Химические методы увеличения продуктивности скважин в ОАО "ТНК-Нижневартовск"

Повышение нефтеотдачи пластов: характеристика геолого-технических мероприятий; тектоника и стратиграфия месторождения. Условия проведения кислотных обработок; анализ химических методов увеличения производительности скважин в ОАО "ТНК-Нижневартовск".

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 14.04.2011
Размер файла 2,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство энергетики Российской Федерации

Государственное образовательное учреждение

среднего профессионального образования

Нижневартовский нефтяной техникум

Специальность 0906 «Эксплуатация нефтяных и газовых месторождений»

КУРСОВОЙ ПРОЕКТ

по дисциплине

Эксплуатация нефтяных и газовых месторождений

Тема:

Химические методы увеличения продуктивности скважин в

ОАО «ТНК-Нижневартовск»

Разработала студентка

гр. 4Э2-00

Татаринцева В.М

г. Нижневартовск, 2003 г.

ЗАДАНИЕ

Для курсового проектирования студенту дневного отделения 4 курса группы 4Э2-

Тема: «Химические методы увеличения продуктивности скважин в ОАО «ТНК-Нижневартовск»

В курсовом проекте должны быть разработаны и изложены:

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1. ВВЕДЕНИЕ

1.1 Краткая характеристика геолого-технических мероприятий

1.2 Причины, вызывающие ухудшение фильтрационной способности

2 ГЕОЛОГИЧЕСКИЙ РАЗДЕЛ

2.1 Орогидрография района

2.2 Тектоника и стратиграфия месторождения

2.3 Коллекторские свойства продуктивных пластов

2.4 Свойства нефти и воды в пластовых условиях

3. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

3.1 Назначение и условия проведения кислотных обработок

3.2 Типы применяемых ингибиторов и их свойства

3.3 Виды кислотных обработок

3.4 Применение поверхностно-активных веществ

3.5 Повышение нефтеотдачи пластов и интенсификация добычи нефти на предприятии

4. РАСЧЕТНЫЙ РАЗДЕЛ

4.1 Расчет обработки призабойной зоны пласта раствором соляной кислоты

5. ОХРАНА ТРУДА

5.1 Общие сведения об охране труда

5.2 Охрана труда на предприятии

6. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

6.1 Общие сведения об охране окружающей среды

6.2 Мероприятия по охране окружающей среды

7. ГРАФИЧЕСКАЯ ЧАСТЬ

Лист 1 Технологическая схема простой кислотной обработки

Лист 2 Общий вид машины Аз-30А

Дата выдачи 9.12.02 г

Срок окончания 1.03.03 г

Содержание

Введение

Краткая характеристика геолого-технических мероприятий

1. Причины, вызывающие ухудшение фильтрационной способности призабойной зоны пласта

2. Геологический раздел

2.1 Орогидрография района

2.2 Тектоника и стратиграфия месторождения

2.3 Коллекторские свойства продуктивных пластов

2.4 Свойства нефти, газа и воды в пластовых условиях

3. Технико-технологический раздел

3.1 Назначение и условия проведения кислотных обработок

3.2 Типы применяемых ингибиторов и их свойства

3.3 Виды кислотных обработок

3.4 Применение поверхностно-активных веществ

3.5 Анализ химических методов увеличения производительности скважин в ОАО «ТНК-Нижневартовск»

3.6 Выводы

4. Расчетный раздел

4.1 Расчет обработки призабойной зоны пласта раствором соляной кислоты

5. Охрана труда

5.1 Общие сведения об охране труда

5.2 Мероприятия по охране труда на предприятии

6. Охрана окружаюшей среды

6.1 Обшие сведения об охране окружающей среды

6.2 Мероприятия по охране окружающей среды

Литература

ВВЕДЕНИЕ

Краткая характеристика геолого-технических мероприятий

Геолого-технические мероприятия (ГТМ) - работа по интенсификации добычи нефти и газа путем воздействия на продуктивные пласты и применения технико-технологических способов улучшения (облегчения) условий транспортирования нефти с забоя на устье скважины.

При обработке призабойной зоны (ОПЗ) применяют механические, химические и физические методы воздействия на пласт.

При механическом методе создаются новые каналы и трещины, которые соединяют ствол скважины с пластом.

К механическим методам относятся гидравлический разрыв пласта (ГРП), гидропескоструйная перфорация (ГПП) и торпедирование скважин. Механические методы применяют в плотных породах.

Химический метод основан на реакции взаимодействия закачиваемых химических веществ с некоторыми породами (карбонатными породами и песчаниками, содержащими карбонатные вещества) пласта и загрязняющими пласт привнесенными отложениями.

К химическим методам относятся и обработки пластов поверхностно активными веществами (ПАВ).

К физическим методам отнесены тепловые обработки и вибровоздействие, механизм действия которых основан на физических явлениях.

К геолого-техническим мероприятиям относятся также приобщение, дострел и перестрел пластов, оптимизация режима работы скважин, изменение способа добычи нефти, ввод скважин из бездействия и ремонтно-изоляционные работы

Приобщение пласта - работы по перфорации и освоению пластов в скважине, уже эксплуатирующей другой пласт .

1. Причины, вызывающие ухудшение фильтрационной способности призабойной зоны пласта

Все факторы, вызывающие ухудшение ПЗП, подразделяют на четыре группы.

I. Факторы, вызывающие механическое загрязнение ПЗП:

1. Засорение пористой среды ПЗП твердой фазой промывочного раствора при бурении, а также при капитальном и подземном ремонтах скважин.

2. Закупорка тонкого слоя породы вокруг забоя глиной или тампонажным цементом при цементировании эксплуатационных колонн.

3. Проникновение глинистого и особенно тампонажного растворов в трещины, что в несколько раз может снизить среднюю проницаемость ПЗП.

4. Загрязнение ПЗП нагнетательных скважин илистыми частицами, содержащимися в закачиваемой воде. В этом случае проницаемость может снизиться в десятки раз.

5. Обогащение ПЗП мельчайшими частичками за счет кольматажа и суффозии при возвратно-поступательном движении фильтрата и пластовой жидкости во время спускоподъемных операций.

6. Кольматаж ПЗП минеральными частицами, приносимыми жидкостью из удаленных зон пласта.

II. Физико-литологические факторы, обусловленные действием пресной воды на цемент и скелет породы:

1. Проникновение в ПЗП фильтрата глинистого раствора или воды при капитальном и подземном ремонте скважин.

2. Закачивание воды в пласт для поддержания пластового давления.

3. Закачивание в пласт сбросовой жидкости.

4. Прорыв посторонних пластовых слабоминерализованных вод в

продуктивный пласт.

5. Прорыв закачиваемой в водонагнетательные скважины воды в ПЗП в добывающих скважинах.

III. Физико-химические факторы:

1. Проникновение в пористую среду воды, что приводит к увеличению водонасыщенности и созданию "блокирующей" преграды фильтрации нефти и газа за счет разности поверхностных натяжений воды и пластовой жидкости.

2. Образование в ПЗП устойчивой эмульсии из-за периодического изменения гидродинамического давления на стенки скважины и поэтому взаимного диспергирования (измельчения) воды (фильтрата) и нефти. Этому способствует наличие в нефти асфальто-смолистых веществ, являющихся эмульгатором.

3. В водонагнетательных скважинах выпадение солей на скелете пород ПЗП при контакте пластовых и закачиваемых вод в начальный период нагнетания вод.

IV. Термохимические факторы:

1. Отложение парафина на скелете пород пласта в залежах с низкой пластовой температурой. Этот процесс происходит при охлаждении при-забойной зоны во время вскрытия пласта, при длительной эксплуатации скважин и при закачивании воды в пласт.

2.Проникновение в продуктивный пласт нижних высокотемпературных и сильноминерализованных вод и последующее их охлаждение.

2 ГЕОЛОГИЧЕСКИЙ РАЗДЕЛ

2.1 Орогидрография района

Самотлорское нефтяное месторождение административно расположено на территории Нижневартовского района Ханты-Мансийского автономного округа Тюменской области.

Географически район месторождения приурочен к водоразделу рек Вах и Ватинский Еган, правых притоков реки Обь.

Рельеф местности слабо пересеченный, с абсолютными отметками от минус 43 метров на пойменных участках до минус 76 метров в центральной части водораздела.

Из двух рек, протекающих на территории месторождения, судоходна только одна река Вах, окаймляющая восточную и северо-восточную части месторождения. Ширина среднего течения 0,5 м/сек. Навигация начинается во второй половине мая и заканчивается в середине октября. Река Ватинский Еган, расположенная на северо-западе месторождения, не судоходна.

Отличительной особенностью района является его крайняя заболоченность, а также многочисленность больших и малых озер. Непосредственно на территории месторождения расположены следующие крупные озера: Самотлор, Кымыл-Эмтор, Белое, Окунево и множество других озер.

В течение зимнего периода многие болота, озера и таежные речки промерзают, плохо и труднопроходимы.

Грунтовые воды на участке работ находятся на глубине 2-12 м от дневной поверхности.

Растительность представлена смешанным лесом с преобладанием хвойных и тальниковых кустарников, растущих, главным образом, по берегам дневной поверхности.

Климат района резко континентальный, с коротким теплым летом и долгой суровой зимой. Продолжительность зимнего периода с ноября по апрель, характерны метели и снегопады, среднесуточная температура воздуха в январе минус 25 градусов Цельсия, толщина ледяного покрова достигает 1 м на реках и 3 м на озерах.

Наибольшее количество осадков выпадает в теплое время в июле - августе и в холодное время в декабре - январе. Общее количество осадков в год достигает 400 мм.

Кроме нефти и газа на территории месторождения имеются другие полезные ископаемые, такие как торф, глина, строительные пески и другие.

2.2 Тектоника и стратиграфия месторождения

В региональном тектоническом плане по отражающему сейсмогоризонту «Б» Самотлорская площадь расположена в Центральной части Нижневартовского свода, в пределах Тарховского куполовидного поднятия, которое объединяет Самотлорскую, Мартовскую, Северо-Самотлорскую, Белозерскую и Черногорскую структуры 3-го порядка.

Верхний-мезокайнозойский, типично платформенный формировался в условиях длительного, устойчивого погружения фундамента.

По кровле горизонта БВ81-2 Самотлорское куполовидное поднятие оконтуривается изогипсой минус 2200 метров. Все локальные структуры внутри контура выражены довольно резко. Наиболее крупная из них Самотлорская, расположена в центральной и южной частях Тарховского поднятия. Структура оконтурена изогипсой минус 2120м, имеет изометрическую форму с изрезанными контурами. Размеры ее в плане 12х 15км, амплитуда структуры около 80 м, при этом наиболее крутые углы поднятия характерны для юго-восточной части до 2020. Белозерная структура по кровле пласта БВ81-2 осложнена двумя куполами, оконтуренными изогипсой минус 2130м. Общие размеры структуры 6х15км в пределах изогипсы минус 2130м.

В целом Самотлорское куполовидное поднятие по замыкающей изогипсе минус 2200 м, имеет размеры 32х40км, амплитуду 150 метров. Более существенные изменения структурного плана происходят по кровле самого верхнего продуктивного пласта AB1. Белозерное, Мартовское поднятие практически сливаются с Самотлорским, с севера и востока оконтуриваются изогипсой минус 1690 метров. На западе и юго-западе оконтуриваются изогипсой минус 1640 метров и раскрываются в сторону Аганского, Ватинского, Мегионского и Мыхпайского поднятий. Углы наклона крыльев от десятков минут до 1.45. Амплитуда по отношению к западному крылу около 110 метров, восточному и северному 160метров.

В геологическом строении Нижневартовского свода, где расположено Самотлорское месторождение, принимают участие породы доюрского фундамента, мезо-кайнозойских терригенных отложений платформенного чехла. В разрезе последних выделяются юрские, меловые, палеогеновые и четвертичные образования.

В пределах Западно-Сибирской плиты большинство исследователей выделяет три структурно-тектонических этажа.

Нижний - формировался в палеозойское и допалеозойское время и отвечает геосинклинальному этапу развития современной плиты.

Средний - объединяет отложения, образовавшиеся в условиях парогеосинклинали, имевшей место в пермско-триасовое время.

Палеозойский фундамент на месторождении представлен сильно метаморфированными глинистыми и глинисто-слюдистыми сланцами. Максимальная вскрытая толщина этих пород на месторождении составляет 87 метров.

Юрская система. Породы юрской системы залегают с резким угловым несогласием на породах фундамента и представлены тремя отделами.

Тюменская свита (нижняя и средняя юра) представлена неравномерным чередованием аргиллитов, алевролитов и песчаников. Толщина отложений тюменской свиты составляет 220-250 метров.

Верхняя юра представлена преимущественно морскими осадками васюганской свиты, толщиной 50-60 метров, георгиевской свиты, толщиной до 4 метров и баженовской свиты, толщиной до 20 метров.

Меловая система представлена нижним и верхним отделами, сложенными морскими, прибрежно-морскими и континентальными осадками.

Нижнемеловые отложения представлены на рассматриваемой территории породами Мегионской, Вартовской, Алымской, низов Покурской свит.

- нижняя часть Мегионской свиты сложена аргиллитами серыми и темно-серыми. На них залегает ачимовская толща, представленная переслаиванием песчаников, алевролитов и аргиллитов. В пределах площади пласты песчаников именуются пластами БВ1.

- верхняя часть Вартовской свиты включает продуктивные пласты АВ 2-8 Общая толщина Вартовской свиты до 400 метров.

- Алымская свита состоит из двух частей: Верхняя подсвита, делится на две ваяки: верхняя сложена аргиллитами темно-серыми с частыми тонкими прослоями алевролитов. Нижняя подсвита представлена, в основном, песчаниками и выделяется в разрезе как горизонт AB1. Общая толщина отложений Алымской свиты 67-84 метра.

Вышезалегающая часть разреза меловой системы представлена отложениями ее верхнего отдела преимущественно глинистыми осадками кузнецовской, березовской и ганькинской свит, толщиной 250-300 метров.

Палеогеновая система состоит в нижней части, в основном, из глин морского происхождения (талицкая, люлинворская, чеганская свиты), толщина которых составляет 280-320 метров, выше залегают континентальные осадки - переслаивание глин, песков, бурых углей с остатками древесины (атлымская, новомихайловская, журавская свиты). Толщина осадков 235-240 метров.

Четвертичные отложения - супеси, суглинки, пески, торф, залегают на размытой поверхности осадков журавской свиты, толщина их достигает до 125 метров.

2.3 Коллекторские свойства продуктивных пластов

Таблица 2.3.1

Коллекторские свойства продуктивных пластов

Пласт

Пористость,

доли единиц

Проницаемость, мкм2

Нефтенасыщенность,

доли единиц

АВ1-2АВ1

0,23

189х10-3

0,358

АВ2-3AB1

0,225

61х10-3

0,64

АВ3

0,265

518х10-3

0,269

AB4-5

0,277

825х10-3

0,258

АВ6-7

0,282

449х10-3

БВ1

0,240

215х10-3

0,358

Благоприятными условиями для накопления и сохранения нефти и газа в горных породах являются наличие пустот в породе, которые могут занимать нефть и газ, и залегание пород в виде геологических структур, препятствующих рассеиванию нефти и газа.

Проницаемостью горных пород называют их способность пропускать жидкость или газ под действием перепада давления. Наибольшая проницаемость по плату АВ 4-5 наименьшая по пласту АВ 1-3.

Содержание в пустотах горных пород нефти, газа и воды называют насыщенностью. Коэффициент нефтенасыщенности - это доля объема пустот в горной породе, заполненных нефтью. Наибольшая нефтенасыщенность по пласту АВ 1 составляет 0,64.

Горизонт AB1 отличается от других горизонтов продуктивной толщи Самотлорского месторождения сложным взаимоотношением песчаников, алевролитов и глин и разделяется на два пласта: верхний AB1и нижний AB1

Верхний пласт разделяется на глинистую и песчаную части, а в нижней части выделяются монолитные песчаники, тонкое чередование песчано-глинистых пород и глинистые песчаники.

Горизонт АВ2-3 отличается высокой степенью литологической неоднородности, обусловленной частым чередованием глинистых и песчано-алевролитовых слоев.

Горизонт АВ4-5 отличается сравнительно однородным строением. В этом горизонте преобладает песчаный тип разреза (монолиты), на долю которых приходится около 95%.

Горизонт БВ3 является основным объектом разработки на большей части месторождений Нижневартовского свода, в том числе на Самотлорском месторождении.

Пласт ЮB1 Самотлорского месторождения представлено алевролитами и песчаниками.

В целом по коллекторским свойствам пород продуктивных пластов Самотлорского месторождения можно сделать выводы:

Существенное различие коллекторских свойств изученных горизонтов обусловлено литологическими особенностями пород этих объектов.

На нефтенасыщенность пород в стабилизированных зонах залежи основное влияние оказывают литолого-коллекторскне свойства, а в недонасыщенных - значительное влияние приобретает расстояние исследуемого прослоя от ВНК.

2.4 Свойства нефти, газа и воды в пластовых условиях

Таблица 2.4.1

Свойства нефти, газа и воды в пластовых условиях

Пласт

Рпл, МПа

Рнас, МПа

Г,м33

G,м33

в, Мпа х с

н, кг/м3

Мн, Мпа х с

г, кг/м3

Мг, Мпа х с х 103

АВ11-2

15,6

9,7

60

68,8

1,14

812

1,3

1,239

1,012

13

16,7

11,3

60

90,9

1,254

700

1,61

1,239

1.012

АВ2-3

16,2

10,8

61

79,8

1,234

755

1Д5

1,27

1,016

АВ4-5

17,1

13,4

60

72,9

1,208

779

2,39

1,275

1,016

АВ6-7

17,2

8,4

70

71,6

1,14

813

1,28

-

-

БB1

18,8

11,9

71

99,7

1,276

746

1,28

1,108

1,017

БВ80

19,6

10,5

70

95,5

1,27

745

1,09

-

-

БВ 81-2

19,1

10,8

71

97,4

1,267

730

1,21

-

-

БВ83

20,5

10.5

72

98,9

1,284

736

1,13

1,5

1,016

ЮВ1

22,4

11,2

84

93,7

1,206

775

0,93

1,007

1,023

Нефть и газ, заполняя пустоты продуктивного пласта, залегающего на больших глубинах в земной коре, находятся под действием пластовых давлений и температур. Из таблицы 2.4 видно, что максимальное пластовое давление характерно по пласту ЮВ1.

Количество растворенного в нефти газа характеризуют газосодержанием нефти. Наибольшее газосодержание, в пласте БB1 и наименьшее в пласте АВ11-2.

Одним из основных показателей товарного качества нефти является плотность нефти. Нефть Самотлорского месторождения имеет плотность до 880 кг/м3 и относится к легкой нефти.

Важнейшей характеристикой жидкостей и газов, показывающих их способность оказывать сопротивление перемещению одних частиц или слоев относительно других является динамическая вязкость . Вязкость нефти Самотлоркого месторождения больше 1.

нефтеотдача пласт химический обработка

3. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ
3.1 Назначение и условия проведения кислотных обработок

Назначение соляной кислоты НСl - растворение карбонатных пород, карбонатных породообразующих минералов, а также привнесенных в пласт загрязняющих частиц.

Уравнения химической реакции соляной кислоты с карбонатными породами следующие:

с известняками:

СаСОз + 2НС1=СаСl2+H20+C02

с доломитами:

CaMg (Соз)2 + 4НС1 =CaCl2+MgCl2+2H2O+2CO2.

Полученные в результате реакции хлористый кальций СаСl2 и хлористый магний MgCl2 хорошо растворяются в воде и легко удаляются из ПЗП вместе с продукцией скважины; в пласте образуются новые пустоты и каналы.

Обычно применяют соляную кислоту 8-15%-й концентрации. Применение большей концентрации не рекомендуется из-за сильной коррозии и возможности растворения гипса с последующим закупориванием пласта.

Ниже приводятся геологические условия. Концентрация соляной кислоты при солянокислотных обработках:

8-10% -для песчаников с карбонатным цементом;

10-12%-для карбонатной породы высокой проницаемости при низком пластовом давлении;

12-15%-для карбонатной породы низкой проницаемости при высоком пластовом давлении.

Глинокислоту нельзя применять для воздействия на карбонатные породы и песчаники с большим количеством карбонатного цемента, так как при этом образуется слизистый осадок фтористого кальция, закупоривающий поры пород.

Уравнение химической реакции плавиковой кислоты с карбонатом кальция следующее:

CaC03 + 2HF=CaF2+CO2+H2O

Уксусная кислота СНзСООН добавляется в соляную кислоту для замедления скорости растворения карбонатной породы. Это обеспечивает более глубокое внедрение в поры породы еще активного раствора соляной кислоты. Уксусная кислота также предотвращает выпадение в осадок гидрата оксида железа Fe(OH)3, растворяет карбонатную породу, хотя и в меньшей степени (в 1,64 раза), чем соляная кислота. Учитывая это, а также высокую стоимость, основное назначение уксусной кислоты сводится к стабилизации раствора соляной кислоты от выпадения железистых осадков и замедлению скорости реакции кислоты с породой.

Концентрированная серная кислота предназначается для воздействия на песчаники. При этом снижается вязкость нефти за счет теплоты, выделяющейся в процессе смешения серной кислоты с водой, и увеличивается производительность скважины. При смешении серной кислоты с нефтью образуется ПАВ, что также способствует улучшению притока нефти из пласта в скважину.

Серную кислоту не рекомендуется применять для воздействия на карбонатные породы, так как при их взаимодействии образуется нерастворимый в воде сульфат кальция CaSO4. Уравнение химической реакции серной кислоты с карбонатной породой следующее:

CaCO3 + H2SO4=CaSO4+H2O+CO2

При температуре пласта ниже 70° С сульфат кальция выпадает в осадок в виде гипса CaSO4-2H2O.

Концентрированная (98%) серная кислота не реагирует с металлом, но разбавление ее водой приводит к увеличению коррозии.

Угольную кислоту Н2СОз применяют для воздействия на породы, содержащие карбонаты кальция и магния, а также асфальто-смолистые осадки

3.2 Типы применяемых ингибиторов и их свойства

Ингибиторы -- вещества, замедляющие скорость коррозии металлов. Поэтому ингибирование растворов кислот является необходимой операцией при любой кислотной обработке и предназначается для защиты от преждевременного коррозионного износа подземного и наземного оборудования скважин: эксплуатационных колонн, НКТ, фильтров скважин, емкостей хранения и передвижных емкостей, насосных агрегатов, линий обвязки. Ингибиторам коррозии предъявляются следующие требования:

1. Снижение скорости коррозии металла в 25 раз и более при малых концентрациях и невысокой стоимости;

2. Хорошая растворимость в используемых кислотах;

3. Возможность выпадения в осадок после взаимодействия кислоты с карбонатами (нейтрализации);

4. Невозможность образования осадков с продуктами реакции кислоты.

На промыслах применяется целый ряд ингибиторов, различающихся защитными свойствами. Если защитные свойства того или иного ингибитора недостаточны, то используют комбинацию ингибиторов.

Формалин -- водный раствор, содержащий 37% формальдегида прозрачная жидкость плотностью 1106 кг/м3 с резким запахом, со временем мутнеет вследствие выпадения белого осадка параформальдегида, особенно при отрицательной температуре. Поэтому для его хранения нужно отапливаемое помещение. Из-за небольшого защитного свойства применение формалина при СКО не рекомендуется.

Уникол ПБ-5 -- липкая темно-коричневая жидкость плотностью 1100 кг/м3. Полностью растворяется в соляной кислоте, но не растворяется в воде, особенно в сильно минерализованной. Поэтому в порах пласта после завершения реакции кислоты с породой выпадают очень объемистые осадки липкой органической массы. Это отрицательно влияет на проницаемость пород и снижает эффективность СКО. Поэтому рекомендуется применение уникода ПБ-5 при дозировке 0,05--0,1%. При этом коррозия снижается в 15--22 раза.

Катапин-А -- ионогенное катионоактивное ПАВ -- один из лучших ингибиторов. При температуре до 80° С и продолжительном воздействии на металл дозировка катапина-А может быть увеличена до 0,2%. При температуре выше 80° С катапин-А малоэффективен.

Катапии-К отличается от катапина-А только уменьшенным количеством углерода. Защитные свойства несколько хуже, чем катапина-А.

Катамин-А -- также катионоактивное ПАВ, его защитные свойства хуже, чем катапина-А и катапина-К.

Уротропин технический -- продукт взаимодействия аммиака с формальдегидом, бесцветные кристаллы, растворяется в воде, органических растворителях. Защитные свойства такие же, как у формалина. Поэтому оба реагента -- и формалин, и уротропин -- могут служить резервными на случай отсутствия высокоактивных реагентов.

Реагент И-1-А -- побочный продукт процесса синтезирования и представляет собой смесь нескольких веществ.

Реагент УФЭв -- неионогенное ПАВ, обладает определенными защитными свойствами. При дозировке УФЭв 0,1--0,3% кратность снижения коррозии составляет всего 11 --14. Поэтому самостоятельно может применяться только при отсутствии более активных ингибиторов.

По согласованию с потребителем кислота может поставляться заводами-изготовителями с введенным в нее ингибитором.

3.3 Виды кислотных обработок

На промыслах применяют следующие кислотные обработки:

1. Кислотные ванны;

2. Простые кислотные обработки;

3. Кислотные обработки под давлением;

4. Термокислотные и термогазохимические обработки;

5. Пенокислотные и термопено-кислотные обработки;

6. Гидроимпульсные кислотные обработки;

7. Кислотоструйные обработки;

8. Обработки глинокислотой;

9. Углекислотные обработки;

10. Обработки сульфаминовой кислотой и др.

Кислотные ванны -- наиболее простые кислотные обработки и предназначены для очистки стенок скважины и забоя от остатков цементной и глинистой корок, продуктов коррозии, смолистых веществ, парафина и т. д. Такая очистка способствует увеличению зоны охвата пород раствором кислоты и предупреждает образование отложений в порах пород при последующих обработках.

Кислотные ванны в основном устанавливают в скважинах, в которых продуктивный пласт не закреплен обсадной колонной, т. е. в скважинах с открытым стволом. Рекомендуемая концентрация соляной кислоты составляет 15--20%. Если кислотные ванны устанавливают в обсаженных скважинах, то концентрация кислоты не должна превышать 12%. Объем раствора для установки кислотной ванны определяют исходя из полного перекрытия обрабатываемого интервала от подошвы до кровли.

Перед кислотной ванной необходимо очистить стенки скважины и забой. Хотя кислотная ванна предназначена для очистки стенок скважины, но специальная предварительная очистка способствует максимальному удалению цементной корки. Все это предупреждает образование осадков и сохраняет активность кислоты.

Цементная корка снимается проработкой открытого ствола в интервале обработки с помощью расширителя, механического или гидромониторного скребка. Если стенки скважины не требуют очистки, то забойная пробка удаляется обычной промывкой. При подготовке скважины определяют также статический уровень и величины пластового давления.

Необходимое условие установления кислотной ванны -- присутствие раствора кислоты в интервале обработки, для чего разработаны определенные технологические приемы закачивания и продавливания раствора кислоты в скважину.

В скважинах, находящихся в освоении после бурения (ствол скважины после предварительной очистки заполнен водой или нефтью при слабом притоке ее из пласта), технологический процесс осуществляется следующим образом (рис. 3.1).

Насосно-компрессорные трубы спускают до забоя и поддерживают циркуляцию воды до устойчивого перелива ее из затрубного пространства (рис. 3.1 а)

Рисунок 3.1 - Технологические схема (а -- г) установления кислотной ванны:

1 -- вода;

2 -- кислота;

3 -- продавочная жидкость.

При открытом затрубном пространстве в НКТ закачивают расчетное количество раствора кислоты рис. 3.1, б), а затем без остановки -- продавочную жидкость -- воду (рис. 3.1, в). После закачивания продавочной жидкости в объеме, равном объему НКТ (рис.3.1, г), закрывают задвижки в НКТ и выкиде затрубного пространства, и скважина оставляется на реагирование на 16--24 ч (точный срок устанавливают для каждого месторождения опытным путем на основе определения остаточной кислотности раствора после различных сроков выдерживания его на забое). По истечении времени реагирования производят промывку скважины через затрубное пространство (обратная промывка) водой или через НКТ (прямая промывка) нефтью с целью удаления с забоя продуктов реакции.

В нефтяных добывающих скважинах, находящихся в эксплуатации, для обратной промывки в затрубное пространство закачивают нефть. Жидкость, из НКТ принимается в емкость и замеряется. Объем этой жидкости сравнивается с объемом продавочной жидкости, использованной во время установления ванны. Количество выдавленного из скважины отработанного раствора кислоты сравнивают с количеством закачанного в скважину раствора кислоты.

В водонагнетательных скважинах в качестве продавочной и промывочной жидкости используют воду.

При установлении кислотной ванны в скважинах газовых и газоконденсатных месторождений отработанный раствор кислоты и продукты реакции удаляют газовым потоком путем открытия задвижки на устье скважины. Примерная схема обвязки оборудования при установлении кислотной ванны приведена на рисунке 3.2.

Рисунок 3.2 -Примерная схема обвязки наземного оборудования при установлении кислотной ванны:

1 -- кислотовоз;

2 -- установка насосная;

3 -- скважина;

4 -- резервуар.

Простые кислотные обработки применяются наиболее часто для растворения привнесенных в пласт загрязняющих материалов, а также для увеличения размеров поровых каналов за счет растворения карбонатной породы.

В скважинах с низким пластовым давлением, в которых трудно восстановить циркуляцию жидкости при промывке, забой очищают желонкой.

В водонагнетательных скважинах в качестве продавочной и промывочной жидкостей используют воду.

Концентрацию рабочего раствора кислоты считают равной 15-20%. Объемы раствора кислоты для простых обработок в расчете на 1 м толщины открытого ствола или интервала перфорации зависят от проницаемости пород.

Простые кислотные обработки пластов песчаников и алевролитов предназначены для растворения продуктов коррозии (в водонагнетательных скважинах) и кальцитовых отложений (в нефтедобывающих скважинах). Кальцит выделяется из пластовых вод при эксплуатации скважин и откладывается в трубах, на фильтре (в интервале перфорации), забое, иногда и в призабойной зоне. Простые кислотные обработки применяются также для растворения карбонатов в терригенной породе, когда их содержание составляет 25% и более.

Подготовка скважины к проведению простой кислотной обработки заключается в тщательной очистке забоя и стенок скважины.

Если простая кислотная обработка проводится после кислотной ванны, то для подготовки скважины достаточно промыть забойную пробку с использованием растворов ПАВ или нефти.

Для очистки забоя скважины от больших уплотненных забойных пробок из карбонатных пород и глинистых материалов можно использовать промывку с помощью сильной струи раствора кислоты. Для этого в скважину на НКТ спускают наконечник с соплами с направлением струи вниз. На устье к НКТ подсоединяется грязевый шланг. Благодаря этому во время закачивания раствора кислоты НКТ постепенно допускают до забоя.

Подготовка водонагнетательных скважин сводится к свабированию (гидросвабированию) с последующей прямой и обратной промывкой (свабирование -- вид поршневания с помощью специального поршня (сваба), состоящего из нескольких резиновых манжет, клапана и перфорированного патрубка и спускаемого в скважину на стальном канате диаметром 16 или 19 мм). Для этого в скважину спускают НКТ с проверкой каждой трубы шаблоном. Поршень (сваб) спускают под уровень жидкости в НКТ на 75--150 м.

Перед проведением простой кислотной обработки в скважине проводят исследования с целью определения ее продуктивности, то есть дебита на 1 МПа депрессии на пласт. Для этого определяют статический и динамический уровни, пластовое и забойное давление.

Технология простой кислотной обработки заключается в следующем (рис. 3.3).

В нефтяную добывающую скважину через НКТ закачивают нефть, в водонагнетательную -- воду до устойчивого переливания через отвод за-трубного пространства (рис. 3.3 а).

При открытом затрубном пространстве вслед за нефтью или водой в НКТ закачивают раствор кислоты в объеме НКТ и затрубного пространства от нижнего конца НКТ до верхней границы обрабатываемого пласта или интервала перфорации (рис. 3.3 б).

Рисунок 3.3-Технологические схема проведения простой кислотной обработки:

1--вода;

2--кислота;

3--продавочная жидкость.

Закрывают затрубное пространство, продолжают закачивать оставшуюся часть раствора кислоты, а затем -- продавочную жидкость (рис. 3.3.2, в). После продавливания всего раствора в пласт закрывают устье и скважину оставляют на реагирование (рис. 3.3 г).

Если планом работ предусматривается оставление раствора кислоты для реагирования с поверхностью карбонатных пород в открытом стволе, то количество продавочной жидкости берут равным объему спущенных в скважину НКТ. Если планируется задавливание всего раствора кислоты в пласт, то количество продавочной жидкости берут равным объему НКТ и затрубного пространства в интервале обработки (рис. 3.3 г).

При обработке обсаженных скважин рекомендуется задавливание всего раствора кислоты в пласт без оставления его в обсадной колонне.

При первичных обработках для более полного охвата всей толщины пласта рекомендуемое давление продавливания раствора кислоты составляет 8--10 МПа. При последующих обработках стремятся к максимально возможному увеличению скорости продвижения раствора кислоты по пласту для достижения наиболее глубокого проникновения его от ствола скважины в породу. Скорость продавливания увеличивают, повышая давления нагнетания насосной установки.

При обработке малопроницаемых карбонатных пород рекомендуют несколько ограничить скорость продавливания раствора кислоты для более полного охвата толщины обрабатываемого пласта и исключения его разрыва.

Ориентировочно рекомендуют следующие сроки выдерживания растворов кислоты на забое скважины: при оставлении раствора кислоты в открытом стволе от 8--12 до 24 ч в зависимости от степени предварительной очистки поверхности ствола и забоя и проведения после нее кислотной ванны; если весь раствор кислоты продавливается в пласт, то до 2 ч при температуре на забое 15--30°С и 1 --1,5 ч при температуре на забое 30--60° С; при более высоких температурах выдерживание не рекомендуют.

Рисунок 3.4-Применяемая схема обвязки наземного оборудования при простой кислотной обработке:

1--резервуары для раствора кислоты;

2--установка насосная;

3--скважина;

4--резервуар с продавочной жидкостью.

В водонагнетательных скважинах по истечении времени реагирования производят прямую и обратную промывки забоя для удаления продуктов реакции.

При обработке карбонатных пород, когда продавочный жидкостью является нефть, после очистки забоя скважину сразу вводят в эксплуатацию.

При обработке карбонизированных песчаников, когда продавочной жидкостью является вода, рекомендуют удалять ее из НКТ одним из эффективных в конкретных условиях способов, например, применением пенных систем.

В поглощающих скважинах, в которых невозможно добиться циркуляции жидкости при промывке, наилучшие результаты могут быть достигнуты с применением ПКО.

Примерная схема обвязки оборудования при простых кислотных обработках приведена на рисунке 3.4. В этой схеме использование емкостей вместо кислотовоза обусловлено большим объемом раствора кислоты.

Кислотные обработки под давлением предназначены в основном для воздействия на малопроницаемые интервалы пласта. Для этого предварительно ограничивают приемистость высокопроницаемых интервалов путем закачивания высоковязкой эмульсии типа «кислота в нефти». Кроме того, полезную работу выполняет и кислота, входящая в состав эмульсии. Нейтрализация этой кислоты происходит намного медленнее, чем нейтрализация чистого раствора кислоты. За счет этого обеспечивается более глубокая обработка кислотой высокопроницаемых интервалов. Исключения поглощения раствора кислоты высокопроницаемыми интервалами можно добиться и с помощью пакера типа ПРС.

Кислотные обработки под давлением увеличивают охват толщины продуктивного пласта воздействием раствора кислоты и применяются в нефтяных добывающих, водонагнетательных и газовых скважинах как с открытым забоем, так и обсаженных.

При применении этого вида кислотной обработки должны приниматься меры по предотвращению, образования каналов связи с соседним водоносным пластом. Для этого необходимо правильно обосновать величину давления задавливания раствора кислоты в пласт.

Рисунок 3.5- Примерная схема обвязки наземного оборудования при кислотной обработке под давлением:

1 -- передвижная емкость для кислоты;

2 -- стационарная емкость для кислоты;

3 -- емкость для нефти;

4 -- цементировочный агрегат;

5 -- установка насосная УНЦ-160Х 50 К. (АзИНМАШ-ЗОА);

6 -- бункеры;

7 -- основной насос;

8 -- водяной насос;

9 -- резервуар;

10 -- насос;

11 -- скважина.

При термокислотной обработке продуктивный пласт подвергается воздействию дважды в одном технологическом процессе: сначала ТХВ, а затем простой кислотной обработке или обработке под давлением.

Термохимическое воздействие (ТХВ) -- воздействие на забой и призабойную зону пласта горячей кислотой, получаемой за счет выделения тепла при реакции между кислотой и магнием.

Термокислотные обработки предназначаются для растворения парафиновых и асфальто-смолистых отложений, для образования каналов растворения в доломитах, для интенсивного растворения загрязняющих материалов в скважинах после окончания бурения, для очистки фильтра водонагнетательных скважин от продуктов коррозии и других загрязняющих материалов, трудно растворимых в холодной соляной кислоте и др.

Термогазохимическое воздействие - сущность термогазохимического воздействия (ТГХВ) заключается в создании высокого кратковременного давления в результате горения порохового заряда в жидкой среде. Под действием давления пороховых газов скважинная жидкость задавливается в пласт, расширяя естественные и создавая новые трещины.

Пенокислотные обработки применяют для воздействия на продуктивные пласты, сложенные карбонатными породами, также на песчаники с высоким содержанием карбонатного цемента.

Рисунок 3.6--Схема обвязки оборудования при пенокислотой обработке:

1--компрессор;

2-- обратный клапан:

3-- аэратор;

4--установка насосная (кислотный агрегат);

5-- скважина;

6 -- глубинный насос.

Пены -- пузырьки газа или воздуха в жидкости, разделенные тонкими прослойками (пленками) этой же жидкости. Для получения пены кроме газа и жидкости нужно присутствие еще одного вещества -- пенообразователя (ПАВ).

Гидроимпульсные кислотные обработки служат для создания гидравлических импульсов (гидроимпульсов) в призабойной зоне пласта заключается в периодическом закачивании в скважину через НКТ жидкости под большим давлением и быстром «сбрасывании» давления через затрубное пространство (разрядка скважины). Величина создаваемого давления не должна превышать допустимой его величины для данной обсадной колонны.

При закачивании жидкости в призабойной зоне пласта раскрываются имеющиеся или образуются новые трещины. При «сбрасывании» давления происходит приток жидкости из трещины в ствол скважины с большой скоростью. С этой жидкостью из призабойной зоны выносятся привнесенные туда загрязняющие материалы.

Кислотоструйная обработка -- воздействие на забой и стенки ствола скважины струей раствора кислоты, выходящей с большой скоростью из конусной насадки. Приспособление, с помощью которого осуществляют кислотоструйную обработку, называется гидромонитором.

Основным назначением кислотоструйных обработок является очистка стенок ствола скважины и забоя от цементной и глинистой корок, образование новых каналов растворения в карбонатной породе. Поэтому кислотоструйные обработки в основном применяются в скважинах с открытым стволом.

Обработки глинокислотой -- предназначена для воздействие на песчаники или песчано-глинистые породы, а также на глинистую корку. Основное условие применения-- отсутствие или минимальное содержание (до 0,5%) карбонатов в породе.

Количество глинокислоты подбирают опытным путем, чтобы не допустить разрушения пород продуктивного пласта. При первых обработках рекомендуется применять 300--400 л глинокислоты на 1 м толщины пласта. Если пласты сложены трещиноватыми породами, то объем глинокислоты для первичных обработок увеличивается до 800--1000 л на 1 м толщины пласта.

Наиболее эффективна глинокислота, состоящая из 8%-и соляной кислоты и 4%-й плавиковой кислоты. Для песчаников с небольшим содержанием глинистого материала не следует применять плавиковую кислоту концентрацией менее 3%. Для песчаников с большим содержанием глин максимальные концентрации соляной кислоты--10%, плавиковой кислоты--5%. Глинокислоту рекомендуют приготовлять путем растворения в соляной кислоте технического бифторид-фторид аммония.

Серийные кислотные обработки -- это многократное воздействие раствором кислоты на продуктивный пласт или его отдельный интервал -- применяют в тех случаях, когда однократное воздействие раствора кислоты на продуктивный пласт недостаточно эффективно.

Время повторения кислотных обработок определяют исходя из времени, необходимого для очистки забоя и извлечения отработанного раствора кислоты. Серийно можно проводить любые виды рассмотренных выше кислотных обработок.

Серийные кислотные ванны рекомендуют применять в основном при освоении скважин после бурения. Серийные термокислотные и термохимические обработки рекомендуют проводить в скважинах с интенсивным отложением парафино-смолистых веществ.

Обработки серной кислотой применяют для обработки водонагнетательных скважин, у которых призабойная зона продуктивных пластов загрязняется привнесенными закачиваемой водой механическими примесями, оксидами железа, илом, эмульгированнои нефтью и др. Серная кислота растворяет загрязняющие пласты продукты и увеличивает проницаемость пород. Это происходит благодаря обильному выделению тепла при смешении серной кислоты с водой в пластовых условиях. Например, при снижении концентрации серной кислоты с 96 до 20% (из-за смешения с водой) температура раствора повышается до 100°С.

Технология обработки скважин серной кислотой в основном такая же, что и технология солянокислотных обработок. Главная особенность технологии заключается в том, чтобы не допустить контакта серной кислоты с водой в наземном оборудовании, НКТ и эксплуатационной колонне. Углекислотные обработки применяют в скважинах, породы продуктивных пластов которых содержат карбонаты кальция и магния, а также в скважинах с асфальто-смолистыми отложениями. Углекислотные обработки применяют как в нефтяных добывающих, так и в водонагнетательных скважинах.

Подготовка скважины к обработке заключается в промывке забоя, определении коэффициента продуктивности, уточнении содержания воды и др. В водонагнетательной скважине определяют приемистость и строят профиль приемистости.

3.4 Применение поверхностно-активных веществ

Поверхностно-активными веществами (ПАВ) называют такие вещества, которые способны накапливаться (адсорбироваться) на поверхности соприкосновения-двух тел (или сред, фаз) и понижать ее свободную энергию, т. е. поверхностное натяжение.

Поверхностное натяжение жидкости часто определяют как силу, действующую на единицу длины контура поверхности раздела фаз и стремящуюся сократить эту поверхность до минимума. Например, благодаря поверхностному натяжению капля жидкости при отсутствии внешних сил принимает форму шара.

ПАВ -- органические вещества, получаемые обычно из углеводородов, а также спирты, фенолы, жирные кислоты и их щелочные соли -- мыла и синтетические жирозаменители и моющие вещества.

Обработка призабойной зоны пластов ПАВ предназначена для удаления воды и загрязняющего материала, попавших в эту зону при глушении скважины, промывках забоя, ремонтных работах, вскрытии продуктивных пластов глинистым раствором. При этом глубина проникновения воды и загрязняющего материала в призабойную зону находится в прямой зависимости от перепада давления на пласт, проницаемости пород, продолжительности поведения работ с применением воды. Появление воды в призабойной зоне связано также с обводнением продуктивных пластов закачиваемыми, контурными или посторонними водами.

Отрицательная роль воды заключается в следующем:

Вода, попадая на забой скважины, оттесняет нефть и газ вглубь пласта, и порового пространства оказывается занятой водой. Поэтому нефть (газ) при своем движении к забою скважины встречают большое сопротивление. В результате этого уменьшается производительность скважины.

По мере эксплуатации скважины вода, продвигающаяся по пласту и обводняющая добываемую продукцию, все больше охватывает призабойную зону и уменьшает при этом поверхность фильтрации для нефти. Поэтому дебит нефти уменьшается, а дебит воды увеличивается.

Вода, вступая в физико-химическое взаимодействие с глинистыми частицами пород, вызывает их набухание и разрушение. Это приводит к закупорке наиболее тонких поровых каналов, т. е. снижается проницаемость пород пласта и уменьшается производительность скважины.

На границе раздела «нефть -- вода» могут адсорбироваться асфальто-смолистые вещества, являющиеся активными эмульгаторами. Поэтому в призабойной зоне пласта может образоваться стойкая гидрофобная эмульсия, снижающая проницаемость пород и, следовательно, производительность скважины. Механизм действия ПАВ заключается в снижении поверхностного натяжения на границах раздела «нефть -- вода», «нефть -- газ», «вода -- газ», «вода -- твердая поверхность». Благодаря этому размер капель воды в нефти в поровом пространстве уменьшается в несколько раз, а мелкие капли воды вытесняются из пласта значительно быстрее, чем крупные.

Кроме уменьшения поверхностного натяжения некоторые ПАВ гидрофобизуют поверхности поровых каналов в породе. ПАВ, применяемые в водонагнетательных скважинах, способствуют гидрофилизации пород, разрыву пленки нефти и уменьшению поверхностного натяжения на границе с нефтью. Остаточная нефть в виде пленки и капель, прилипших к твердой поверхности, хорошо отмывается и увлекается вглубь пласта струей воды. Это увеличивает фазовую проницаемость породы для воды, т. е. увеличивается приемистость скважины.

Обработка обводненных скважин ПАВ увеличивает фазовую проницаемость породы для нефти и уменьшает фазовую проницаемость для воды. Это ограничивает приток воды в скважину и увеличивает приток нефти.

ПАВ по химическому строению делятся на два класса: ионогенные и неионогенные.

Ионогенные ПАВ при растворении в воде диссоциируют (распадаются) на два иона -- положительно заряженный катион и отрицательно заряженный анион.

В зависимости от того, какой из ионов является носителем поверхностно-активных свойств, ионогенные ПАВ разделяются на анионоактивные и катионоактивные.

Из анионоактивных ПАВ наибольшее применение на практике имеют: нейтрализованный черный контакт НЧК, сульфонатриевые соли, сульфонол, азолят, катапин, ДС-РАС и др.

Неионогенные ПАВ не диссоциируют в водных растворах. Они более устойчивы к действию солей, кислот и щелочей как при нормальной, так и при повышенной температурах.

Молекула неионогенных ПАВ состоит из гидрофобной (молекулы амина, фенола, алкилфенола или других углеводородов) и гидрофильной частей (оксид этилена).

Неионогенные ПАВ растворяются в воде или керосине в зависимости от соотношения гидрофильной и гидрофобной частей. Например, ОП-4 не растворяется в воде или дает в воде густые коллоидные растворы (размеры частиц таких растворов 10 5-- 10 7 см); ОП-7 и выше водорастворимы, но практически не растворяются в керосине.

Неионогенные ПАВ рекомендуют применять для обработки призабойных зон водонагнетательных скважин, у которых продуктивные пласты глинистые и малопроницаемые. Неионогенные ПАВ при небольших концентрациях снижают набухаемость глинистых частиц и увеличивают приемистость водонагнетательных скважин.

Применение неионогенных ПАВ дает хорошие результаты и в коллекторах с высокой карбонатностью.

3.5 Анализ химических методов увеличения производительности скважин в ОАО «ТНК-Нижневартовск»

В 2001 году на месторождениях ОАО" ТНК-Нижневартовск" были продолжены работы, направленные на восстановление и стабилизацию добычи нефти с широкомасштабным применением методов увеличения нефтеотдачи пластов. Подрядчиками по внедрению физико-химических методов выступают ОАО "НК Черногорнефтеотдача"и НРО "ОТО Продакшин ЛТД", гидроразрыв пласта осуществляется ЗАО СП "МеКаМинефть" и ООО СП "Катобьнефть".

Физико-химическое воздействие на продуктивные пласты Самотлорского месторождения проводится согласно разработанной программы, с учетом плана геолого-технических мероприятий, целью которого было достижение долговременного положительного эффекта в процессе добычи нефти. Кроме того, осуществлялось внедрение технологий повышения нефтеотдачи на Гун-Еганском, Лор-Еганском .

Внедрение физико-химических методов увеличения нефтеотдачи приводит к доотмыву остаточной нефти, снижению водонефтяного фактора и увеличению коэффициента охвата залежи заводнением. Результаты проведенных работ свидетельствуют об изменении механизма выработки объектов, вовлечения в активную разработку низкопроницаемых пропластков.

На участках пластов АВ13 и АВ2-3 Самотлорского месторождения сконцентрированы основные объемы работ по физико-химическим методам повышения нефтеотдачи в ОАО "ТНК-Нижневартовск". Проектирование, формирование, а также трансформация системы разработки данного объекта осуществлялось в несколько этапов. В целом по объекту выделяются четыре основных участка применения методов увеличения нефтеотдачи.

Участок №1 сформирован на базе скважин ЦДНГ-1. Действующий фонд добывающих скважин-39, нагнетательных-7. За период 2001 года отмечается стабилизация обводненности продукции на уровне 86%. Дополнительная добыча нефти от обработок 2001 года составляет 14,1т.т.

В состав 2-го участка входят скважины с 29-го по 55 кольцевой элемент разработки. Действующий фонд добывающих скважин-151, нагнетательных - 38. За период 2001 года отмечается стабилизация обводненности продукции на уровне 90%. Дополнительная добыча нефти от обработок 2001 года составляет 34,2 т. т. Экономическая эффективность производства работ равна 37,4 млн. р.

3-й участок включает в себя скважины с1-го по 28 кольцевых элементов и имеющих административную привязку к ЦДНГ-3.Фонд добывающих скважин-130, нагнетательных-34. Это наиболее молодой фонд, самые старые эксплуатационные скважины пробурены в1986 году. За период 2001 года отмечается стабилизация обводненности продукции на уровне 87%. Дополнительная добыча нефти от обработок 2001 года за 12 месяцев составляет 88,7 тыс. тонн.

На Самотлорском месторождении провели 226 скв.-операций силами ОАО "НК Черногорнефтеотдача", на Лор-Еганском-14 скв.-операций и на Гун-Еганском-10 скв.-операций силами НПО "ОТО Продакшин ЛТД"


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.