Релаксационная стойкость напряжений в металлах и сплавах
Физическая природа, механизмы релаксации напряжений в металлах и сплавах. Методы изучения релаксации напряжений. Влияние различных факторов на процесс релаксации напряжений и ее критерии. Влияние термомеханической обработки на стойкость сталей и сплавов.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 03.05.2009 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Косвенной характеристикой релаксации, в принципе аналогичной , можно считать величину осадки цилиндрической спиральной пружины под воздействием сжимающего усилия. Как известно, такая методика испытания широко применяется для оценки релаксационной стойкости пружинных сталей и сплавов.
Вместе с тем величина и для данного времени ф недостаточно полно характеризуют сравнительную сопротивляемость релаксации исследуемых материалов, поскольку они не отражают ни предыдущего, ни дальнейшего протекания процесса релаксации. Для суждения о кинетике спадания напряжений необходимо знать или за различные промежутки времени, составляющие 0,05; 0,1; 0,2; 0,5 от полного времени испытания или заданного срока службы.
Ресурс напряжений. В ряде случаев снижение напряжения в процессе релаксации удобно представлять в относительных значениях от начального напряжения. Относительная величина оставшихся напряжений, выраженная в процентах, получила название «ресурса напряжений»:
(59)
Скорость релаксации. Различают «истинную», «среднюю» и «логарифмическую» скорости релаксации.
Истинную (или «мгновенную») скорость релаксации в любой точке кривой напряжение -- время
(60)
практически не определяют. Обычно подсчитывают среднюю скорость релаксации () за некоторый промежуток времени, ограниченный двумя точками ( и ) на первичной кривой релаксации;
(61)
Величину измеряют в единицах напряжения, отнесенных к единице времени, или в процентах в час.
Логарифмическая скорость релаксации определяется уравнением
(62)
и выражается в величинах или Величина, обратная k:
(63)
под названием «время релаксации» ранее также применялась в качестве характеристики релаксации.
И.А. Одинг и Ф.И. Алешкин установили на железе Армко прямолинейную (в логарифмической системе координат) зависимость скорости релаксации от времени испытания. Температурная зависимость выра-жена на логарифмическом графике ломаной линией.
Предел релаксации. Этот термин применяют, по крайней мере, в трех вариантах: истинный (физический) предел релаксации напряжений; условное напряжение для заданной скорости релаксации; условный (технический) предел релаксации (по напряжению).
Под истинным (физическим, теоретическим) пределом релаксации напряжений по аналогии с физическим пределом ползучести понимают максимальное начальное напряжение, еще не вызывающее релаксации. Эта характеристика практически не применяется, и существование физического предела релаксации пока не имеет достаточного экспериментального подтверждения.
4 Влияние термомеханической обработки на релаксационную стойкость сталей и сплавов
Релаксационная стойкость сплавов зависит не только от химического состава, но и от их структуры. Можно отметить общие для всех типов сплавов особенности структурного состояния, которые (прямо или косвенно) влияют на процесс релаксации напряжений при обычной и повышенной температурах. Сюда относятся: величина зерна твердого раствора, его стабильность, количество и размеры частиц избыточных фаз, их взаиморасположение и взаимодействие. Перечисленные структурные факторы регулируются термической обработкой.
Вместе с тем следует учитывать, что длительное пребывание сплава при повышенных температурах может существенно изменить исходное структурное состояние, созданное термической обработкой.
4.1 Положительное влияние ТМО на релаксационную стойкость
Термомеханическая обработка металлов и сплавов, представляющая собой сочетание пластического деформирования (наклепа) и термической обработки, является прогрессивным технологическим процессом, позволяющим повышать уровень механических свойств стали и других сплавов, в том числе и жаропрочных.
Возможность упрочнения металлических сплавов сочетанием механического и фазового наклепа отмечалась еще в 1943 г. в теоретических работах С.Т. Конобеевского. Реальная возможность применения термомеханической обработки для повышения жаропрочных свойств впервые показана В.Д. Садовским с сотрудниками. В дальнейшем было проведено значительное число экспериментальных исследований, исчерпывающий обзор которых можно найти в труде М. Л. Бернштейна [14].
Многочисленные способы такой обработки могут быть отнесены к трем основным видам: НТМО (низкотемпературная термомеханическая обработка), ВТМО (высокотемпературная термомеханическая обработка) и МТО (механико-термическая обработка).
Различные варианты этих обработок включают операции пластического деформирования, которые проводят при самых разнообразных степенях деформации и различных температурах, и собственно термическую обработку основные параметры которой (температура, время, скорости нагрева и охлаждения) могут колебаться в широких пределах. В результате получаются самые различные сочетания механического наклепа, рекристаллизации, возврата и старения, суммарное влияние которых на про-цесс релаксации напряжений может быть различно и зависит, кроме того, от конкретных рабочих условий -- длительности и температуры.
При комнатной, пониженной и умеренно повышенной температурах любая термомеханическая обработка (так же, как и холодный наклеп), как правило, повышает релаксационную стойкость металлов и сплавов. Это объясняют тем, что ТМО приводит к созданию в структуре поликристаллических металлов равномерно распределенных внутренних дислокационных барьеров, препятствующих движению дислокаций. Одновременно увеличивается плотность дислокаций, причем последняя после НМТО (при одинаковой степени деформации) почти на порядок выше, чем после ВТМО.
Положительное влияние ТМО может быть показана на примере низколегированной стали 35ГС, исследованной в работе. ВТМО заключалась в деформировании на 30% при 900°С с последующими закалкой и отпуском; Испытание на релаксацию проводилось при комнатной температуре кольцевым методом, при достаточно высоких значениях начального напряжения: 950, 1200, 1400 и 1600 МН/м2 (95, 120, 140, 160 кг/мм2). Как видно из рисунка 19, падение напряжения у образцов, подвергнутых ВТМО, меньше, чем у закаленных и отпущенных образцов. Эта закономерность справедлива как для начального периода релаксации, так и по истечении 200--400 ч.
Кроме того, из полученных данных следует, что ВТМО приводит к более стабильной структуре стали: аномальные пики (на начальном участке) кривых для закаленных образцов, которые авторы объясняют распадом остаточного аустенита и выделением углерода из твердого раствора, на кривых, отвечающих ВТМО, отсутствуют.
Благоприятное влияние предварительной пластической деформации на сопротивление релаксации у перлитных сталей при комнатной и умеренно повышенных температурах не вызывает сомнений. Так, например, холодное деформирование углеродистой стали при значительных обжатиях (до 80%), но низком начальном напряжении [ = 400 МН/м2 (40 кг/мм2)] повышает релаксационную стойкость при 20 и 150°С, тем в большей степени, чем выше содержание в стали углерода (в пределах 0,3--0,9%). При этом многие авторы указывают, что существует оптимальная степень наклепа. Как показал А. А. Красильников [11], эта оптимальная величина деформации для высокоуглеродистой стали У8А изменяется с температурой, составляя 80% при 20° С; 50% при 150° С и лишь 20% при 450° С. Болеее подробные данные по этому вопросу можно найти в книге В.Я. Зубова и С.В. Грачева.
1 -- после ВТМО; 2 -- после закалки и отпуска при 200° С
Рисунок 19 - Кривые релаксации стали 35ГС при 20°С и различных начальных напряжениях.
При повышении температуры на процесс релаксации напряжений оказывают влияние такие явления, как рекристаллизация, возврат, старение. В этих условиях решающее значение приобретает временной фактор. По истечении некоторого промежутка времени, зависящего) от температуры, упрочняющее действие ТМО утрачивается и преимущество получает материал, не подвергавшийся ТМО.
Если требуется увеличить время эффективного воздействия ТМО на релаксационную стойкость данного материала, не следует стремиться к чрезмерно высокой плотности дислокаций в металле, так как такое структурное состояние, получаемое, например, путем НТМО, является при длительном температурном влиянии нестабильным. Лучшие результаты дает ВТМО, приводящая к несколько меньшей плотности дислокаций.
Для длительной высокотемпературной службы предпочтительна полигональная структура. Полигонизация может создаваться в определенных условиях и при ВТМО, и при НТМО, с применением относительно малых степеней пластической деформации. В случае НТМО для образования полигональной структуры необходим дополнительный нагрев в дорекристаллизационном интервале температур, называемой некоторыми авторами рекристаллизационным отжигом.
Стабильная полигональная структура получается с помощью механикотермической обработки (МТО), предложенной и разработанной И. А. Одингом и его школой. Этот вид обработки заключается в деформировании металла на 1--10% при определенной температуре и последующей выдержке в дорекристаллизационном интервале температур. Обе эти температуры Деформирования и тепловой выдержки -- в некоторых случаях совпадают. Например, при обработке аустенитной стали 1Х18Н9 для обеих операций рекомендуется 600° С.
М.Л. Берншейн и Н.Б. Либман [14] изучали влияние ТМО (по схеме закалка -- деформация -- старение) на релаксацию напряжений элинварных сплавов марок Н41ХТА и Н35ХМВА при 550°С и начальных напряжениях . При испытании образцов из сплава Н41ХТА после закалки с 1000° С, деформации на 8% и отпуска в течение 0,5 и 5 ч было установлено лишь незначительное повышение релаксационной стойкости по сравнению с недеформированными образцами (рисунок 20,а,б). Влияние температуры отпуска сказалось лишь в самый начальный момент процесса релаксации.
Иная картина наблюдалась для сплава, деформированного после закалки с 1000°С на 14%, когда при последующем отпуске образовалась полигональная структура. В связи с заметным повышением при указанной обработке предела упругости величина в испытаниях на релаксацию была доведена до 930 МН/м2 (93 кг/мм2). Как видно из рисунка 20,в, релаксационная стойкость сплава также существенно повысилась, в особенности после отпуска при 800°С, которое создало в сплаве настолько устойчивую дислокационную структуру, что при 550°С релакса-ция напряжений при данной длительности испытаний вообще не наблюдалась.
а -- закалка с 1050° С + отпуск; б -- то же с 1003°С. + де-формация 8% + отпуск; в -- то же + деформация 11% + отпуск при t, °С:
1 - 600; 2 - 700; 3 - 800
Рисунок 20 -- Кривые релаксации сплава Н41ХТА при 550°С.
Аустенитные стали и сплавы на никелевой основе, как известно, обладают большой способностью к пластической деформации, поэтому влияние ТМО на их свойства наиболее заметно. Например, путем ВТМО можно повысить 100-ч длительную прочность аустенитных сталей при 550--650°С на 15--25%. Примерно такое же приращение (на 20%) при 600° С дает МТО стали 1Х18Н9Т.
Эффективность ТМО жаропрочных аустенитных сталей и сплавов подтверждается многочисленными исследованиями. Однако в технической литературе почти отсутствуют сведения о влиянии ТМО и МТО аустенитных сталей и сплавов на их релаксационную стойкость. Имеются лишь отдельные данные о применении к ним холодной пластической деформации (наклепа), которая должна влиять на их сопротивляемость релаксации в том же направлении, как и различные варианты НТМО.
В частности, установлено, что холодное деформирование (с небольшими степенями обжатия) хромоникелевой аустенитной стали типа 18-9 и 18-10 марок Х18Н19, Х18Н9Т, Х18Н10, Х18Н10Т улучшает сопротивление релаксации при умеренно повышенных температурах (до 400°С).
На холоднодеформированной проволоке диаметром 3,8; 1, 9 и 1,5 мм из стали 1Х18Н9Т В.Я. Зубовым и Л.А. Красильниковым было изучено влияние более высоких обжатий (30, 60 и 90%). Отмечены заметное уменьшение сопротивления релаксации (в интервале от 150 до 450° С) с увеличением степени обжатия, а также положительная роль отпуска при температурах до 400° С. Следует отметить, что продолжительность испытаний на релаксацию в противоположность предыдущему исследованию здесь была невелика (15ч).
При более высоких температурах (600--850°С) отрицательное влияние предварительной пластической деформации отмечается уже при меньших степенях наклепа (15--30%). Влияние ТМО на релаксационную стойкость сплава ХН67ВМТЮ на никелевой основе исследовано М. Л. Бернштейном и Э. Л. Ситниковой. Эти авторы изучали влияние степени деформации и режи-мов старения на величину осадки (при сжатии) винтовых пружин диаметром 12,7 мм, изготовленных из волоченой проволоки указанного сплава с различными степенями обжатия. При 500° С и = 600 800 МН/м2 наименьшая осадка (12% за 25 ч) наблюдалась после 50%-ного обжатия с последующим старением в течение 6 ч при 600--650° С, а при 600° С (20% за 25 ч)--после 25%-ного обжатия и старения 6 ч при 750° С
Практически же применение ТМО для жаропрочных сплавов в условиях релаксации связано с дальнейшим накоплением экспериментальных данных, которые позволят построить реальные графики.
4.2 Структурные превращения в процессе релаксации напряжений
Роль структурных превращений, происходящих в процессе релаксации напряжений при высоких температурах, удобнее всего рассмотреть на аустенитовых сталях и никельхромовых сплавах, поскольку в этих материалах, обычно относящихся к числу дисперсионно твердеющих, возможны различные варианты структурных превращений. Так, при длительном нагреве в определенном температурном интервале предварительно закаленной, а в большинстве случаев и отпущенной стали выделяются избыточные фазы из твердого раствора (карбидные либо интерметаллидные), а ранее выделившиеся метастабильные фазы переходят в более устойчивое структурное состояние. В некоторых аустенитных сталях, как уже отмечалось выше, под воздействием температуры возможен частичный распад твердого раствора, связанный с аллотропическим превращением , ,.
Эти превращения в аустенитных сталях могут происходить и в процессе ползучести или релаксации напряжений при Высоких температурах (несмотря на предварительный стабилизирующий отпуск).
Поскольку перечисленные явления сопровождаются изменением объема, это может отразиться на процессе релаксации, когда длина детали или образца должна оставаться постоянной. Особый интерес представляет влияние на релаксацию напряжений структурных превращений, связанных с уменьшением объема. В этом случае прирост напряжения за счет сокращения длины стержня (вследствие уменьшения объема) может превысить падение напряжения в процессе релаксации. В результате действующее напряжение с течением времени возрастает (отрицательная релаксация или аккумуляция напряжений).
Структурные превращения при повышенных температурах в цветных сплавах в некоторых случаях также приводят к отрицательной релаксации.
Однако далеко не во всех случаях отрицательный объемный эффект скажется подобным образом на первичных кривых напряжение -- время. Необходимо также принимать во внимание относительную жаропрочность основной структуры твердого раствора и выделяющейся фазы, а также ее количество, форму и размеры выделившихся частиц. Например, мелкодисперсные карбиды, повышая сопротивление релаксации, будут действовать в том же направлении, что и уменьшение объема металла, а скоагулированные выделения, разупрочняющие сталь, -- аналогично увеличению объема.
Далее, если принять, что фазы б и у в условиях релаксации (так же, как и при ползучести) имеют меньшую жаропрочность, чем г-твердый раствор, то при достаточно большом содержании этих фаз в структуре сплава падение напряжения в результате релаксации может превысить прирост напряжения, связанный с уменьшением объема.
Конкретным примером может служить серия хромоникельмарганцевых сталей, склонных к образованию у-фазы в процессе длительного нагрева при 650°С, исследованных Я.С. Гинцбургом [10]. Превращение происходит с уменьшением объема. Тем не менее, первичные кривые релаксации этих сталей изгибаются не кверху, а книзу, что свидетельствует о резком релаксационном разупрочнении стали в результате образования в структуре значительных количеств у-фазы. Подобные явления могут наблюдаться, когда во время релаксационного процесса при соответствующей температуре начинается интенсивное выпадение избыточных фаз, обладающих пониженной жаропрочностью.
Рассмотренные случаи могут быть квалифицированы как аномальные. Практически применяемые для горячего крепежа аустенитные стали, как правило, имеют достаточно устойчивый твердый раствор и аллотропические превращения обычно отсутствуют. В условиях высокотемпературной релаксации структурные изменения в таких сталях ограничиваются выделением из твердого раствора вторичных фаз -- карбидных или интерметаллидных. При невозможности полностью устранить внутренние превращения в сплавах в ряде случаев можно их использовать для повышения длительной релаксационной стойкости и жаропрочности.
Для примера приведем аустенитную жаропрочную сталь Х15Н25В4Т (ЭИ164). В процессе испытания на релаксацию при 680--700°С в структуре предварительно закаленной и отпущенной при 750° С стали непрерывно происходит дополнительное образование вторичных фаз (в основном Ni3Тi). Поскольку частицы этого интерметаллида при указанной температуре выделяются из твердого раствора в достаточно дисперсном виде, они тормозят процесс релаксации и первичные кривые (рисунок 21,а) отражают монотонный спад напряжения.
1 -- 200(20); 2 -- 250(25); 3 -- 300(30)
Рисунок 21 -- Первичные кривые релаксации стали Х15Н25В4Т при 700°С. 750° С и , МН/м2.
При повышении температуры до 750°С структурные превращения стали Х15Н25В4Т при длительном нагреве имеют более сложный характер. Как было показано Ю.В. Латышевым, фаза (с кубической решеткой) частично перерождается в фазу (с гексагональной решеткой). После 5000 ч начинается процесс обратного растворения фазы Ni3Тi, количество ко-торой по истечении 10000 ч уменьшается почти до исходного. Одновременно в структуре непрерывно образуется интерметаллическое соединение Fe2W (типа фаз Лавеса), которое компенсирует «недостачу» в фазе Ni3Тi. Таким образом, суммарное содержание интерметаллидных фаз в стали за 5000--10000 ч не только не уменьшается, но даже незначительно возрастает (с 4,9 до 5,35%). Количество фазы Ni3Тi за то же время уменьшилось с ~4 до 2%, а количество фазы Fe2W, наоборот, возросло до 3,3%.
Описанные превращения способствуют сохранению сопротивления ползучести на достаточном уровне даже при столь высокой для стали этого класса температуре, как 750°С. Однако в условиях релаксации напряжений замена фазы Ni3Тi фазой Fe2W лишь несколько затормаживает разупрочнение стали при температуре 750°С. По истечении 1000 ч оставшееся напряжение составляет всего 35--40% от начального (рисунок 21, б). Можно полагать, что структурная нестабильность данной стали при 750°С является в условиях релаксации отрицательным фактором.
Интересные результаты дало уникальное по длительности испытание на релаксацию жаропрочного сплава Х15Н65ВМТЮ на никельхромовой ос-нове. Сплав был испытан на релаксацию при 750°С в течение 20000 ч при начальных напряжениях, составляющих 33, 40, 50 и 60% от среднего значения предела текучести сплава при той же температуре 600 МН/м2. Термическая обработка состояла из закалки с 1180°С на воздухе и отпуска в течение 16 ч при 800°С.
Специально проведенные исследования показали, что длительный нагрев ХН65ВМТЮ при 750°С, несмотря на предшествовавший стабилизирующий отпуск, вызыва-ет дополнительное выделение избыточной фазы типа Niз(Тi,Аl), сопровождающееся частичным перераспределением некоторых легирующих элементов между твердым раствором и избыточной фазой. Если в исходном состоянии количество последней составляет 10%, то за 5000 ч (при750°С) оно возрастает до 15,4%. В дальнейшем интенсивность выделения фазы Niз(Тi,Аl) заметно ослабевает; 77% дополнительно выделившегося количества этой фазы приходится на первые 5000 ч старения при 750°С и лишь 23% -- на последующие 15000 ч. Непрерывное затухание процесса релаксации напряжений исследованного сплава связано с постепенной стабилизацией структуры и, в частности, с прекращением обеднения твердого раствора никелем и алюминием. По-видимому, стабилизация структуры сплавов с сильно легированным твердым раствором оказывает положительное влияние на длительную релаксационную стойкость. О том, что упрочнение твердого раствора в ряде случаев более эффективно, чем создание в структуре чрезмерного количества частиц избыточной фазы, говорят результаты сравнительного испытания на релаксацию при 800°С двух никельхромовых сплавов, из которых одни имел сильно легированный твердый раствор и умеренное количество вторичной (упрочняющей) фазы, а второй -- менее легированный твердый раствор, но значительно большее количество той же упрочняющей фазы. В течение первых сотен часов оба сплава имели практически одинаковую релаксацион-ную стойкость, но по истечении 1000 ч уровень оставшихся напряжений у второго сплава был ниже.
На основании изложенного можно заключить, что структурные превращения, происходящие в сплавах при температурном режиме релаксации напряжений, оказывают определенное влияние на ход процесса релаксации. Эффект дисперсионного твердения или аллотропических превращений накладывается на чисто релаксационные явления, поэтому общая картина процесса заметно усложняется.
В связи с этим естественно возникает «обратный» вопрос: может ли процесс высокотемпературной релаксации напряжений (не приводящий к разрушению) оказывать в свою очередь определенное влияние на структуру испытуемой стали (или сплава).
Аустенитные стали марок 1Х18Н9Т, 1Х14Н18В2БР и Х20Н25ВМЗМ, а также сплав ХН77ТЮ были испытаны на релаксацию напряжений при температуре 650°С, примерно отвечающей температуре 0,5 Выбранные начальные напряжения во всех случаях были ниже предела текучести, составляя = (0,4 0,8).
Образцы, испытанные на релаксацию напряжений в течение 2000 ч, подвергали микроскопическому, электронномикроскопическому, фазовому, химическому и рентгеноструктурному анализам. Параллельно исследовали образцы в исходном состоянии, а также после нагрева той же длительности и температуре (при = 0), что позволило отделить влияние температуры испытания от влияния самого процесса релаксации.
Так как различные исходные микроструктуры аустенитной стали могут обладать неодинаковой восприимчивостью к возможному влиянию процесса релаксации напряжений, кольцевые образцы перед испытаниями были подвергнуты шести вариантам термической обработки, что позволило исследовать каждую сталь в шести структурных состояниях. Последние отличались величиной зерна твердого раствора, количеством избыточной фазы и степенью ее дисперсности.
Заключение
Положительное влияние на релаксационную стойкость сплавов оказывают все факторы, повышающие сопротивление разупрочнению, уменьшающие скорость возврата и способствующие торможению диффузионных процессов, а также создающие стабильные препятствия движению дислокаций.
Таким образом, любое нарушение структурной однородности твердого раствора способствует развитию процессов релаксации. Это объясняется термодинамической неустойчивостью сплава, в котором образовались локальные участки структуры, несвойственной данным внешним (температура, давление) и внутренним (химсостав) условиям.
Можно ожидать понижения релаксационной стойкости сплава и в том случае, если в основном твердом растворе имеются концентрационные неоднородности. Последние могут возникать, например, при недостаточной выдержке стали во время термической обработки. В никельхромовых и некоторых других сплавах концентрационная неоднородность наблюдается в связи с возникновением, так называемого K-состояния.
Большое влияние на релаксационную стойкость металлов и сплавов (как и вообще на жаропрочность) оказывает величина зерна основного твердого раствора.
Для повышения релаксационной стойкости сплавов при относительно высоких температурах, в особенности при ограниченном сроке их службы, целесо-образно увеличение размера зерна основной структуры; в связи с этим все виды термической обработки, приводящие к укрупнению зерна, являются предпочтительными. Однако наиболее крупное зерно почти неизбежно приводит к значительному уменьшению длительной пластичности и в ряде случаев способствует чувствительности к концентраторам напряжений. Поэтому, например, чрезмерно крупное зерно в металле крепежных деталей недопустимо.
Список использованной литературы
1. Борздыка, А.М. Релаксация напряжений в металле и сплавах / А.М. Борздыка, Л.Б. Гецов. - М.: Металлургия, 1972. - 304 с.
2. Губкин, С. И. Теория течения металлического вещества / С.И. Губкин.- М.: ОНТИ, 1935. - 234с.
3. Ровинский, Б.М. Влияние термомеханической обработки на релаксационную стойкость сталей и сплавов / Б.М. Ровинский // Известия ОТН АН СССР. - 1954. - №2. - С. 67.
4. Коттрелл, А. X. Дислокации и пластическое течение в кристаллах / А. Х. Коттрелл. - М.: Металлургиздат, 1958. - 390с.
5. Одинг, И. А. Исследования жаропрочных сталей и сплавов / И.А. Одинг, Ф. И. Алешкин // Наука. - 1964. - № 9 - С. 63.
6. Ровинский, Б.М. Релаксация напряжений / Б.М. Ровинский, В.Г. Лютцау // Известия ОТН АН СССР. - 1956. - № 11. - С. 96.
7. Петропавловская, 3. И. Релаксационная стойкость в металлах и сплавах / З.И. Петропавловская, В. А. Щенкова // Труды ЦНИИТМАШ. - 1964. -№45. - С. 29.
8. Мак Лин. Механические свойства металлов / Лин Мак. - М.: Металлургия, 1965. - 426с.
9. Одинг, И. А. Изучение явления релаксации напряжений / И. А. Одинг, А. В. Зубарев, З. Г. Фридман // Металловедение и термическая обработка металлов - 1961. - № 1. - С. 2.
10. Гинцбург, Я. С. Ограниченная ползучесть деталей машин / Я. С. Гинцбург. - М.: Машиностроение, 1968. - 249с.
11. Релаксационные явления в металлах и сплавах. - М.: Металлургиздат, 1963. - 354с.
12. Лютцау, В. Г. Методы изучения релаксационной стойкости / В. Г. Лютцау, Б. М. Ровинский // Заводская лаборатория. - 1957. - №9. - С. 61.
13. Никитина, Л. П. Новый метод изучения релаксационной стойкости / Л. П. Никитина // Заводская лаборатория. - 1963. - №11. - С. 148.
14. Бернштейн, М. Л. Термомеханическая обработка стали / М. Л. Бернштейн. - М.: Металлургия, 1968. - 568с.
15. Гинцбург Я. С. Релаксация напряжений в металлах / Я. С. Гинцбург. - М.: Машгиз, 1957. - 361с.
16. Проблемы металловедения и физики металлов (ЦНИИЧМ). - М.: Металлургиздат, 1955. - вып. IV. - 412с.
Подобные документы
Изучение методики и экспериментальное определение напряжений в элементах конструкций электротензометрированием; сравнение расчетных и экспериментальных значений напряжений и отклонений от них. Определение напряжений при изгибе элемента конструкции.
лабораторная работа [1,0 M], добавлен 06.10.2010Дифференциальные уравнения контактных напряжений при двумерной деформации. Современная теория распределения по дуге захвата нормальных и касательных напряжений. Изучение напряжений на контактных поверхностях валков, вращающихся с разными скоростями.
курсовая работа [3,0 M], добавлен 19.06.2015Классификация металлов и сплавов, их типы: черные и цветные. Определение свойств и характеристик, типы кристаллических решеток. Сущность и факторы, влияющие на пластическую деформацию, физическое обоснование данного процесса, влияние температуры.
презентация [181,8 K], добавлен 08.11.2015Вычисление главных напряжений. Углы наклона нормалей. Определение напряжений на наклонных площадках. Закон парности касательных напряжений. Параметры прочностных свойств материала, упругих свойств материала. Модуль упругости при растяжении (сжатии).
контрольная работа [417,0 K], добавлен 25.11.2015Горячие трещины, их происхождение и меры предупреждения. Исследование деформации и внутренних напряжений, зарубежных ученых в области трещиноустойчивости отливок. Образование протяженных трещин, причины данного процесса. Влияние концентрации напряжений.
реферат [36,8 K], добавлен 16.10.2013Кинематический расчет привода. Выбор твердости, термической обработки и материала колес. Определение допускаемых контактных напряжений и напряжений изгиба. Конструирование зубчатых колес, корпусных деталей, подшипников. Расчет валов на прочность.
дипломная работа [2,0 M], добавлен 12.02.2015Кинематический расчет привода, который состоит из электродвигателя, ременной передачи, редуктора и муфты. Выбор материала, термической обработки, определение допускаемых контактных напряжений и напряжений изгиба. Подбор подшипников качения выходного вала.
курсовая работа [374,1 K], добавлен 22.01.2014Влияние высокотемпературной термомеханической обработки на тонкую кристаллическую структуру аустенитных сталей и сплавов. Закономерности роста зерен металлов и сплавов при высоких температурах. Влияние температуры на характеристики металлов.
курсовая работа [534,9 K], добавлен 28.12.2003Обзор критериев пластичности. Изучение примеров определения эквивалентных напряжений и коэффициентов запаса. Гипотеза наибольших касательных напряжений и энергии формоизменения. Тонкостенные оболочки, находящиеся под действием гидростатического давления.
контрольная работа [1,2 M], добавлен 11.10.2013Дилатометрическая кривая распада мартенсита. Влияние печной атмосферы при нагреве. Режимы термической обработки (температура и время нагрева). Отжиг для снятия напряжений после горячей обработки литья, сварки, обработки резанием. Влияние скорости нагрева.
лекция [67,1 K], добавлен 14.10.2013