Расчет теплообменников

Тепловой и конструктивный расчет отопительного пароводяного подогревателя горизонтального типа и секционного водоводяного подогревателя; определение температурных множителей, коэффициентов теплоотдачи, гидравлических потерь; выбор теплообменников.

Рубрика Производство и технологии
Вид практическая работа
Язык русский
Дата добавления 21.11.2010
Размер файла 11,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Практическая работа №1

Теплообменники

Необходимо произвести тепловой и конструктивный расчет отопительного пароводяного подогревателя горизонтального типа и секционного водоводяного подогревателя производительностью Q = 1,2•106 ккал/ч. Температура нагреваемой воды при входе в подогреватель t2' = 65°С и при выходе t2'' = 95°С. Температура сетевой воды при входе в водоводяной подогреватель t1' = 140°C и при выходе t1'' = 80°C. Влияние загрязнения поверхности нагрева подогревателя и снижение коэффициента теплопередачи при низких температурах воды учесть понижающим коэффициентом =0,65.

Таблица 1

Исходные данные

№ варианта

Производительность, Q·10-6, кДж/ч

Температура нагреваемой воды при входе в подогреватель, t2', oС

Давление сухого насыщенного водяного пара, р, ат

1

3,78

75

3,5

2

5,04

70

4,0

3

5,88

65

4,5

4

6,72

60

5,0

5

7,56

75

3,5

6

8,40

70

4,0

7

9,24

65

4,5

8

10,1

60

5,0

9

3,78

70

3,5

10

5,04

75

4,0

11

5,88

65

3,5

12

6,72

65

5,0

13

7,56

70

3,5

14

8,40

75

4,0

15

3,78

65

4,5

16

5,04

65

4,0

17

5,88

65

4,0

Для расчета отопительного пароводяного подогревателя приняты следующие дополнительные данные:

– давление сухого насыщенного водяного пара р = 4 ат (tн = 143,62°С), см. Таблицу вода-водяной пар на линии насыщения;

– температура конденсата, выходящего из подогревателя, tк = tн;

– число ходов воды z = 2;

– поверхность нагрева выполнена из латунных труб ( = 90ккал/м·ч·град) диаметром d = 14/16мм.

Загрязнение поверхности учесть дополнительным тепловым сопротивлением з/з = 0,00015м2·ч·град/ккал.

В обоих вариантах скорость воды wт (в трубках) принять по возможности близкой к 0,9 м/сек.

Для упрощения расчета принять в = 1000 кг/м3.

На основе расчетов выбрать аппараты, выпускаемые серийно, и сделать сопоставление полученных результатов.

Для расчетов необходимо:

1. Рабинович О. М. Сборник задач по технической термодинамике. - М.: Машиностроение, 1973. - 344 с. (Таблица Насыщенный водяной пар (по давлениям))

2. Таблица зависимости кинематической вязкости воды от температуры

Пример расчета пароводяного подогревателя

Исходные данные: температура нагреваемой воды при входе в подогреватель t2' = 65°С, мощность Q = 1,2 ·106 ккал/ч.
Расчет: Определим расход воды:
(кг/ч)
или V = 40 м3/ч.
Число трубок в одном ходе:
(шт.)
где dв - внутренний диаметр теплообменных труб (из дополнительных данных).
Общее число трубок в корпусе:
(шт.)
Рисунок 1 - Размещение трубок в трубной решетке трубчатого подогревателя:
а - по вершинам равносторонних треугольников;
б - по концентрическим окружностям.
Принимая шаг трубок s = 25мм, угол между осями трубной системы = 60° и коэффициент использования трубной решетки = 0,7, определим диаметр корпуса:
(м) = 378 (м)
Определим также диаметр корпуса по Таблице 1.7 Приложения 1 и Рисунку 1 при ромбическом размещении трубок.
Для числа трубок n = 144 находим в Таблице 1.7 значение D'/s = 14 и, следовательно, D' = 14·25 = 350(мм).
Диаметр корпуса составит:
D = D'+dн+2k=350+16+2·20=406 (мм).
Приведенное число трубок в вертикальном ряду:
(шт.)
Определим коэффициент теплоотдачи п от пара к стенке:
Температурный напор:
(°С)
Средние температуры воды и стенки:
(°С)
(°С)
Режим течения пленки конденсата определяем по приведенной длине трубки (критерий Григулля) для горизонтального подогревателя, равной:
,
где т - приведенное число трубок в вертикальном ряду, шт.;
dн - наружный диаметр трубок, м;
А1 - температурный множитель, значение которого выбирается по Таблице 2:
(1/(м·град))
(°С)

Таблица 2

Значения температурных множителей в формулах для определения коэффициентов теплоотдачи

Конденсирующийся пар

Вода при турбулентном движении

Температу-ра насыщения, tн, °С

A1

А2

А3

A4·103

Температу-ра t, оС

A5

20

5,16

-

-

1,88

20

1746

30

7,88

-

-

2,39

30

1909

40

11,4

-

-

2,96

40

2064

50

15,6

-

-

3,56

50

2213

60

20,9

-

-

4,21

60

2350

70

27,1

-

-

4,91

70

2490

80

34,5

7225

10439

5,68

80

2616

90

42,7

7470

10835

6,48

90

2740

100

51,5

7674

11 205

7,30

100

2850

110

60,7

7855

11524

8,08

110

2957

120

70,3

8020

11 809

8,90

120

3056

130

82,0

8140

12039

9,85

130

3150

140

94,0

8220

12249

10,8

140

3235

150

107

8300

12375

11,8

150

3312

160

122

8340

12469

12,9

160

3385

170

136

8400

12554

14,0

170

2450

180

150

8340

12579

15,0

180

3505

При tн = 143,62°С имеем A1=98,71 (1/(м·град), тогда L = 12·0,016·30,62·98,71 = 580,32 , т. е. меньше величины Lкр = 3900 (для горизонтальных труб), следовательно, режим течения пленки ламинарный.

Для этого режима коэффициент теплоотдачи от пара к стенке на горизонтальных трубках может быть определен по преобразованной формуле Д.А. Лабунцова:

При tн = 143,62°С по Таблице 2 находим множитель A2 = 8248,96, тогда:

(ккал/(м2·ч·град))

Определяем коэффициент теплоотдачи от стенки к воде.

Режим течения воды в трубках турбулентный, так как:

,

где - коэффициент кинематической вязкости воды (по справочнику); = 0,373·10-6м2/c при средней температуре воды t = 81,42°С.

Коэффициент теплоотдачи при турбулентном движении воды внутри трубок:

,

где dэ = dв.

При t = 81,42°С по Таблице 2 множитель A5=2633,6, следовательно:

(ккал/(м2·ч·град))

Расчетный коэффициент теплопередачи (с учетом дополнительного теплового сопротивления з/з) определяем по формуле для плоской стенки, так как ее толщина меньше 2,5мм:

(ккал/(м2·ч·град))

Уточненное значение температуры стенки трубок:

(°С)

Поскольку уточненное значение tст мало отличается от принятого для предварительного расчета, то пересчета величины п не производим (в противном случае, если отличие в данных температурах более 3%, необходимо производить пересчет до достижения данной точности).

Расчетная поверхность нагрева:

2)

Ориентируясь на полученную величину поверхности нагрева и на заданный в условии диаметр латунных трубок d = 14/16мм, выбираем пароводяной подогреватель горизонтального типа конструкции Я.С. Лаздана (Рисунок 1.1, Таблица 1.1) с поверхностью нагрева F = 10,4м2, площадью проходного сечения по воде (при z = 2) fт = 0,0132м2, количеством и длиной трубок 172Ч1200мм, числом рядов трубок по вертикали т = 12. Основные размеры подогревателя приведены в Таблице 1.2.

Уточним скорость течения воды w в трубках подогревателя:

(м/с)

Поскольку активная длина трубок l =1200мм, длина хода воды

L = l·z = 1200·2 = 2400 (мм).

Определяем гидравлические потери в подогревателе. Коэффициент гидравлического трения при различных режимах течения жидкости и различной шероховатости стенок трубок можно подсчитать по формуле А.Д. Альтшуля:

,

где k1 - приведенная линейная шероховатость, зависящая от высоты выступов, их формы и частоты.

Принимая k1 = 0 (для чистых латунных трубок), формулу можно представить в более удобном для расчетов виде (для гидравлически гладких труб):

Уточняем критерий Рейнольдса:

Таблица 3

Значения T = f(Re) для гидравлически гладких труб

Re·10-3

т

Re·10-3

т

Re·10-3

т

Re·10-3

т

10

0,0303

80

0,0184

200

0,0153

340

0,0139

20

0,0253

90

0,0179

220

0,0150

360

0,0137

30

0,0230

100

0,0175

240

0,0147

380

0,0135

40

0,0215

120

0,0168

260

0,0146

400

0,01345

50

0,0205

140

0,0164

280

0,0144

60

0,0197

160

0,0160

300

0,0142

70

0,0190

180

0,0156

320

0,0140

Используя Таблицу 3, по известной величине Re находим т = 0,023.

Таблица 4

Значение коэффициента загрязнения труб хст

Материал труб и состояние их поверхности

хст

Медные и латунные чистые гладкие трубы

1,0

Новые стальные чистые трубы

1,16

Старые (загрязненные) медные или латунные трубы

1,3

Старые (загрязненные) стальные трубы

1,51 - 1,56

Потерю давления в подогревателе определяем с учетом дополнительных потерь от шероховатости в результате загрязнений труб по Таблице 4 и потерь от местных сопротивлений по Таблице 5.

Таблица 5

Коэффициенты местного сопротивления арматуры и отдельных элементов теплообменного аппарата

Наименование детали

Вентиль проходной d = 50мм при полном открытии

4,6

То же d = 400мм

7,6

Вентиль Косва

1,0

Задвижка нормальная

0,5 - 1,0

Кран проходной

0,6 - 2,0

Угольник 90°

1,0 - 2,0

Колено гладкое 90°, R = d

0,3

То же, R = 4d

1,0

Входная или выходная камера (удар и поворот)

1,5

Поворот на 180° из одной секции в другую через промежуточную камеру

2,5

То же через колено в секционных подогревателях

2,0

Вход в межтрубное пространство под углом 90 ° к рабочему потоку

1,5

Поворот на 180° в U-образной трубке

0,5

Переход из одной секции в другую (межтрубный поток)

2,5

Поворот на 180° через перегородку в межтрубном пространстве

1,5

Огибание перегородок, поддерживающих трубы

0,5

Выход из межтрубного пространства под углом 90°

1,0

Для условий проектируемого теплообменника по Таблице 4 для загрязненных латунных труб хст = 1,3, а по Таблице 5 коэффициенты местных сопротивлений имеют следующие значения:

Наименование детали

Вход в камеру

1,5·1 = 1,5

Вход в трубки

1,0·2 = 2,0

Выход из трубок

1,0·2 = 2,0

Поворот на 180°

2,5·1 = 2,5

Выход из камеры

1,5·1 = 1,5

Потеря давления в подогревателе (при условии w = const):

(мм вод. ст.)

Гидравлическое сопротивление пароводяных подогревателей по межтрубному пространству, как правило, не определяется, так как его величина вследствие небольших скоростей пара (до 10м/с) очень мала.

Пример расчета секционного водоводяного подогревателя

Исходные данные: давление сухого насыщенного водяного пара р = 4ат (tн = 143,62°С), мощность Q = 1,2 ·106 ккал/ч.
Расчет: Определим расходы сетевой воды и воды, нагреваемой в межтрубном пространстве:
(кг/ч)
или Vт = 20,0 м3 /ч;
(кг/ч)
или Vмт = 40,0 м3 /ч.
Площадь проходного сечения трубок (при заданной в условии расчета скорости течения воды в трубках w=1 м/с):
2)
Выбираем подогреватель МВН 2050-32 (Рисунок 1.2, Таблица 1.4). Согласно Таблице 1.3 он имеет: наружный диаметр корпуса 219мм и внутренний - 209мм, число стальных трубок (размером 16Ч1,4мм) n = 69шт., площадь проходного сечения трубок fт = 0,00935м2, площадь проходного сечения межтрубного пространства fмт = 0,0198 м2.
Скорость воды в трубках и в межтрубном пространстве:
(м/с)
(м/с)
Таким образом, в результате расчета совершенно случайно получены одинаковые скорости воды (Wт=Wмт).
Эквивалентный диаметр для межтрубного пространства:
(м)
Средняя температура воды в трубках:
(°С)
При этой температуре температурный множитель, необходимый для дальнейших расчетов (по Таблице 2), A 2960.
Средняя температура воды между трубками:
(°С)
При этой температуре температурный множитель (по Таблице 2) A5мт 2616.
Режим течения воды в трубках (при t1 = 110°С нт = 0,271·10-6м2/с) и межтрубном пространстве (при t = 80,0°С нмт = 0,38·10-6м2/с) турбулентный, так как:
Коэффициенты теплоотдачи (для турбулентного режима течения воды):
Коэффициент теплоотдачи три турбулентном движении воды внутри трубок:
(ккал/(м2·ч·град))
где dэ = dв.
(ккал/(м2·ч·град))
Расчетный коэффициент теплопередачи (коэффициент теплопроводности стали = 39ккал/(м·ч·град) определяем по формуле для плоской стенки, так как ее толщина меньше 2,5мм:
(ккал/(м2·ч·град))
Температурный напор:
(°С)
Поверхность нагрева подогревателя:
2)
Длина хода по трубкам при среднем диаметре трубок
d = 0,5·(0,016+0,0132) = 0,0146 (м):
(м)
Число секций (при длине одной секции lт = 4 м):
секции; принимаем 3 секции.
Уточненная поверхность нагрева подогревателя согласно технической характеристике выбранного аппарата составит:
2)
Действительная длина хода воды в трубках и межтрубном пространстве Lт = 4·3 = 12 (м), Lмт = 3,5·3 = 10,5 (м) (при подсчете Lмт расстояние между патрубками входа и выхода сетевой воды, равное 3,5м, выбрано из конструктивных соображений).
Определяем гидравлические потери в подогревателе. Коэффициенты гидравлического трения для трубок и межтрубного пространства определяем по формуле Альтшуля при k = 0,3·10-3мм (для бесшовных стальных труб изготовления высшего качества):
Коэффициенты местных сопротивлений для потока воды в трубках, принимаем по Таблице 5.

Вход в трубки

1,5·4 = 6,0

Выход из трубок

1,5·4 = 6,0

Поворот в колене

0,5·3 = 1,5

о = 13,5

Суммарный коэффициент местных сопротивлений для потока воды в межтрубном пространстве определяется из выражения:
Отношение сечений входного или выходного патрубка: fмт/fпатр = 1.
Потери давления в подогревателе с учетом дополнительных потерь хст от шероховатости (для загрязненных стальных труб по Таблице 4 принимаем хст = 1,51):
(мм вод. ст.)
Потери в межтрубном пространстве подсчитываются по аналогичной формуле, но лишь в том случае, когда сумма значений коэффициентов местных сопротивлений мт определена по указанной выше формуле, в противном случае расчет потерь pмт значительно усложняется.
(мм вод. ст.)
Сведем полученные результаты в Таблицу 6 и сравним их между собой.
Таблица 6
Расчетные данные кожухотрубчатого и секционного водоводяного теплообменников

Тип теплообменника

Коэффи-циент теплопе-редачи k, ккaл/(м2·ч·гpaд)

Темпера-турный напор t, °С

Поверх-ность нагрева

F, м2

Диаметр корпуса

D, м

Длина корпуса

L, м

Гидравли-ческое сопротивление p,

мм вод. ст

Число ходов z

Кожухотрубчатый

1953

62,2

9,88

0,414

1,81

0,526

2

Секционный

1240

27,3

38,25

219

4,44

1,17

3

Сравнение показывает, что для данных условий кожухотрубчатый теплообменник имеет те преимущества, что он более компактен и гидравлическое сопротивление его меньше.

Приложение 1

а)

б)

Рисунок 1.1 Горизонтальные пароводяные подогреватели конструкции Я.С. Лаздана: а - двухходовые; б - четырехходовые.

Таблица 1.1

Расчетные характеристики горизонтальных пароводяных подогревателей конструкции Я.С. Лаздана (Рисунок 1)

подогревателей

корпусов

Количество и длина трубок, мм

Поверхность нагрева, м2

Площадь проходного

сечения по воде, м2

Число рядов трубок по вертикали

Наиболь-ший расход воды, т/ч

При

четырех ходах

при двух

ходах

1

32 * 900

1,47

2

32 * 1 200

1,93

3

1

32 * 1 600

2,58

0,0012

0,0024

5

22/11

4

32 * 2 000

3,18

5

32 * 2 400

3,800

6

56 * 1 200

3,38

7

2

56 * 1 600

4,47

0,0022

0,004

7

40/20

8

56 * 2 000

5,66

9

56 * 2 400

6,66

10

172 * 900

7,78

11

3

172 * 1 200

10,40

0,0066

0,0132

12

120/60

12

172 * 1 600

13,75

13

172 * 2 000

15,8

14

172 * 2 400

20,40

Рисунок 1.2 - Водоводяной подогреватель МВН-2050-62.

Рисунок 1.3 - Одноходовой теплообменный аппарат типа ТН с диаметром корпуса 159 или 273мм, имеющий две камерные сварные крышки с плоскими донышками

Таблица 1.2

Основные размеры горизонтальных пароводяных подогревателей конструкции Я. С. Лаздана (Рисунок 1.1)

№ подогревате-лей

№ корпу-сов

Размеры, мм

Вес, кг

Dн

L

L1

L2

L3

L4

D

D1

D2

dн1

dн2

dн3

h1

1

1

219

1265

900

162

615

58

273

-

-

76

76

57

210

124

2

219

1565

1 200

162

765

730

273

-

-

76

76

57

210

138

3

219

1965

1600

162

965

930

273

-

-

76

76

57

210

158

4

219

2365

2000

162

1 165

1130

273

-

-

76

76

57

210

177

5

219

2,765

2400

162

1365

1330

273

-

-

76

76

57

210

197

6

2

265

1 664

1200

200

803

766

339

455

375

89

89

76

233

-

7

265

2043

1600

200

1003

951

339

455

375

89

89

76

233

209

8

265

2449

2000

200

1 203

1 151

339

445

375

89

89

76

233

228

9

265

2849

2400

200

1 403

1 351

339

445

375

89

89

76

233

247

10

3

414

1509

900

260

713

656

528

64

540

102

102

89

307

437

11

414

1809

1200

260

883

806

528

645

540

102

102

89

307

437

12

414

2209

1600

260

1063

1 006

528

645

540

102

102

89

307

535

13

414

2609

2000

260

1263

1206

528

645

540

102

102

89

307

591

14

414

3009

2400

260

1463

1 406

528

645

540

102

102

89

307

646

Таблица 1.3

Основные размеры водоводяных подогревателей МВН 2050-62 (Рисунок 1.2)

Типоразмер

Размеры, мм

Количество отверстий

Вес, кг

Dн

D

D1

D2

dн

dн1

d1

d2

H

h

L

L1

L2

L3

n1

n2

МВН 2050-29

МВН 2050-30

168

360

180

210

133

114

18

18

400

200

2040 4080

2322 4362

2502 4542

2682 4722

8

8

141

220

МВН 2050-31

МВН 2050-32

219

410

240

240

168

168

23

23

500

250

2040 4080

2402 4442

2640 4680

2877 4917

8

8

222

358

МВН 2050-33

МВН 2050-34

273

450

295

295

219

219

23

23

600

300

2040 4080

2422 4462

2729 4769

3035

5075

8

8

325

531

МВН 2050-35

МВН 2050-36

325

513

295

350

273

219

23

23

700

350

2040 4080

2492

4532

2840 4880

3187 5227

8

12

440

735

Примечание: Вес приведен для разъемных односекционных подогревателей.

Рисунок 1.4 - Двухходовые теплообменные аппараты типа ТН и ТЛ:

а - типа ТН с двумя эллиптическими крышками;

б - типа ТЛ с одной сварной и одной эллиптической крышками;

в - горизонтальный типа ТН с одной камерной сварной и одной эллиптической крышками.

Таблица 1.4

Расчетные характеристики водоводяных подогревателей МВН 2050-62 (Рисунок 1.2)

Типоразмер

Количес-тво и длина трубок, мм

Поверхность нагрева,

м2

Площади проходных сечений, м2

Эквивалентный диаметр сечения между трубками, м

Наибольшие расходы воды, т/ч

по трубкам

между трубками

через трубки

через корпус

МВН 2050-29 МВН 2050-30

37 * 2 046 37 * 4 086

3,38

6,84

0,00507

0,0122

0,0212

46/27

110/66

МВН 2050-31 МВН 2050-32

69 * 2 046 69 * 4 036

6,30

12,75

0,00935

0,0198

0,0193

84/50

178/107

МВН 2050-33 МВН 2050-34

109 * 2046 109*4086

9,93

20,13

0,0147

0,0308

0,0201

132/80

276/166

МВН 2050-35 МВН 2050-36

151 * 2046 151 * 4086

13,73

27,86

0,0204

0,0446

0,0208

184/110

400/240

Примечания:

1. Все данные приведены для одной секции.

2. Наибольшие расходы воды определены при ее объемном весе 1000 кг/м3. Приведенные в числителе расходы воды соответствуют ее скорости 2,5м/с, наибольшей при установке в местных системах.

Рисунок 1.5 - Теплообменные аппараты типа ТН:

а - четырехходовой;

б - шестиходовой.

Рисунок 1.6 - Двухходовой теплообменный аппарат типа ТП

Рисунок 1.7 - Маслоохладитель завода Пергале типа МП-37

Таблица 1.5

Технические характеристики вертикальных пароводяных подогревателей

Типоразмер

Количество

трубок, шт.*

Длина

трубок,

мм

Поверх-ность нагрева, м2

Число

ходов

Площадь проход-

ного

сечения по

воде, м2

Н, м**

Необходимый

расход воды,

т/ч***

Расчетное

избыточное давление, am

в труб-

ках

(вода)

в кор-

пусе

(пар)

БП-43м

236

3170

43

4

0,0142

1,25

125

12

7

БП-65м

360

3170

65

2

0,0433

1,45

380

14

5

Б0-90м

488

3170

90

4

0,0293

1,45

250

14

2,5

БП-90м

488

3170

90

2

0,586

1,45

500

14

5

Б0-130м

708

3166

130

4

0,0426

1,45

380

14

2,5

Б0-200м

1018

3410

200

2

0,0613

1,67

550

14

2,5

БП-200м

1 018

3410

200

4

0,1225

1,67

1 100

14

7

БГТ-200у

1018

3410

200

2

0,1225

1,67

1 100

14

13

Б0-350м

1320

4545

350

4

0,0792

1,61

700

14

2,5

БП-300-2м

1 144

4545

300

2

0,1375

1,61

1 200

14

13

БО-550-Зм

2092

4545

550

4

0,1251

1,80

1 100

14

2,5

БП-500м

1880

4545

500

2

0,226

1,6

250

14

13

* Трубки латунные 19/17,5 мм.

** Н - расстояние между соседними перегородками каркаса подогревателя.

*** Наибольшие расходы воды определены при ее скорости w = 2,5 м/с.

Таблица 1.6

Условные давления, весовые данные и технические характеристики одноходовых теплообменных аппаратов типа ТН (Рисунок 1.3)

Технические характеристики

Диаметр корпуса, мм

159

273

ру, am

2,5 6 10 16 25 40

2,5 6 10 16 25 40

G1, кг

83 89 108 119 166 175

108 117 151 180 243 321

G2, кг

32

96

G3, кг

8

37

G4, кг

18,6

54,3

Fу м2

1 2 4 6

4 6 10 12 16 20

Fp, м2

0,9 1,9 4 6

3,0 6,5 9,6 13 16 19,5

l, мм

1000 2000 4000 6000

1000 2000 3000 4000 5000 6000

H, мм

1520 2520 4520 6520

1620 2620 3620 4620 5620 6620

n, шт.

13

42

d/t, мм

25/32

25/32

f1, м2

0,011

0,032

f2, м2

0,0044

0,014

Таблица 1.7

Относительные значения диаметра трубной решетки в зависимости от числа трубок при ромбическом и концентрическом размещениях

D'/s

n'1

n'2

D'/s

n'1

n'2

2

7

7

22

439

410

4

19

19

24

517

485

6

37

37

26

613

566

8

61

62

28

721

653

10

91

93

30

823

747

12

127

130

32

931

847

14

187

173

34

1045

953

16

241

223

36

1 165

1066

18

301

279

38

1 306

1 185

20

367

341

40

1459

1310

Здесь n'1 - общее количество трубок, размещаемых на трубной доске по вершинам равносторонних треугольников ("ромбическое" размещение); n'2 - общее количество трубок, размещаемых на трубной доске по концентрическим окружностям (Рисунок 1).


Подобные документы

  • Анализ возможных схем теплообменников, учёт их конструктивных особенностей. Конструкции трубчатых, пластинчатых и спиральных аппаратов поверхностного типа. Выбор конструктивной схемы прибора. Тепловой расчёт конструкция графитового теплообменника.

    курсовая работа [639,4 K], добавлен 11.08.2014

  • Характеристика горизонтального пароводяного, секционного водо-водяного и вертикального пароводяного подогревателей. Проведение расчётов подогревателей графоаналитическим методом. Нахождение площади проходного сечения трубок, расчётной поверхности нагрева.

    контрольная работа [1,2 M], добавлен 08.06.2012

  • Анализ аналога пластинчатого подогревателя, описание его достоинств и недостатков. Определение гидравлических и прочностных показателей, расчет тепловых и конструктивных параметров выбранного кожухотрубного подогревателя для пастеризации молока.

    курсовая работа [638,3 K], добавлен 02.02.2011

  • Классификация теплообменных аппаратов и теплоносителей. Конструкции трубчатых, пластинчатых и спиральных аппаратов поверхностного типа. Определение поверхности нагрева, длины и количества секций прямоточного водяного обогревателя горячего водоснабжения.

    курсовая работа [961,6 K], добавлен 23.04.2010

  • Использование теплообменников в технологических процессах на предприятиях пищевой промышленности. Определение диаметров штуцеров. Конструктивный расчет теплообменника. Расчет фланцевых соединений. Определение общего количества трубок в теплообменнике.

    курсовая работа [729,5 K], добавлен 28.09.2009

  • Изучение конструкции и принципа работы спиральных теплообменников. Рабочие среды спиральных теплообменных аппаратов. Расчет тепловой нагрузки, скорости теплоносителя в трубах, расхода воды, критериев Рейнольдса и Нуссельта, коэффициентов теплоотдачи.

    контрольная работа [135,3 K], добавлен 23.12.2014

  • Назначение регенеративных подогревателей питательной воды. Использование в качестве греющей среды пара промежуточных отборов турбин. Определение и расчет площади поверхности теплообмена подогревателя, количества и длины труб, диаметра корпуса аппарата.

    курсовая работа [299,1 K], добавлен 28.03.2010

  • Методика теплового расчета подогревателя. Определение температурного напора и тепловой нагрузки. Расчет греющего пара, коэффициента наполнения трубного пучка, скоростных и тепловых показателей, гидравлического сопротивления. Прочностной расчет деталей.

    курсовая работа [64,6 K], добавлен 05.04.2010

  • Выбор и обоснование конструктивного типа теплообменника. Определение количества передаваемой теплоты и недостающих параметров. Гидравлический расчет коэффициентов теплоотдачи и теплопередачи, действительных скоростей теплоносителей, воздухоподогревателя.

    практическая работа [1,0 M], добавлен 08.11.2012

  • Материальный баланс выпарного аппарата. Определение температуры кипения раствора, расход греющего пара, коэффициентов теплопередачи и теплоотдачи. Конструктивный расчет, объем парового пространства. Расчет вспомогательного оборудования, вакуум-насоса.

    курсовая работа [131,2 K], добавлен 03.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.