Гидравлические свойства газовых сред в пищевых производствах
Гидравлические сопротивления движения различных газожидкостных потоков в трубах. Струйное диспергирование газовой фазы измельчения в вибрационной сушилке. Расчет прочности сосудов давления пищевых производств. Кожухотрубный струйно-инжекционный аппарат.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 23.08.2013 |
Размер файла | 254,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Контрольная работа
Гидравлические свойства газовых сред в пищевых производствах
Содержание
1. Гидравлические сопротивления движения газожидкостных потоков в трубах
2. Струйное диспергирование газовой фазы измельчения в вибрационной сушилке
3. Расчет прочности сосудов давления пищевых производств
Литература
1. Гидравлические сопротивления движения газожидкостных потоков в трубах
Ранее были рассмотрены возможные варианты возникновения гидродинамической обстановки в циркуляционном контуре кожухотрубного струйно-инжекционного аппарата (КСИА) повышенной производительности по газовой фазе. В данной статье рассматривается вопрос оценки гидравлических сопротивлений движению газожидкостного потока в циркуляционном контуре КСИА проточного типа (рисунок 1).
Под циркуляционным контуром в нашем случае понимается канал, образованный опускной трубой 5 и подъемной 6.
Рассматривая силы, определяющие давление в нижних концах этих труб, был составлен баланс давлений для сечений, в которых лежат эти точки.
(1)
где РА и РВ - абсолютные давления в сечениях А и В, Па; ДРАВ - потери давления при переходе газожидкостного потока от сечения А к сечению В. После подстановки значений давлений, создаваемых каждой из сил, принятых во внимание, была получена следующая зависимость
= (2)
В уравнении (2) первое слагаемое левой части уравнения отражает влияние разности давлений газовой фазы на свободную поверхность потока в верхних камерах 1 и 2. Второе слагаемое, в круглых скобках, характеризует потенциальную энергию, вносимую струей жидкости в образующийся газожидкостной поток, третье и четвертое слагаемые характеризуют гидростатические столбы жидкости в опускной и подъемной трубах, соответственно.
Пятое и шестое слагаемые определяют силовое (лобовое) давление пузырей на жидкость (Архимедову силу) в восходящем и нисходящем потоке, соответственно. Уравнение для расчета Архимедовых сил, действующих со стороны, стремящихся всплыть пузырьков, определяли из следующих предположений.
Рассматривался установившийся поток газожидкостной смеси с пузырьковой структурой потока. Допуская, что при данном рабочем режиме работы аппарата, в нисходящем потоке газожидкостной смеси образуются пузыри с определенным максимально-устойчивым размером dП.max можно записать, что объем отдельно взятого пузыря.
1, 2 ? камера; 3,4 ? патрубки входа газа; 5 ? опускная труба, 6 ? подъемная труба; 7 ? сливная труба; 8 ? переточная камера
Рисунок 1 ? Кожухотрубный струйно-инжекционный аппарат
Во вполне определенном объеме газожидкостной смеси при стационарных условиях ее течения, будет находиться n пузырьков интересующего нас размера. Тогда объем газа находящийся в данный момент в потоке будет равен
Возникающая Архимедова сила Fарх со стороны каждого отдельно взятого пузыря будет
Суммарная сила воздействия на жидкость со стороны n-го количества пузырей, находящихся в определенном объеме жидкости
Fарх=nсжgVг
Количество пузырей n можно определить из соотношения
откуда
Допуская равномерное распределение пузырей по высоте опускной трубы, и, соответственно, по ее сечению, отнесем суммарное действие Архимедовых сил к площади поперечного сечения потока газожидкостной смеси Sсм= Sтр. Откуда
гидравлический газожидкостный труба сушилка
Рарх=
В нисходящем потоке Архимедовы силы всплывания пузырей препятствуют нисходящему движению жидкости, в восходящем потоке, наоборот, ускоряют ее движение, оказывая лобовое давление на нее. В обоих случаях действие этой силы приводит к снижению давления в рассматриваемых точках.
Основываясь на концепции аддитивности гидравлических сопротивлений при движении жидкости по последовательно соединенным трубопроводам, принятой в классической гидравлике сплошных сред, коэффициент сопротивления циркуляционного контура жк можно определить по уравнению
(3)
Сравнение значений жк, рассчитанных по уравнениям (2) и (3), позволяет оценить адекватность принятой гидродинамической модели реальной обстановке в аппарате.
Расчет значений жк по уравнениям (2) и (3) выполнялся с использованием собственных опытных данных, полученных на экспериментальной установке, а также доступных данных из научной литературы. Значения коэффициентов местных сопротивлений определялись по справочной литературе, с учетом всех геометрических размеров характерных участков.
Из анализа полученных данных можно сделать некоторые выводы:
1. Для всех экспериментов, независимо от диаметра сопла, значения жк, посчитанные по уравнению (3) значительно выше, чем значения, посчитанные по уравнению (2). Это говорит о том, что уравнение (3) недостаточно полно учитывает реально существующие сопротивления движению газожидкостной смеси;
2. С увеличением расхода жидкости через основное сопло Q1 расчетные значения жк по уравнению (2) остаются практически постоянными, в то время как расчетные значения жк по уравнению (3) увеличиваются. Такое поведение также показывает на существование неучтенного сопротивления.
Можно предположить, что таким неучтенным сопротивлением является сопротивление трения жидкости о поверхность, образующихся в трубах, пузырей. Кроме того, применение в расчетах коэффициентов местного сопротивления полученных при течении сплошной жидкости по трубам видимо не совсем корректно и требует уточнения. Это требует проведения “чистых” экспериментов направленных только на определение значений и . Здесь же следует отметить, что проверка адекватности уравнений (2) и (3) проводилась на сильно коалесцирующих средах, т.е. на системе воздух _ вода. В этом случае в газожидкостном потоке наблюдались пузырьки, имеющие максимально устойчивый диаметр (примерно 90_95 % от общего количества пузырей), так и мелкие пузырьки не успевшие скоалесцировать. Сопротивлением мелких пузырей, имеющих малую скорость всплытия можно пренебречь, но тогда необходимо корректировать величины объемного газосодержания в трубах. Уточнение принятой модели расчета будет продолжено.
2. Струйное диспергирование газовой фазы измельчения в вибрационной сушилке
Измельчение твердых материалов является одной из основных операций интенсификации тепломассообменных процессов. Роль процесса измельчения при получении порошков из растительного сырья заключается в удалении высушенного поверхностного слоя, развитии новой поверхности испарения внутренней влаги, чем обеспечивается первый период сушки до полного удаления влаги [1]. Совмещение процессов сушки и измельчения значительно снижает потребление энергии и себестоимость продукции.
Размещено на http://www.allbest.ru/
Предлагаемый способ реализуется в вибрационной сушилке-мельнице [2]. Измельчение высушиваемого материала осуществляется мелющими телами, загружаемыми в аппарат. В ходе процессов измельчения и сушки материал значительно уменьшает свой объем (на 60-65 %) за счет потери влаги с 70-90 % до 4-10 %. В конце процесса высушенный материал занимает поровое пространство мелющих тел, препятствуя износу последних.
Интенсивность измельчения растительного сырья определяет характер испарения влаги и взаимное влияние измельчения и сушки.
Скорость измельчения имеет оптимум при круговой траектории колебания корпуса, что обеспечивается равенством горизонтальной и вертикальной жесткости упругих опор [3].
Экспериментальные исследования по измельчению растительного сырья проводились на лабораторной вибромельнице с объемом рабочей камеры 0,4 литра.
В качестве мелющих тел использовались шарики и ролики (h/d = 1) с диаметром 10 и 15 мм. Межпоровый объем мелющих тел при равном соотношении объемов типоразмеров составляет 34,76 %. Диапазон изменения параметров вибрации для измельчения растительного сырья указан в таблице 1.
Для измельчения использовался высушенный до различной остаточной влажности (8-60 %) картофель. Соотношение объема мелющих тел и измельчаемого материала рассчитывалось исходя из начальной влажности материала с учетом объема сухого конечного материала при коэффициенте заполнения корпуса мельницы 1.
Исследуемое сырье, предварительно нарезанное на кубики 555 (мм), высушивалось до требуемой влажности и измельчалось в вибрационной мельнице. Через определенные промежутки времени проводился ситовый анализ измельчаемого сырья с набором сит 5:2,5:1:0,63:0,315 [4] и рассчитывался эквивалентный диаметр.
Кинетика измельчения сухих материалов изучена, описана и опубликована в достаточно большом количестве работ. В работе [5] предлагается модель измельчения, в которой процесс рассматривается как разрывной Марковский:
(1)
где Sн, S() - начальное и текущее (на момент времени t) значение удельной поверхности частиц измельчаемого материала;
? коэффициент интенсивности измельчения;
? параметр, характеризующий долю частиц, находящихся в зоне измельчения, на которое активно действуют мелющие тела.
Применимость этой модели проверялась экспериментальными данными по измельчению картофеля различной влажности.
Принятая модель может быть выражена через средний эквивалентный диаметр частиц:
(2)
где d0, d - начальный и текущий (на момент времени t) средний эквивалентный диаметр частиц.
Преобразовав выражение (2) получаем:
(3)
представляющее собой уравнение вида:
(4)
Для определения параметров модели и (b1 и b2) экспериментальные данные обработаны с использованием полиномов Чебышева [6]. Зависимость параметров модели от влажности измельчаемого картофеля в явном виде имеют следующие выражения:
(5)
(6)
где W - влажность измельчаемого материала в процентах.
Эти выражения получены обработкой экспериментальных данных методом наименьших квадратов. Оценка адекватности модели (2) с учетом зависимостей (5) и (6) показала удовлетворительную сходимость, среднеквадратическая ошибка не превышает 10 %.
3. Расчет прочности сосудов давления пищевых производств
В пищевой промышленности широко применяются тонкостенные сосуды, работающие под высоким давлением. На этапе проектирования таких сосудов в соответствие с нормативными документами требуется определить параметры надежности, входящие в перечень обязательных. В то же время расчет таких аппаратов до сего времени проводится методом допускаемых напряжений [1], не позволяющим на этапе проектирования априори определить параметры надежности. Поэтому задача априорной оценки параметров надежности является актуальной.
Расчетная схема задачи приведена на рисунке.
Расчетная схема задачи
Стенка рассматриваемого сосуда работает в условиях трёхосного напряжённого состояния [1]. В первую очередь это окружное напряжение, определяемое по формуле
,
где d0 - диаметр срединной окружности поперечного сечения, д - толщина стенки, р - давление на стенки сосуда.
Радиальное напряжение имеет максимальное значение на внутренней поверхности стенки, нулевое значение на наружной; по сравнению с окружным оно ничтожно мало, поэтому им можно пренебречь: .
В закрытых сосудах в стенках возникает также меридиональное напряжение, определяемое по формуле:
,
где Аk - площадь сосуда по срединной окружности.
Для формирования условия отказа в точках поперечного сечения сосуда необходимо, прежде всего, выбрать критерий предельного состояния. Для сосудов из пластичных материалов в качестве критерия предельного состояния принимается достижение рабочим напряжением предела текучести материала. Поскольку материал сосуда находится в условиях плоского напряжённого состояния, мерой нагруженности будет являться эквивалентное напряжение. Согласно гипотезе Хубера-Мизеса величина эквивалентного напряжения в рассматриваемом случае определится как
,
откуда:
.
Параметры сосуда, определяющие его надёжность, большей частью являются случайными величинами. К ним относятся нагрузки, свойства материалов и геометрические размеры.
Совокупность опорных переменных (определяющих в основном надёжность) можно представить в виде случайного вектора , в котором - опорные переменные.
В инженерной практике задачу с опорными переменными предпочтительнее рассматривать в m -мерном пространстве, каждая точка которого
есть реализация случайного вектора .
Каждой точке в векторном пространстве соответствует функция плотности
.
Если в пространстве опорных переменных построить гиперповерхность
,
она разделит это пространство на область отказов
в которой ,
и область безотказной работы
,
в которой .
Никаких ограничивающих требований к структуре функции (кроме предпосылки, что , как минимум единожды, должна быть дифференцируемой по всем ) не предъявляется. Условие дифференцируемости функции необходимо для применения приближенных методов, которые чаще всего используются в практических расчётах.
В соответствии с определением, вероятность отказа
можно вычислить как интеграл от функции плотности по области отказа
.
Аналогично для вероятности безотказной работы
,
.
В векторной форме
где .
В частном случае стахостически независимых имеем [3]
откуда
.
Из последнего выражения следует, что нахождение численного значения вероятности безотказной работы сводится к интегрированию функций плотности в m -мерном пространстве.
В качестве примера вычислим вероятность безотказной работы по критерию прочности стенки тонкостенного сосуда толщиной д = 3 мм. Диаметр сосуда = 1200 мм. Сосуд загружен внутренним давлением.
Пренебрегая изменчивостью геометрических размеров в качестве опорных переменных примем внутреннее давление р и предел текучести материала . Известно, что и внутреннее давление и предел текучести материала распределены по нормальному закону [2]. Математическое ожидание давления , коэффициент вариации . Сосуд выполнен из Ст3, для которой математическое ожидание предела текучести , среднее квадратическое отклонение
Уравнение предельного состояния по критерию превышения рабочим напряжением предела текучести материала в сечении стенки сосуда принято в виде
,
где уТ - случайная величина предела текучести; уэкв - случайное значение эквивалентного напряжения.
Параметры распределения рабочего напряжения в стенке сосуда, определим на основании композиции законов распределения нагрузки и прочности материала. Матожидание эквивалентного напряжения
;
среднее квадратичное отклонение
Воспользовавшись соотношением Лапласа, вычислим вероятность превышения рабочим напряжением предела текучести. Распределение разности n описывается нормальным законом с параметрами:
Математическое ожидание
,
среднее квадратическое отклонение
.
Функция распределения запаса прочности
,
где up - квантиль нормированного нормального распределения (в рассматриваемом случае up=-2,71).
F0(up) - табулированная функция Лапласа [3], откуда вероятность непревышения рабочим напряжением предела текучести материала
.
Таким образом, вероятность безотказной работы рассмотренного сосуда давления по критерию прочности равна 0,9965.
Литература
Остриков, А.Н., Абрамов, О.В. Расчёт и конструирование машин и аппаратов пищевых производств. СПб.: ГИОРД, 2004. 352 с.
Вероятностные характеристики прочности авиационных материалов и размеров сортамента. Справочник. под ред. С.О. Охапкина. ? М.: Машиностроение, 1970. 575 с.
Вентцель, Е.С., Овчаров, А.А. Теория вероятностей и её инженерные приложения. М.: Высшая школа, 2007. 480 с.
Патент РФ № 2064477. БИ № 21, 2006
Свидетельство на полезную модель RU 14649 U1, 10.08.2000.
Сиденко, П.М. Измельчение в химической промышленности. - М.: Химия, 1977. - 368 с.
ГОСТ 9201-90. Сита барабанные полигональные.
Ахмадиев, Ф.Г., Александровский, А.А. Описание кинетики измельчения твердых тел. // Современные аппараты для обработки гетерогенных сред. Межвуз. сб. научн. тр. - Л.: Изд. ЛТИ им. Ленсовета, 2004. - С. 13-16.
Ахназарова, С.Л., Кафаров, В.В. Оптимизация эксперимента в химии и химической технологии. - М.: Высшая школа, 2008. - 319 с.
Размещено на Allbest.ru
Подобные документы
Внедрение средств автоматизации, способствующей повышению одиночной мощности агрегатов и производственной мощности предприятий. Классификация пищевых производств по различным признакам. Основные свойства различных видов сырья, его пищевая ценность.
контрольная работа [57,1 K], добавлен 04.02.2016Классификация оборудования пищевых производств и требования к нему, разновидности и функциональные особенности. Общая характеристика и значение механических процессов, применяемых при переработке сельскохозяйственных культур: шлифования и полирования.
контрольная работа [120,3 K], добавлен 01.07.2014Основные законы гидравлики, основы теории лопастных объемных гидромашин, принципы построения и эксплуатации систем гидропривода. Гидростатика, применение уравнения Бернулли, гидравлические сопротивления, истечение жидкости через отверстия и насадки.
методичка [1010,9 K], добавлен 29.08.2011Тепловой конструктивный, компоновочный, гидравлический и прочностной расчёты горизонтального кожухотрубного теплообменного аппарата. Тепловые и основные конструктивные характеристики теплообменного аппарата, гидравлические потери по ходу водяного тракта.
курсовая работа [120,4 K], добавлен 16.02.2011Анализ и сравнение аппаратов для реализации процесса гомогенизации пищевых сред. Изучение особенностей клапанной, ультразвуковой и центробежной гомогенизации. Виды и устройство гомогенизаторов. Описание конструкции и принципа работы гомогенизатора А1-ОГМ.
курсовая работа [753,7 K], добавлен 25.11.2014Анализ состояния вопроса автоматизированного проектирования резервуара обеззараживания воды. Применение ультразвукового и ультрафиолетового излучений. Гидравлические процессы в рабочей емкости резервуара. Прочностные свойства компонентов. Расчет сосудов.
дипломная работа [5,1 M], добавлен 27.10.2017Применение ультразвукового и ультрафиолетового излучений для обеззараживания воды. Гидравлические процессы в рабочей емкости резервуара. Условия статической прочности элементов сосудов, работающих под давлением. Характеристика расчета потока жидкости.
дипломная работа [4,3 M], добавлен 12.08.2017Основы теории резания пищевых продуктов. Оборудование для очистки овощей и фруктов, машины для нарезания и измельчения мясных полуфабрикатов, схемы дисковых овощерезок. Машины для нарезки хлебобулочных изделий, для дробления твердых пищевых продуктов.
контрольная работа [1,4 M], добавлен 05.04.2010Нахождение давлений в "характерных" точках и построение эпюры давления жидкости на стенку в выбранном масштабе. Определение силы давления жидкости на плоскую стенку и глубины ее приложения. Расчет необходимого количества болтов для крепления крышки лаза.
курсовая работа [641,4 K], добавлен 17.04.2016Расчет ориентировочной поверхности теплопередачи. Выбор теплообменного аппарата. Уточненный расчет и коэффициентов теплоотдачи в секции водяного охлаждения, в рассольной секции. Необходимая поверхность теплопередачи и гидравлические сопротивления.
курсовая работа [78,8 K], добавлен 21.07.2008