологии изготовления пружины.

    курсовая работа [2,7 M], добавлен 05.12.2014

  • Общие положения и классификация видов термической обработки металлов, условия их практического использования. Основные превращения в стали, их характеристика и влияющие факторы. Выбор температуры и времени нагрева и его технологическое обоснование.

    реферат [127,2 K], добавлен 12.10.2016

  • Классификация инструментальных сталей. Влияние легирующих элементов на структуру и свойства штамповых сталей. Химический состав стали 4Х5МФ1С. Влияние температуры закалки на структуру и твердость материала. Оценка аустенитного зерна и износостойкости.

    дипломная работа [492,5 K], добавлен 19.02.2011

  • Влияние легирующих элементов на свойства стали. Состав, свойства и методы термической обработки хромистых сталей с повышенной прочностью и стойкостью против коррозии в агрессивных и окислительных средах. Технологии закалки окалиностойких сильхромов.

    реферат [226,9 K], добавлен 22.12.2015

  • Механические свойства металлов, основные методы их определения. Технологические особенности азотирования стали. Примеры деталей машин и механизмов, подвергающихся азотированию. Физико-химические свойства автомобильных бензинов. Марки пластичных смазок.

    контрольная работа [1,1 M], добавлен 25.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.