Подготовки добываемой газо-водонефтяной эмульсии
Орогидрография, тектоническое строение и характеристика продуктивных нефтегазоносных горизонтов Лянторского месторождения. Подготовка добываемой газоводонефтяной эмульсии. Техническое описание и монтаж установок обезвоживания и обессоливания нефти.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 13.06.2011 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Прозрачная жидкость янтарного цвета со спиртовым запахом
Жидкость от светло-коричневого цвета
Токсикологическая характеристика по ГОСТ 12.1.005-88
3 класс
Удельный расход подачи ингибитора коррозии в систему напорных нефтепроводов определен "Технологическим регламентом ингибиторной защиты напорных нефтепроводов Лянторского месторождения ингибитором КОРЕКСИД ES 1151 А" и составляет: ударная дозировка -18,8 л/час (450 л/сут), постоянная дозировка - 7,5 л/час (180,9 л/сут)
2.6 Технологическая схема подготовки нефти на месторождении
Продукции нефтяных скважин представляет собой смесь, содержащую кроме нефти, нефтяной газ, воду, парафин, серу и другие примеси. Для получения конечного продукта (товарной нефти) эта смесь от скважины транспортируется к пунктам сбора, обработки (подготовки) и далее - в товарные парки промыслов для учета и распределения потребителям.
Система сбора и подготовки нефти включает комплекс промысловых технических средств и установок, соединенных трубопроводами.
Продукция нескольких скважин по выкидным линиям направляются в АГЗУ, где поочередно измеряется дебит каждой подключенной скважины. Рабочий коллектор соединен со сборным коллектором . Далее продукция по коллектору длиной 3...8 км подается на дожимную насосную станцию (ДНС) ( графическое приложение 2). Здесь происходит первичная сепарация газа от жидкости, после чего газ по трубопроводу поступает на газоперерабатывающий завод (ГПЗ), а жидкость по трубопроводу в так называемый сепаратор - делитель. Основное назначение этой установки - регулирование подачи жидкости (смеси нефти с водой) в сепараторе - подогреватели , входящие в состав установки по подготовки нефти (УПН). Кроме того, в делителе осуществляется вторичная (более глубокая сепарация газа от жидкости). На УПН происходит подогрев жидкости, отделение нефти от воды и обессоливание нефти, после чего нефть по коллектору товарной нефти поступает в переменно работающие герметизированные резервуары и далее, минуя поднапорный насос , на автоматизированную установку сдачи товарной нефти. Пластовая вода с УПН по коллектору сточной воды попадает в установку по подготовки воды (УПВ) и далее с помощью насоса к насосным станциям для закачки в продуктивные пласты.
Получаемый после вторичной сепарации на УПН газ поступает на компрессорную станцию КС, откуда подается на ГПЗ. Если нефть, поступающая с УПН, окажется некондиционной по содержанию воды и солей, то она автоматически направляется по трубопроводу в сепаратор -делитель из которого снова подается на УПН. Затем через насосную станцию товарной нефти подается в магистральный нефтепровод . При сильно обводненной продукции скважин предварительный сброс пластовой воды осуществляется на ДНС, на которых вода специальными насосами подается в нагнетательные скважины.
2.7 Оборудование установок обезвоживания и обессоливания нефти
Термохимическое обезвоживание и обессоливание. Способ основан на нагреве эмульсии и химическом воздействии на нее деэмульгаторов. При нагреве эмульсии ее вязкость снижается и облегчает отделение воды.
Обводненная нефть (сырая) поступает в резервуар 1, откуда насосом 3 перекачивается в теплообменник 4. Здесь она подогревается до 40-60 градусов и далее поступает в подогреватель 5, где подогревается паром до 70... 100 градусов и более. Дозировочный насос 7 непрерывно из бачка 6 подкачивает деэмульгатор через смеситель 2 в эмульсию.
Обработанная деэмульгатором и подогретая эмульсия направляется в отстойник 9, где вода отделяется от нефти и отводится в канализацию. Затем обезвоженная и нагретая нефть через теплообменник 4 и холодильник 8 поступает в товарный резервуар 10, а затем направляется на переработку по нефтепроводу. В теплообменнике 4 нагретая нефть отдает тепло холодной нефти, после чего дополнительно охлаждается в холодильнике 8.
На месторождениях термохимические установки эксплуатируются под атмосферным давлением, под избыточным давлением и с промывкой горячей водой. В некоторых случаях вода из отстойников 5 направляется в смеситель 6 или после теплообменника 3 эмульсия направляется в колонну-контактор, куда подаются горячая вода и деэмульгатор.
Рисунок 2.7.1 Схема термохимического обезвоживания и обессоливания.
Электрическое обезвоживание и обессоливание. Электрическая деэмульсация основана на появлении разноименных электрических зарядов на противоположных концах каждой капельки воды, на взаимном притяжении этих капелек и разрушении пленок нефти между капельками в результате действия электрического поля. При пропускании нефтяной эмульсии между двумя электродами, через которые проходит ток высокого напряжения, она разлагается на нефть и воду. Освобожденные капельки воды укрупняются и постепенно оседают на дне сосуда.
Принцип действия их следующий. Сырьевая нефть вместе с деэмульгатором поступает на прием насоса 1 и через теплообменник 2 и подогреватель 3 направляется в отстойник 4 (термохимическая часть установки), откуда под остаточным давлением поступает в электродегидратор 5. Перед этим в нефть вводятся деэмульгатор и пресная вода, при этом увеличивается ее обводненность. На практике применяют также установки, обьединяющие термохимическое обезвоживание с электрическим.
Рисунок 2.7.2 Схема электрообессоливающей установки.
В электродегидраторе 5 происходит разрушение освобожденной воды в процессе отстоя. Затем обессоленная нефть направляется в промежуточную емкость 6, а отсюда насосом 7 через теплообменник - в товарные резервуары.
Вода из отстойника 4 и электродегидратора 5 сбрасывается в канализацию.
Для более глубокого обезвоживания и обессоливания можно устанавливать несколько электродегидраторов, которые по форме подразделяются на горизонтальные, вертикальные, сферические и др.
Таким образом, основными технологическими аппаратами и обрудованием установок обезвоживания и обессоливания являются теплобменники, подогреватели, отстойники, электродегидраторы, резервуары, насосы, сепараторы-деэмульгаторы.
В практике эксплуатации нефтяных месторождений применяют также и трубную деэмульсацию. Сущность ее заключается в том, что в трубопроводные сети, транспортирующие нефть на месторождении, вводят деэмульгатор. Отделение воды от нефти осуществляется в специальных резервуарах-отстойниках. Но ее целесообразно проводить на тех участках сборных сетей, в которых обеспечивается совместное движение эмульсии и деэмульгатора в течение не менее 4 ч.
2.8 Типы УПСВ, применяемые на Лянторском месторождении
На Лянторском месторождении применяют два типа установки предварительного сброса воды это УПСВ с блочной трубчатой печью ПТБ-10-64 и аппарат "ХИТЕР-ТРИТЕР" американской фирмы "SIVALS" (лист 1 графической части курсового проекта).
Печи типа ПТБ-10 применяемые на ДНС постепенно сменят на более экономичные УПСВ типа "ХИТЕР-ТРИТЕР".
Блочная трубчатая печь типа ПТБ-10-64 (2.8.1) предназначена для нагрева нефтяных эмульсий с повышенной коррозионной активностью и склонностью к отложению солей и механических примесей на установке подготовки нефти производительностью 27 тыс. т/сут. Печь состоит из теплообменной камеры 1, блока основания 2 и блока управления и сигнализации.
Теплообменная камера представляет собой удлиненный теплоизолированный корпус, внутренняя поверхность которого обшита, листами из нержавеющей стали, а наружная обшивка выполнена из листовой стали в виде герметичного короба. Внутри теплообменной камеры расположены четыре параллельно соединенных одинаковых змеевика, выполненных из оребренных труб диаметром 150 мм. К нижней стенке теплообменной камеры примыкают четыре камеры сгорания с горелками циклонного типа. Быстрое вращение нагнетаемого вентилятором 1 воздуха вызывает хорошее смешение его с топочным газом.
Конструктивные особенности горелки и камеры сгорания обеспечивают полное сгорание топлива. Продукты сгорания через сопла-конфузоры в виде плоских струй поступают во внутреннее пространство теплообменной камеры. Скорость струй на выходе из сопел-конфузоров составляет 100...120 м/с, а температура газа - 1600... 1700 °С. Струи инжектируют уже охлажденные дымовые газы из нижних боковых зон теплообменной камеры, смешиваются с ними и при температуре 700...900 °С равномерно омывают трубы змеевиков, так, что нагрев идет без местных перегревов труб. В нижней части боковых стенок теплообменной камеры расположены дымо-выводящие устройства 9, к фланцам которых крепятся дымовые трубы 4. Теплообменная камера оборудована взрывными клапанами 10 и смотровыми люками 6.
Блок основания представляет собой металлоконструкцию, предназначенную для установки теплообменной камеры с горелочными устройствами 2 и трубопроводной обвязкой, вентиляторов 1, коллектора газа 3 к основным горелкам и коллектора газа к запальным горелкам 5, трубопроводов входа 8 и выхода 7 эмульсии, контрольно-измерительных и регулирующих приборов. Часть блока основания, в которой расположены вентиляторы, коллекторы газа, трубопроводы входа и выхода эмульсии, контрольно-измерительные и регулирующие приборы, имеет утепленное укрытие.
Блок управления и сигнализации обеспечивает выполнение автоматического и ручного розжига газовых горелок, сигнализации об отклонении давления и температуры нагрева нефтяной эмульсии от заданных значений. Блок выполнен в утепленном укрытии.
Техническая характеристика блочной трубчатой печи типа ПТБ-10-64
Нагреваемая среда нефтяная эмульсия обводненностью до 50% , содержащая сероводород, соли и механические примеси.
Габариты, мм:
Длинна…………………………...16200
Ширина………………………………3150
Высота…………………………...........8875
Масса,кг……………...………………...57100
Пропускная способность по жидкости,т/сут…….…….10000
Тепловая мощность, МВт……………………………………….11,7
Рабочее давление, МПа……………………………………...6,4
Максимальная температура нагрева, °С………………………90
Давление топливного газа перед камерой сгорания, МПа…...0,05
Расход топливного газа, м/ч ……………………………1600
Число вентиляторов……………………………………...........2
Мощность электродвигателя, Вт…………………………..55
Рисунок 2.8.1 Блочная трубчатая печь типа ПТБ-10-64
2.9 Техническое описание и монтаж установки предварительного сброса воды типа "ХИТЕР-ТРИТЕР"
Установка предварительного сброса воды (УПСВ) на базе трехфазного сепаратора производства фирмы "Sivalls" используется для разделения эмульсии и предварительного сброса воды. Эксплуатируемые установки имеют производительность 10.000 тонн жидкости в сутки при обводнённости на входе от 70% до 90%.
Внедрение данных установок - нефтегазоводоотделителей типа "хитер-тритер", позволяет отделять подтоварную воду и попутный нефтяной газ из добываемой жидкости непосредственно на площадке дожимной насосной станции (ДНС) и подавать подготовленную подтоварную воду на кустовую насосную станцию (КНС) для закачки в пласт для подержание пластового давление. Как правило, ДНС и КНС расположены на одной площадке.
Установка полностью отвечает поставленным задачам и требованиям технологического процесса.
Каждый комплект оборудования включает в себя горизонтально расположенную подогреваемую емкость, работающую под давлением размером 3048 х 12192 мм смонтированного на раме блока управления, компьютерной мониторинговой системы (один компьютер на каждую ДНС) и комплекта запасных частей.
Емкость рассчитана на сепарирование продукции в различимые фазы нефти, воды и газа при расходе 10.000 тонн в сутки (66 441 баррелей / сутки). Разделение продукции достигается за счет подогрева входящей жидкости в жаровых трубах, нагреваемых природным газом и последующим прохождением жидкости через блок пластин, в которых нефть и вода сливаются в крупные капли и разделяются друг от друга за счет силы тяжести и разницы в плотности.
Емкость выполнена из углеродистой стали. После сварки емкости была произведена ее тепловая обработка и рентгеноскопия. Гидро-испытания проводились при давлении в 150 % от проектировочного давления. Конструкторское исполнение, материалы, производство, тепло обработка и испытания проводились в соответствии с разделом VII АSМЕ (Американское Общество Инженеров - Механиков) "Правило для котлов и емкостей под давлением", издание 1995г. Проектировочное давление емкости - 0,7 МПа. установка рассчитана, для работы при температуре окружающей среды от - 43°С до +149° С. Обычно, емкости находятся под давлением от 2,8 до 0,7 МПа и температуре от 25° С до 45° С. С торца емкости находятся блок управления, представляющий собой автоматически обогреваемое помещение, в котором находятся задвижки трубы и приборы для контроля измерения и управления потоками жидкости в емкости.
Монтаж УПСВ типа "Хитер-Тритер" проводят следующим образом.
Установку необходимо установить и выровнять на цементных сваях или опорах и надежно закрепить во избежание ее вибрации и смещения, что может привести к нежелательным нагрузкам на саму установку и трубы. Рекомендуется разместить установку таким образом, чтобы нефть подавалось в товарные резервуары без значительного перепада давления.
Входные и выкидные нефтяные и водяные трубопроводы необходимо сконструировать и смонтировать таким образом, чтобы они выдерживали максимальное давление. Давление выкидной линии ни в коем случае не должно превышать проектировочное давление, указанное на металлической пластине установки.
Не следует вносить изменения или удлинять обвязку предохранительного клапана без конструкторских заключений профессиональных инженеров. Конструкторские заключения включают в себя, но не ограничиваются соображением относительно обратного давления, структурным нагрузкам и уменьшенными объемами подготовки.
Устанавливаются вытяжные трубы на установке. Крепление некоторых деталей труб, огнеперегродителя, проводников, приборов и электропроводки могло ослабнуть во время транспортировки. Устанавливаются все эти детали в соответствии с чертежами и указанными на них обозначениями.
Подсоединяются входной трубопровод газовой выкидной линии, нефтяная выходная линия, выход воды и слив.
Подводится питание (380 Вольт, 50 Гц, 3 фазы) к силовому щиту расположенному в блоке управления. Проводятся кабели из соединительной коробки SВ 1 в операторную, и подсоединяется соответствующие провода с разъемов в соединительной коробки SВ 1 с компьютером в операторной.
2.10 Описание технологического процесса ДНС-УПСВ-9
Технологическая схема ДНС-9 показана в графической части дипломного проекта.
Технологический процесс предварительного обезвоживания нефтей Лянторского месторождения осуществляется на установке ДНС-УПСВ -9 по следующей схеме.
Обводненная нефть с кустов скважин с содержанием воды до 93% по системе подводящих нефтепроводов ЦДНГ-3 поступает на узел дополнительных работ под давлением до Р=0,65МПа и температуре 16-25°С, затем по трубопроводам Ду-700мм поступает в нефтегазосепараторы предварительной ступени сепарации С-1/1,2 типа (НГС1-10-3000 V100м3), где происходит первичное отделение газа в Г1/1,2. Частично дегазированная нефть из сепараторов С-1/1,2 по трубопроводам Ду-500 мм поступает через задвижки в нефтегазосепараторы 1 ступени сепарации С-2/1,2 типа (НГС1-10-3000 V100м3), где происходит основное отделение жидкости от газа.
Обводненная разгазированная нефть после сепараторов С-2/1,2 через задвижки и регулирующие клапан поступает в трехфазный сепаратор ТС-1,2 типа "Хитер-Тритер", для предварительного обезвоживания.
Нефтегазоводяная эмульсия поступает в трехфазный сепаратор ТС-1,2 через входной штуцер, расположенный наверху емкости. Водонефтяная эмульсия попадает во входную секцию установки, где происходит первичное отделение газа от жидкости. Отделенный газ поднимается вверх установки и, через экстрактор влаги, поступает к выпускному газовому фланцу, в экстракторе влаги вся жидкость в газе коагулируется и сливается с жидкой фазой в нижней части емкости. Далее газ проходит через клапан обратного давления, контролирующий рабочее давление газа в установке, и выводится с установки.
Эмульсия, нефть и несвязанная вода проходят вниз вокруг стенок жаровой трубы. Несвязанная вода собирается на дне емкости под жаровыми трубами в зоне отстоя. Нагревание эмульсии до 30...50°С при ее прохождении вокруг жаровых труб вызывает быстрое коагулирование капель воды и разбивает эмульсию.
Нефть поднимается через отстойник, где за счет гравитации из нее выпадает вся оставшаяся вода. Оставшаяся не разрушенной эмульсия протекает через пластинчатую секцию (коалессор) установки. Пластинчатая секция состоит из множества расположенных друг над другом рифленых полипропиленовых пластин.
В условиях ламинарного потока капельки нефти поднимаются к верхнему слою пластин, где скапливается нефть. Затем эти капли коагулируются и образуют нефтяную пленку на поверхности полипропиленовых пластин. Применение рифленых пластин, расположенных рядом друг с другом, создает большую коагуляционную площадь, на которой собираются капельки нефти. Кроме того, эта секция способствует большему столкновению капель. Собравшаяся нефть поднимается наверх к нефтяной фазе в форме больших шаров, а вода, под действием силы тяжести, оседает в нижней части емкости. Очищенная нефть продолжает подниматься наверх и поступает в сборную секцию. Затем предварительно обезвоженная нефть с температурой 30...45°С и обводненностью до 10% выходит из установки через нефтяной выкидной клапан, поточный влагомер, через турбинный расходомер.
Предварительно обезвоженная нефть из трехфазного сепаратора ТС-1.2 через задвижки поступает в сепаратор III ступени сепарации С-3/1,2типа (НГС1-10-3000), где происходит дальнейшее разгазирование нефти при давлении 0.05...0.2 МПа и температуре 25...35°С.
После сепаратора III ступени сепарации разгазированная и обезвоженная нефть через открытые задвижки поступает на прием насосов внешней откачки нефти Н-1, Н-3 типа ЦНС-60-165.
С выкида насосов нефть через обратные клапаны и открытые задвижки и регулирующий клапан, поступает на узел учета нефти (УУН). После замера нефть по напорному нефтепроводу подается на товарный парк ЦППН НГДУ " Лянтортнефть".
Уровень жидкости в сепараторах II ступени поддерживается регулирующими клапанами , установленными на трубопроводе выхода жидкости из сепараторов I ступени.
Уровень жидкости в сепараторах III ступени поддерживается регулирующим клапаном на узле учета нефти.
2.10.1 Отвод газа
Нефтяной попутный газ, выделившийся в сепараторах предварительной ступени С-1/1,2 , через открытые задвижки №18,19 из сепараторов 1 ступени С-2/1,2 через задвижки № 24,25 поступает в горизонтальный газосепаратор ГС типа (НГС-1-10-3000),через задвижку №26 , для очистки от капельной жидкости.
Давление в газосепараторе ГС поддерживается в пределах 0,3...0,8 МПа.
Газ после газосепаратора ГС через открытые задвижки №27,35,36 и регулирующий клапан (при отказе клапана через задвижку №34), задвижку №39,41,42 пройдя узел учета газа, под собственным давлением по газопроводу Ду-500мм направляется в газосборный коллектор на прием компрессорных внешнего транспорта газа.
Часть газа, выделившаяся в газосепараторе ГС, используется как альтернативный источник в качестве топлива для трехфазных сепараторов ТС-1,2 и котельной.
Газ, используемый в качестве топлива, и подаваемый на установку подготовки топливного газа в центробежный вертикальный газосепаратор ОГ где происходит дополнительная осушка газа.
Газ, поступающий в качестве топлива на трехфазные сепараторы ТС-1,2 "Хиттер-Триттер", забирается из газосепаратора ОГ через открытые задвижки №148,157,158,240,250.
Газ, поступающий на котельную в качестве топлива, забирается из газосепаратора ОГ через задвижку №155
Уловленная жидкость из газосепаратора ГС через задвижки №93,92 перетекает в подземную емкость Е-1
Конденсат из вертикального газосепаратора ОГ направляется через задвижку №151 сливается в подземную емкость.
Газ, выделившийся в трехфазных аппаратах ТС-1,2 направляется в С-3/1,2.
Сепараторы С1/1,2, С-2/1,2, ГС, аппараты ТС-1,2 снабжены предохранительными клапанами СППК. В случае срабатывания СППК газ по газопроводу подается на факел.
2.10.2 Сброс пластовой воды
Пластовая вода, выделившаяся в трехфазных аппаратах ТС-1,2 из жидкости вблизи жаровых труб и в коалессоре, оседает на дно аппаратов ТС-1,2 и соединяется со свободной водой внизу аппаратов. Затем вода движется по дну к буферной части аппаратов и выводится из них через два механических клапана-регулятора сброса пластовой воды и далее через открытые запорные задвижки выводится из аппаратов.
Далее по трубопроводу неочищенная пластовая вода поступает на очистные сооружения УПСВ-9, где осуществляется подготовка до необходимых величин, диктуемых ГОСТ 39-225-88 "Вода для заводнения нефтяных пластов. Требования к качеству".
Выделившаяся после трехфазных сепараторов ТС-1,2 "Хиттер-Триттер" пластовая вода поступает в резервуар отстойник РО-2, где происходит очистка воды от нефтепродуктов. С входного патрубка, расположенного на высоте 1,5 м, через клапан вода перетекает с РО-2 в РО-1, где происходит вторая очистка воды от нефтепродуктов.
После динамического отстоя, очищенная пластовая вода из резервуара РО-1, самотеком поступает насосный блок, вход насосов откачки очищенных стоков типа ЦНС 300x180 Н-2,4,5, которые откачивают ее на прием насосов КНС-9.
Уловленная нефть по трубопроводу через задвижки №202,287,197,195,47 поступает на прием насосов откачки нефти Н-1,3 и откачивается на товарный парк через узел учета нефти. Уловленная нефть также может приниматься через задвижку №196 в емкость для сбора уловленной нефти ПЕ-5, откуда погружным насосом через задвижку №194 производится подача на прием насосов внешней откачки нефти Н-1,2,3
При параллельном режиме работы вода в РО-1,2 поступает одновременно.
После зачистки резервуаров отстойников РО-1,2 отвод шлама производить через дренажные штуцера путем открытия задвижек в промливневую канализацию ПЕ-5.
2.10.3 Характеристика готовой продукции
Товарной продукцией УПСВ-9 является предварительно подготовленная нефть и подтоварная вода.
Согласно нормативным показателям степени подготовки, нефть и подтоварная вода должна соответствовать нормам, указанным в таблице 2.10.1
Таблица 2.10.1
Наименование показателей |
Норма для нефти |
Метод испытания |
|
Подготовленная нефть: |
|||
Концентрация хлористых солей, мг/л не более |
не нормируется |
||
Массовая доля воды % не более |
до 10% |
ГОСТ 2477-65 |
|
Массовая доля механических примесей, %, не более |
не нормируется |
||
Подтоварная вода: |
Норма для воды |
Метод испытания |
|
Содержание нефтепродуктов: -на выходе с аппарата ТС-1,2 "Хиттер-Триттер", мг/л - на выходе с резервуаров отстойников ОРВС -1,2 , мг/л |
до 1000 до 60 |
ГОСТ 39-225-88 ГОСТ 39-225-88 |
2.11 Пуск ДНС
Учитывая, что вся система заполнена водой и воздух из системы вытеснен, пуск установки производится следующим образом:
а)открыть задвижки на входе нефти на ДНС;
б)равномерно открыть задвижки на входе аппаратов
С-1/1,2 при этом дренажные задвижки должны быть закрыты;
в)при достижении давления 0,4-0,6 МПа открываются задвижки на выходе газа из С-1/1,2 в ГС.
г)одновременно с подачей газа в ГС открываются задвижки на прохождение газа через ГС на факел, задействуется клапан-регулятор в ручном режиме для поддержания давления газа ГС в диапазоне 0,35-0,45 МПа.
д)в ручном режиме регулирования установить в С-1/1,2, ГС давление и уровень согласно технологической карте;
е)после достижения требуемого уровня в аппаратах С-1/1,2 открыть выходные задвижки нефти и входные задвижки в аппараты С-2/1,2,
ж)при достижении давления в нефтегазосепараторах 1-ой ступени С-2/1,2 0,3...0,45 МПа открываются задвижки на выход газа в ГС.
з)при достижении требуемого уровня в С-2/1,2 открываются задвижки, для поступления жидкости на 2-ю ступень сепарации. Задействуются клапан-регулятор в ручном режиме на поддержание средних уровней в С2/1,2, затем открыть входную и выходную задвижку нефти С-3/1,2;и при заполнении С-3/1,2 необходимо добиться давления сепарации 0,15 МПа;
к) после достижения технологического уровня в аппаратах открыть приемные задвижки насосов и поочередно запустить. Запуск насосов осуществить с учетом требований "Инструкции по технике безопасности при эксплуатации центробежных насосов". Перед запуском насоса необходимо стравить газ из рабочей полости насосов. Запуск насоса производить на закрытую выкидную задвижку. После успешного запуска в работу открываются задвижки на выкидах насосов с подачей нефти на узел учета нефти и далее в напорный нефтепровод л) добиться автоматического регулирования уровня в С-3/1,2 и после подтверждения отсутствия воздуха в газовом потоке, поступающем на факел, разжечь факел;
м) постепенно закрывая задвижку на факельной линии и открывая задвижку на газопроводе внешнего транспорта, поднять давление в аппаратах С-1/1,2, С-2/1,2 С-3/1,2 до требуемого по технологической карте; н) включить в работу дозировочный насос, отрегулировать расход подачи ингибитора (деэмульгатора).
о) арматуру аппаратов, работающих под давлением, следует открывать постепенно и плавно, во избежание гидравлических ударов и возникновения статического электричества.
п) изменение температуры и давления в аппаратах должно происходить плавно во избежание возможных разрушений и деформаций,
р) независимо от температуры сепарации, при пуске установки в зимний период во избежание замораживания необходимо включить электрообогрев трубопроводов.
2.12 Пуск в работу УПСВ-9
Описание порядка запуска трехфазных аппаратов смотреть с технологической схемой и паспортным чертежом завода изготовителя согласно паспортной технологической карты аппаратов. Перед пуском трехфазных аппаратов произвести следующие работы:
а)Предпусковые работы.
1. Проверьте правильность составления схемы пуска установки. Убедитесь, что запорная и регулирующая арматура и соединения установлены правильно. Проверьте параметры предохранительных клапанов.
2. Проверьте заданные параметры для отключения по высокой температуре.
Для регулятора уровня нефти (LG2) установите сухой поплавок без дополнительного веса. Для регуляторов уровня воды поместите поплавок в подтоварную воду и заполните его песком или маслом так, чтобы зеркало воды было на 50 мм ниже верха поплавка.
Продуйте систему подачи топливного газа от УПТГ до горелок аппарата "Хитер-Тритер" природным газом на свечу открыв задвижки. Проверьте, нет ли утечек.
б)Первоначальный запуск.
Откройте задвижки №240,120,121,250,260,261 на линии подачи топливного газа с УПТГ. Откройте отсекающие клапана (HV1), расположенные под каждым манометром (РИ и PI2) на установке и на системе подачи топливного газа.
Откройте отсекающий клапан (HV4) и рычаги уровнемеров на установке (LG1) и (LG2). Откройте задвижки скруббера топливного газа.
Откройте отсекающий клапан (HV1), расположенный под датчиками давления (PSL и PSH).
Откройте отсекающий клапан (HV5), расположенный по бокам клапана обратного давления (BPV1) на газовой выкидной линии.
Откройте отсекающий клапан на мембранном фланце расходомера (FT).
Откройте входные задвижки №106,109,111,280,281,291 на входе в установку ТС-1,2. Подождите, пока установка наполнится жидкостью до середины регулятора уровня нефти (LC2).
Отрегулируйте клапаны обратного давления в аппарате на давление 0.25...0.3 МПа.
8. Откройте отсекающий клапан (HV3), который обеспечивает подачу топливного газа в скруббер (SCRUB 1) из установки. Если применяется внешний источник газа то:
-держите клапан HV3 закрытым и откройте клапан HV4; или откройте клапаны HV3 и HV4 и установите рабочее давление на регуляторе PR2 ниже, чем давление в емкости.
Отрегулируйте датчики температуры ТС-1,2 в блоках управлений. Температура должна быть чуть выше, чем температура жидкости на входе.
9. Откройте отсекающий клапан (HV3), расположенный после регулятора газа главной горелки (PR2) и установите выход регулятора на 0.15...0,19 МПа.
Откройте отсекающие клапаны (HV2 и HV1), расположенные после регулятора пилотного (запального) газа (PR1) и установите выход регулятора на 0.11 МПа.
Включите электричество на контрольной панели гор елки: нажмите кнопку RESET (СБРОС) и проверьте, что функция остановки с компьютера отключена. Если перед пуском горелки будет пламя, через 9 секунд сработает отключение по неисправности горелки (BURNER FLAME SHUTDOWN);
нажмите кнопку BURNER *1 START (ЗАПУСК ГОРЕЛКИ N1) ТС -1,2;
одновременно начнется продувка каждой горелки в течение 90 секунд. Если во время продувки будет обнаружено пламя, через 30 секунд сработает отключение по неисправности горелки;
- после завершения продувки начинается зажигание, которое длится в течение 10 секунд, открываются соленоидные клапаны XSV1, и включается пилотный (запальный) газ. Если по окончании 10 секунд пламя не обнаружено, включится позиция "отключение по неисправности горелки (FLAME *1 Failure Shutdown);
- если по окончании времени зажигания появилось пламя, загорится индикатор *1 BURNER FLAME PROVEN (ГОРЕЛКА №1 ВКЛЮЧЕНА).
Соленоидный клапан главной горелки XSV2 открывается и зажигается главная горелка. Если какая-нибудь из главных горелок не сработает после включения, через 3 секунды сработает отключение по неисправности соответствующей горелки FLAME. Failure Shutdown (Неисправность. Горелка отключена);
- для пуска горелки №2 ТС-1,2 повторите шаги со 2 по 4;
- при нажатии кнопки BURNER STOP (ОСТАНОВКА ГОРЕЛКИ) соленоидные клапаны XSV1 и XSV2 отключают подачу всего топливного газа. Зажигание прекращается. Гаснут оба индикатора BURNER FLAME PROVEN (ОБЕ ГОРЕЛКИ ВКЛЮЧЕНЫ). Если сработает отключение по неисправности горелки BURNER FLAME PROVEN, загорится соответствующий индикатор "ГОРЕЛКА 1 и/или ГОРЕЛКА 2" (BURNER #1/ BURNER #2). Контрольная система регистрирует любое давление, температуру или уровень, выходящие за пределы рабочих параметров и отключает пилоты или горелки, если это необходимо.
13.Отрегулируйте температурные датчики (ТС-1,2) в блоках управлений и задайте температуру, немного превышающую температуру входящей жидкости, после чего медленно откройте клапаны (HV3) в линии подачи топливного газа на горелки, расположенные рядом с огнепреградителями для розжига горелок.
14. Настройте температурные датчики (ТС-1,2) на нужную процессинговую температуру. В главных горелках появится сильное желтое пламя с голубой сердцевиной. Настройку главных горелок необходимо делать при сильно горящих горелках (клапан регулятора температуры должен быть полностью открыт). Пламя в топке можно наблюдать через смотровое стекло, смонтированное перед корпусом огнепреградителя. Для получения желаемого пламени может потребоваться настроить регулятор топливного газа заново. При большом огне в топке, давление в ней должно быть 0.03...0.11 МПа (0.3... 1.1 кгс/см2).
Как только температура жидкости достигнет заданной точки, поток жидкости начнет проходить через установку. Откройте отсекающие клапаны (HV5) на каждой стороне нефтяного и водяного спускного клапана (СVI и CV2), задвижки №112,113,136,138,262,263,292,279 -выход нефти с аппаратов на вторую ступень сепарации и одновременно закрывается задвижка №31 между С-2/1,2 и С-3
При необходимости, в этот момент можно настраивать регулятор уровня нефти (LC2) и регулятор уровня раздела фаз (LC1).
Производится постепенный вывод аппарата ТС-1,2 "Хиттер-Триттер" на нормальный технологический режим. Установка переводится с режима работы ДНС в режим УПСВ.
2.13 Описание принципа работы УПСВ с аппаратом Хиттер-Триттер
Настоящее описание принципа работы установки предварительного сброса воды и товарной подготовки нефти в горизонтальном исполнении представлено на листе 1 графической части дипломного проекта.
Поступающие нефть, вода, эмульсия, и попутный газ входят в установку через входное отверстие, расположенное в верхней части аппарата. Жидкая фаза попадает в входную секцию установки, где происходит первичное отделение газа от жидкости. Отделённый газ поднимается вверх установки и, через влагоотбойник поступает к выпускному газовому фланцу. В экстракторе влаги вся жидкость, содержащаяся в газе коагулируется и сливается с жидкой фазой. Далее газ проходит через клапан обратного давления, который контролирует рабочее давление в аппарате.
Эмульсия, нефть и подтоварная вода спускаются по стенкам жаровой трубы и переливаются через перегородку, предотвращающую образование каналообразного потока нефти или эмульсии. Подтоварная вода собирается на дне аппарата под жаровыми трубами в отстойной секции. Нагревание эмульсии при её прохождении вокруг жаровых труб вызывает быстрое коагулирование капель воды и разбивание эмульсии. Капли воды, выделевшейся из эмульсии, оседают на дно ёмкости и соединяются со свободной водой, осевшей без подогрева. Кроме того, нефть и эмульсия проходя над жаровыми трубами вымывают образовавшиеся на них осадки и накипь.
Температура в жаровых трубах или топке поддерживается путём сжигания природного газа, выделившегося из потока входящей продукции. Если во входящем потоке не имеется объём газа, достаточный для поддержания необходимой температуры, может потребоваться дополнительный источник топливного газа. Установка оснащена фланцем для подсоединения дополнительного источника газа. Регуляторы и приборы, обеспечивающие контроль пламенем и температурой, установлены в аппарате.
Нефть поднимается через отстойный отсек, где за счёт гравитации из неё выходит вся оставшаяся вода. Оставшаяся нефтеводная эмульсия протекает через пластинчатый отсек аппарата. Пластинчатый отсек состоит из множества расположенных друг над другом рифлёных полипропиленовых пластин.
В условиях ламинарного потока, капли нефти поднимаются и скапливаются на пластинах. Затем эти капли коагулируются и образуют нефтяную плёнку на поверхности полипропиленовых пластин. Применение близко расположенных рифлёных пластин создаёт большую коагуляционную площадь, на которой собираются капельки нефти, и этот отсек способствует большему столкновению капель. Отделённая нефть поднимается вверх и поступает в сборный отсек. Гравитация позволяет оседанию воды. Затем, чистая нефть выходит из аппарата через выпускные клапана.
Установка оснащена механическими контрольными клапанами, контролирующими уровень жидкости и расположенными на линии выхода нефти (CV2) и на линии выхода воды (CV1). Эти клапана открываются и закрываются регуляторами уровня воды и нефти. При повышении уровня нефти поднимается поплавок уровня нефти (LC2) и
механически открывает нефтяной контрольный клапан. При повышении уровня воды поднимается поплавок уровня воды (LC1) и механически открывает водяной контрольный клапан. Для пропуска больших объёмов воды установка оснащена этими двумя регуляторами уровня воды и двумя клапанами. Давление в аппарате поддерживается контрольным клапаном обратного давления (BPV1) установленным на линии газа.
Природный газ для топки отбирается либо из установки (газ отсепарированый от эмульсии), либо от дополнительного источника газа. Во избежание попадания жидкости в систему подачи топливного газа, топливный газ проходит через скруббер (SCRUB 1). Скруббер оснащён датчиком высокого уровня конденсата (LSH2), отсекающий подачу топливного газа в случае наполнения скруббера жидкостью. Скруббер также оснащён ручным сливным клапаном (HV6) позволяющим оператору периодически сливать накопившуюся жидкость.
Из скруббера топливного газа, топливный газ главной горелки проходит через регулятор топливного газа (PR2), который снижает давление в системе до приблизительно 2,5 кг/см2. Подача топливного газа в главные горелки в топке осуществляется через два параллельных отсекающих клапана (XSV2), контрольные клапана (ТС1) и ручные отсекающие клапана (HV3). Контрольные клапана (ТС1) управляются регуляторами температуры (ТС1) чувствительный элемент которых установлен в установке около жаровых труб. Контрольные клапана (ТС1) открываются и закрывается в зависимости от повышения или понижения температуры в этом отсеке и тем самым контролируют подачу топливного газа в горелки топки. В установке имеются две горелки и каждая из них контролируется одним регулятором температуры (ТС1) и соответствующей топкой. Топливный газ проходит через регулятор газа (PR1) который снижает давление до приблизительно 1,1 кг/см2. Затем топливный газ на каждую пилотную горелку проходит через ручной отсекающий клапан (HV2), отсекающий клапан (XSV1), и через ручной блокирующий клапан (HV1), который осуществляет контроль за подачей газа в горелки. Каждая горежа оснащена одним пилотом.
Контроль за пилотными горелками в обеих жаровых трубах осуществляется ультрафиолетовыми детекторами, расположенными на контрольной панели горелки (PANEL). При неисправности горелки, соленоидные клапана (XSV1 и XSV2) закрываются. Для последующей продувки и розжига, необходимо сбросить аварийный сигнал на контрольной панели горелки. Каждая горелка работает независимо от другой.
Вспомогательные средства автоматики включают в себя следующие приборы:
*Датчики (LG1 и LG2) для наблюдения за уровнем нефти в установке и определения уровня раздела фаз нефти и воды;
Рабочие манометры (РН, PI2 и PI4);
Манометры для измерения давления дымовых газов (PI3);
Датчики (выключатели) высокого и низкого уровня (LSH1 и LSL1/LSLL1);
Температурные датчики в ванне и при выходе из аппарата (ТТ1 и ТТ2);
Датчик давления (РТ);
Датчик расхода газа (FT);
Нефтяной и газовый турбинные расходомеры (FM1 и FM2);
Датчик обводнённости нефти на выходе (AT).
В средства безопасности входят следующие приборы:
Предохранительные клапана (PSV1, PSV2, и PSV3);
Выключатели высокой температуры в аппарате (TSH1);
Выключатели высокой температуры дымовых газов (TSH2);
Выключатели высокого и низкого давления топливного газа (PSH1 и PSL1);
Выключатель высокого уровня конденсата в скруббере (LSH2);
Система зажигания с аварийным отключением в случае неисправности на каждую горелку.
На контрольной панели горелки имеется следующее:
*Имеется выключатель (on/off - вкл./выкл), выключающий входящее на панель напряжение
* Имеется кнопка "сброс" (RESET);
Имеется кнопка "запуск горелки №1" (BURNER #1 START); Имеется кнопка "запуск горелки №2" (BURNER #2 START);
Имеется кнопка "остановка горелки №1" (BURNER #1 STOP);
Имеется кнопка "остановка горелки №2" (BURNER #2 STOP);
Имеется контакт SPST для проверки состояния пламени №1;
Имеется контакт SPST для проверки состояния пламени №2; Имеется контакт SPST для отключения при неисправности пламени №1
Имеется, контакт SPST для отключения при неисправности пламени №2
Использует сухой контакт SPST от компьютера для дистанционного отключения каждой горелки.
Жаровые трубы оснащены огнегасителями, в которых находятся главные и пилотные горелки. На дымовых трубах установлены молниеотвод и защитный колпак от дождя. Регулятор обратного давления (BPV1) и
мерная трубка (FE) необходимые для правильной работы установки, смонтированы на линии газового выхода
В блоке управления с торца установки находятся светильники, обогреватели, вытяжной вентилятор, датчик загазованности и термодетектор -- датчик пожара на случай пожара. Датчик температуры воздуха в блоке управления замеряет температуру в блоке управления. Управление обогревателями осуществляется компьютером, который поддерживает температуру в диапазоне от О до 1,7 °С (32...35° F). Вытяжной вентилятор контролируется датчиком загазованности и компьютером. Он запускается при концентрации горючих смесей в воздухе от 50% (и выше) нижнего уровня взрывоопасности.
На дне ёмкости установлены аноиды, предохраняющие стальные поверхности от контакта с соляными растворами.
2.14 Обзор автоматизации системы сбора нефти и газа
Современное нефтедобывающее предприятие представляет собой сложный комплекс технологических объектов, осуществляющих добычу, транспортировку, первичную подготовку, хранение и внешнюю перекачку нефти и газа, а также выполняющих технологические процессы поддержания пластовых давлений.
Рассредоточенность технологических объектов на больших площадях привела к необходимости и экономической целесообразности разработки и внедрения телемеханических систем и организационных структур дистанционного контроля и управления технологическими объектами и процессами. Все это наложило особый отпечаток на характер технических и организационных решений вопросов автоматизации нефтедобывающих предприятий, обеспечило в ряде случаев ускорение, а иногда затрудняло внедрение по сравнению с автоматизацией предприятий других отраслей народного хозяйства.
Вопросами развития и внедрения автоматизации нефтедобывающих предприятий начали активно заниматься в середине 50-х годов. Однако из-за ряда причин эти работы велись медленно и не давали достаточного эффекта. Основными причинами, сдерживающими развитие автоматизации, были следующие. Автоматизировались не все процессы и не все объекты. Автоматизация осуществлялась некомплексно, из-за чего не высвобождался оперативный обслуживающий персонал, не совершенствовалась структура управления предприятием, не обеспечивалась экономическая эффективность. Средства автоматизации приспосабливались к существующему оборудованию, устаревшему, малонадежному, в ряде случаев непригодному для автоматизации. Средства автоматизации не составляли органически целого с автоматизированным оборудованием. Заводы изготовляли раздельно оборудование и средства автоматизации. На нефтяных промыслах монтировалось оборудование без обязательной установки на нем средств автоматики. Средства и системы автоматики и телемеханики разрабатывались применительно к большому числу технологических схем промыслового сбора и подготовки нефти и газа. В ряде случаев эти технологические схемы не были оптимальны для автоматизации. Все это приводило к разработке большого числа типов и конструкций средств автоматики и телемеханики, что затрудняло организацию широкого серийного производства, повышало стоимость при низком качестве приборов и устройств.
Анализ особенностей и существующего положения в области автоматизации нефтедобывающих предприятий позволил выработать основные принципы, которые были сформулированы в виде Основных положений по обустройству и автоматизации нефтедобывающих предприятий:
-унификации схем промыслового сбора нефти, нефтяного газа и воды;
-рационального размещения технологического оборудования на территории нефтедобывающего предприятия;
-создания новых видов нефтепромыслового оборудования, высокопроизводительного, надежного, органически включающего в себя средства автоматики;
-определения рациональных объемов автоматизации и телемеханизации объектов добычи, транспортировки и подготовки нефти, попутного газа и воды;
-разработки и внедрения новой организационной структуры автоматизированных нефтедобывающих предприятий.
Подъем жидкости из скважины следует рассматривать как начальную часть общей системы внутрипромысловой транспортировки нефти, газа и воды. Исходя из этого многие фонтанные скважины с буферными давлениями, не обеспечивающими подачу газонефтяной смеси к пунктам подготовки нефти, газа и воды без промежуточных перекачивающих станций, следовало бы с самого начала эксплуатации переводить на механизированные способы добычи. Стремление максимально использовать энергию пласта приводит к тому, что фонтанную скважину переводят на механизированный способ добычи только тогда, когда полностью прекращается фонтанирование. Это приводит к необходимости сооружать дожимные насосные станции (ДНС), совмещенные с сепарационными и буферными емкостями. С учетом оперативного резерва оборудования ДНС превращаются в громоздкие технологические объекты, рассредоточенные на промысловой площади и требующие повседневного обслуживания. В случае своевременного перевода фонтанных скважин на механизированный способ добычи необходимость в ДНС отпадает, так как напор, развиваемый глубинным насосом, обеспечивает подачу скважины по одному трубопроводу непосредственно к пунктам подготовки нефти, газа и воды.
Предусматривается единый для всего предприятия пункт сбора и подготовки нефти, на котором осуществляются сепарация всех ступеней, подготовка и внешняя перекачка товарной продукции нефти, газа и воды. Число скважин, объединяемых в едином центральном пункте подготовки нефти, выбирается исходя из максимально допустимых давлений на устье скважин.
При решении задач создания новых видов оборудования и технологических объектов необходимо учитывать специфику как нефтедобычи, так и освоения нефтяных месторождений. К специфике нефтедобычи относится прежде всего то, что оборудование работает под открытым небом, под воздействием атмосферных условий и отмечено непостоянство добычи нефти в различные периоды эксплуатации месторождения. Признано целесообразным оснащать нефтедобывающие предприятия оборудованием в блочном транспортабельном исполнении. Это позволяет наращивать или сокращать производственные мощности в зависимости от условий периода разработки нефтяного месторождения, что способствует повышению коэффициента использования оборудования до максимального значения. Вместе с тем блочный принцип позволяет значительно ускорить строительство объектов и ввод в эксплуатацию месторождений за счет применения индустриальных методов и резкого сокращения объема строительно-монтажных работ непосредственно на промысловых площадях. Изготовленное специализированными заводами блочное оборудование поставляется нефтедобывающими предприятиями комплектно со всеми средствами автоматики в опробованном и отлаженном состоянии. Создание технологических установок на специализированных заводах, а не монтаж их на промыслах, как это делалось раньше, позволяет решить проблему организации крупносерийного производства автоматизированного оборудования в объемах, обеспечивающих потребность всей отрасли, что обеспечит высокое качество и надежность его.
При решении задач автоматизации в качестве руководящих принципов приняты следующие: автоматизацией и телемеханизацией охватываются все основные и вспомогательные объекты; полная местная автоматизация, исключающая необходимость постоянного присутствия на объекте оперативного обслуживающего персонала; минимум информации, поступающей с объекта в пункты управления; автоматический сбор и переработка информации; автоматическая аварийная и предупредительная сигнализация с объектов. Предусматривается телемеханический контроль по уплотненным каналам связи: групповых измерительных установок, кустовых насосных станций, установок подготовки газа для газлифта, электроподстанций, расположенных на промысловой площади. Предусматривается дистанционный контроль по многопроводным каналам связи установок: сепарационных, подготовки нефти, подготовки воды, подготовки газа, сдачи товарной нефти, перекачки товарной нефти.
2.15 Расчет сепаратора на пропускную способность
Исходные данные:
Диаметр сепаратора,Dс , м……………………….……….1,6
Плотность нефти сн , кг/м 3……………………..852
Давление Рс, МПа……………….…………………..1,7
Температура Тс, К……………………...………293
Вязкость нефти µн , МПа* с….…….…………...6
Плотность газа сго, кг/м3 ……………………………1,35
Вязкость газа µг , Па* с…..…………………….1,3?10-5
Коэффициент Z………………………………………1
При расчетах сепараторов на пропускную способность для определения плотности газа в условиях сепаратора необходимо пользоваться формулой: с. 133(4)
сг = сго·Рст·Т3/Р0Тст (2.15.1)
где со- плотность газа при нормальных условиях ,кг/м3;
Рст и Ро - соответственно давление в сепараторе и давлении при нормальных условиях, Па;
То и Тст - абсолютная температура и при нормальных условиях (То=273 С), (Тст=273+t) соответственно, К;
Z - коэффициент, учитывающий отклонение реальных газов от идеальных.
сг=1,35·2,1·106·273/0,1·106·293·1 =21,3 кг/м3
Определим максимальную пропускную способность по газу:
г mах = 841·Dс·Рс·dж·( сн - сг)/Тс·µг·Z (2.15.2)
где Vг mах - максимальная пропускная способность сепаратора по газу, расход которых приведен к нормальным условиям, м3/сут;
Dс - внутренний диаметр сепаратора, м;
dж - диаметр капли жидкости, м ( dж=1?10 -4м);
Рс - давление в сепараторе, Па;
Тс - температура в сепараторе, К.
Vг mах = 841·1,62·2,1·106· (1·10-4)2· (852-21,3)/293·1,3·10-5·1 = 7982116,4 м3/сут.
Максимальная пропускная способность сепаратора.
Qж mах = 36964·D2с·dг2· (сн-сг)/µн (2.15.3)
где dж- диаметр пузырька газа, м (можно принять (dж=1·10-3м)
µн - вязкость нефти, Па·с.
Qж mах = 36964-1,62 · (1·10-3)2 · (852·21,3)/6·10-3= 13·103 м3/сут.
При данных условиях Vг mах = 7982116 м3/сут. и Qж тах = 13·103 сепарация нефти будет эффективна с содержанием в ней газа не более 21,3%.
2.16 Расчет модификации внутренней перегородки
В настоящее время, по согласованию с фирмой производителем на ряде аппаратов произведена модификация внутренней перегородки для успокоения потока. Модификация заключается в удлинении перегородки успокоения потока, находящейся сразу же после жаровых труб. В результате в нагревательной части аппарата происходит перераспределение движения потоков нефти и воды в аппарате, предотвращается прохождение нагретой нефти под жаровыми трубами. Уменьшаемая разность температуры нагрева и температуры выхода подготовленной нефти из аппарата.
Опыт эксплуатации модифицированных аппаратов показал, что при одинаковом количестве подготовки нефти, производительность аппаратов повысилась в среднем в 2 раза. Возьмем в качестве эталона удельной суточной производительности электродегидратор ЭГ-200 и сравним с аппаратами до и после модернизации (Таблица2.16.1)
По сравнению с паспортной, максимальная производительность возросла на 20 - 35%.
Таблица 2.16.1-Сравнительные параметры работы электродегидратора ЭГ-200 и аппарата "Хитер - Тритер"
Марка и емкость аппарата, Vm3 |
Производительность аппарата,С)м /ч |
Обводненность, q0 масса |
Удельная производиельность, Q/V |
КПД |
||
ЭГ-200 |
300 |
0,1 .. |
.0,3 |
1,5 |
1,0 |
|
Аппарат V=75 до реконструкции |
40 ... 80 |
0,3 ... |
0,8 |
0,5 ... 1,1 |
0,63 ... 0,7 |
|
Аппарат V=75 после реконструкции |
100 ...110 |
0,3 .. |
. 0,8 |
1,3 ... 1,5 |
0,85 ... 1,0 |
В данной рекомендации рассчитываем теоретическая производительность аппарата по нефти, рекомендация по модернизации аппарата и ведению технологического режима.
Исходные данные:
-плотность нефти при 20°Ссн.,кг/м3………..……….865
-плотность воды при20°Ссв.,кг/м3……………………..…..1014
-кинематическая вязкость нефти х, м2/с....………….….4,2М10-6
-диаметр наименьшей капли воды, охлаждающейся в отстойной части d, м………………………… 2,2М10-6
-диаметр аппарата D, мм…………………………...…3048
-длинна обменной части аппарата L, мм……………….5245
-высота слоя эмульсии h1, мм……………..……0,764
-фактическая скорость осаждения воды в потоке нефти нфакт., м/с…………………………….1,005М10-6
Подобные документы
Структура водонефтяной эмульсии. Методы разрушения нефтяных эмульсий, их сущностная характеристика. Промышленный метод обезвоживания и обессоливания нефти. Технические характеристики шарового и горизонтального электродегидраторов. Деэмульгаторы, их виды.
презентация [2,8 M], добавлен 26.06.2014Физико-химические свойства нефти, газа, воды исследуемых месторождений нефти. Технико-эксплуатационная характеристика установки подготовки нефти Черновского месторождения. Снижение себестоимости подготовки 1 т. нефти подбором более дешевого реагента.
дипломная работа [1,5 M], добавлен 28.03.2017Геолого-физическая и литолого-стратиграфическая характеристика Туймазинского месторождения. Описание продуктивных горизонтов. Строительство буровой вышки. Автоматизированные групповые замерные установки "Спутник". Лабораторные исследования нефти.
отчет по практике [2,3 M], добавлен 13.10.2015Общие сведения о процессе обессоливания нефти. Подготовка нефти к переработке путем удаления из нее воды, минеральных солей и механических примесей. Анализ коррозирующего действия соляной кислоты. Применение магнитных полей в процессе обессоливания.
реферат [494,4 K], добавлен 14.11.2012Методика подготовки нефти к переработке на промыслах. Способы разрушения водонефтяных эмульсий. Конструкция и принцип действия горизонтального электродегидратора. Технология обезвоживания и обессоливания нефти на электрообессоливающих установках.
курсовая работа [886,5 K], добавлен 23.11.2011Разработка Самотлорского месторождения, геологическое строение продуктивных горизонтов. Технология добычи нефти установками центробежных электронасосов в СНГДУ-2 ОАО "СНГ"; расчет и подбор внутрискважинного оборудования; природоохранная деятельность.
курсовая работа [5,3 M], добавлен 18.03.2012Анализ технического состояния и перспектив развития железнодорожного тягового подвижного состава. Виды топлив в локомотивных энергетических установках, использование водотопливной эмульсии в тепловозных дизелях; системы приготовления и подачи ВДЭ.
курсовая работа [7,2 M], добавлен 10.09.2012Состав скважинной продукции. Принципиальная схема сбора и подготовки нефти на промысле. Содержание легких фракций в нефти до и после стабилизации. Принципиальные схемы одноступенчатой и двухколонной установок стабилизации нефти, особенности их работы.
презентация [2,5 M], добавлен 26.06.2014Обзорная карта месторождений ОАО "Сургутнефтегаз". Стратиграфия и тектоника района. Характеристика нефтегазоносных пластов и пластовых флюидов. Процедура нестационарного заводнения добывающих скважин. Период разработки блоков в нестационарном режиме.
курсовая работа [692,1 K], добавлен 05.03.2015История предприятия ОАО АНК "Башнефть". Обязанности мастера по контрольно-измерительным приборам и средствам автоматики. Технологический процесс промысловой подготовки нефти. Его регулирование с помощью первичных датчиков и исполнительных механизмов.
отчет по практике [171,1 K], добавлен 09.04.2012