Количественные методы прогнозирования потребности в ресурсах
Прогнозирование потребности по временным рядам, типы и особенности составления прогнозов: наивный, потребления предыдущего года на основе среднедневного потребления, в ресурсах по взвешенной скользящей средней, методом экспоненциального сглаживания.
Рубрика | Маркетинг, реклама и торговля |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.01.2014 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Введение
Прогнозирование потребности в запасах на основе статистических данных составляет количественный подход к прогнозированию. По группам используемых методов количественное прогнозирование можно разделить на два класса:
1. Прогнозирование потребности по временным рядам.
2. Прогнозирование по индикаторам.
1. Прогнозирование потребности по временным рядам
Временной ряд (time series) представляет собой упорядоченные во времени наблюдения. Такие наблюдения производятся через равные интервалы времени и фиксируют объемы отгрузок запасов в ответ на заявленный спрос на товарно-материальные ценности запаса. Элементы анализа временных рядов потребления запасов представлены в примерах п. 3.
На основе анализа временных рядов можно строить прогнозы потребления на будущие периоды. Для этого достаточно построение графика динамики отгрузок и внимательного его изучения. В общем случае во временном ряде потребности требуется выделить следующие составляющие:
a) относительно равномерный спрос,
b) сезонную потребность,
c) тенденции изменения спроса,
d) циклические колебания спроса,
e) наличие эффекта стимулирования продаж,
f) случайные колебания спроса.
a. Относительно равномерный спрос
Относительно равномерный (или базовый) спрос характерен для регулярно потребляемых запасов, не имеющих сезонных периодов потребления. Относительно равномерный спрос типичен для запасов основных материалов производственных предприятий. Для прогнозирования потребности в запасах, характеризуемых временными рядами отгрузок равномерного характера, можно использовать методы наивного прогноза и группу методов прогнозирования по среднему значению (простой средней, скользящей средней, взвешенной скользящей средней), а так же метод экспоненциального сглаживания.
На примере потребления запаса за два года проиллюстрируем простейшие методы прогнозирования, а именно
1) наивный прогноз,
2) прогнозирование по средним значениям,
3) метод экспоненциального сглаживания.
Наивный прогноз
Наивный прогноз является самой простой методикой прогнозирования. Она основывается на предположении о том, что прогнозируемое потребление будущего периода равно потреблению предшествующего периода.
Пример наивного прогноза потребности в запасах по текущему году представлен в таблице 1 и на рисунке 1. Результаты прогнозирования демонстрируют отставание прогнозных значений от фактически реализуемых.
Может показаться, что наивное прогнозирование является чрезмерно упрощенным методом. В то же время необходимо отметить и сильные стороны такого приема. Для проведения наивного прогноза не требуется наличия накопленной статистической базы. Наивный прогноз позволяет работать и при ее отсутствии. Наивный прогноз понятен, прост в подготовке, быстр в реализации, не требует, фактически, никаких затрат. Основным недостатком наивного прогнозирования является вероятная низкая точность прогноза.
Другие методы прогнозирования, которые будут рассмотрены в данном разделе, могут привести к более точным результатам, чем метод наивного прогнозирования, но, являясь более сложными, могут потребовать и более высоких затрат на их применение. Поэтому по критерию соотношения затрат на реализацию и точности прогнозирования менеджеры должны определиться, какой метод прогнозирования следует применять. Вполне возможно, что таким методом окажется метод наивного прогноза.
Таблица 1. Пример наивного прогнозирования потребления
Месяц |
Фактические значения |
Наивный прогноз |
|
Январь |
19944 |
0 |
|
Февраль |
59987 |
19944 |
|
Март |
49904 |
59987 |
|
Апрель |
59947 |
49904 |
|
Май |
49977 |
59947 |
|
Июнь |
39933 |
49977 |
|
Июль |
29930 |
39933 |
|
Август |
69989 |
29930 |
|
Сентябрь |
59963 |
69989 |
|
Октябрь |
49944 |
59963 |
|
Ноябрь |
39997 |
49944 |
|
Декабрь |
19914 |
39997 |
Рисунок 1
Рисунок 2
Прогнозирование по средним значениям
В случае если временной ряд имеет интервал наблюдений в один месяц, повысить точность наивного прогноза позволяет (а) метод прогнозирования по простой средней величине потребления с учетом количества рабочих дней в месяце.
a. Прогноз потребления предыдущего года на основе среднедневного потребления
Таблица 2. Динамика фактических отгрузок по месяцам (см. столбец 2, таблица 2) приведена на рисунке 3.
Месяц |
Фактическое потребление за месяц |
Число рабочих дней |
Среднее потребление в день |
Прогноз среднедневного потребления |
Прогноз месячного потребления |
|
Январь |
19944 |
16 |
1247 |
0 |
0 |
|
Февраль |
59987 |
20 |
2999 |
1247 |
24930 |
|
Март |
49904 |
21 |
2376 |
2999 |
62986 |
|
Апрель |
59947 |
21 |
2855 |
2376 |
49904 |
|
Май |
49977 |
20 |
2499 |
2855 |
57092 |
|
Июнь |
39933 |
22 |
1815 |
2499 |
54975 |
|
Июль |
29930 |
20 |
1497 |
1815 |
36303 |
|
Август |
69989 |
23 |
3043 |
1497 |
34420 |
|
Сентябрь |
59963 |
22 |
2726 |
3043 |
66946 |
|
Октябрь |
49944 |
21 |
2378 |
2726 |
57237 |
|
Ноябрь |
39997 |
21 |
1905 |
2378 |
49944 |
|
Декабрь |
19914 |
21 |
948 |
1905 |
39997 |
Динамика среднедневного потребления запаса по месяцам (см. столбец 4, таблица 2) представлена на рисунке 4.
Рисунок 3
Рисунок 4
Сравнение рисунков 3 и 4 показывает, что учет количества рабочих дней позволяет более верно отразить фактические отгрузки.
Прогноз среднедневного потребления делается на основе расчета среднедневного потребления в предыдущем месяце.
Прогноз месячного потребления (см. столбец 6 Таблица 2) рассчитывается как произведение прогноза среднедневного потребления на количество рабочих дней в соответствующем месяце.
Иллюстрация результатов прогнозирования по средней величине потребления с учетом количества рабочих дней месяцев в сравнении с результатами наивного прогноза приведена на рисунке 2. Как видно из рисунка, прогноз потребления с учетом количества рабочих дней по месяцам приводит в абсолютном большинстве случаев к более точному результату, что наивный прогноз.
b. Расчет прогнозного значения потребления ресурсов по скользящей средней
Метод скользящей средней при составлении прогноза использует значение средней арифметической величины потребления за последние периоды наблюдений. Скользящая средняя рассчитывается по следующей формуле:
,
где - прогнозируемый объем потребности в j-ом периоде времени, единиц;
i - индекс предыдущего периода времени;
Рi - объем потребления в i-ом предыдущем периоде времени;
n - количество периодов, используемых в расчете скользящей средней.
Для составления прогноза по скользящей средней требуется определиться в количестве периодов наблюдений n, которые будут использоваться в расчете. При этом требуется учитывать особенности имеющегося временного ряда. Чем большее количество точек наблюдения берется в расчет, тем скользящая средняя менее чувствительная к изменениям значений потребления в прошлые периоды. Если изменение наблюдений имеет ступенчатый характер, то следует обеспечить высокую чувствительность прогноза к каждому из наблюдений. Это требует использования возможно меньшего количества наблюдений.
В примере, который разбирается в данном разделе (см. таблица 2 и рисунок 2) колебания спроса в течение первой половины года не длятся более 2 месяцев. Во второй половине года имеются более длительные тенденции (до 4 месяцев в конце года). Игнорируя пока характер сезонных колебаний и тенденции рассматриваемого примера, выберем в качества интервала расчета скользящей средней 2 месяца. Результат расчет прогноза по скользящей средней с учетом количества рабочих дней в месяцах приведен в таблице 3.
Таблица 3. Иллюстрация результатов прогнозирования по скользящей средней с учетом количества рабочих дней в месяцах приведена на Рисунок 5.
Месяц |
Фактическое потребление за месяц |
Число рабочих дней |
Среднее потребление в 1 день |
Прогноз среднедневной потребности |
Прогноз месячной потребности поскользящей средней |
|
Январь |
19944 |
16 |
1247 |
0 |
0 |
|
Февраль |
59987 |
20 |
2999 |
0 |
0 |
|
Март |
49904 |
21 |
2376 |
2123 |
44581 |
|
Апрель |
59947 |
21 |
2855 |
2688 |
56445 |
|
Май |
49977 |
20 |
2499 |
2616 |
52310 |
|
Июнь |
39933 |
22 |
1815 |
2677 |
58888 |
|
Июль |
29930 |
20 |
1497 |
2157 |
43140 |
|
Август |
69989 |
23 |
3043 |
1656 |
38084 |
|
Сентябрь |
59963 |
22 |
2726 |
2270 |
49935 |
|
Октябрь |
49944 |
21 |
2378 |
2884 |
60570 |
|
Ноябрь |
39997 |
21 |
1905 |
2552 |
53591 |
|
Декабрь |
19914 |
21 |
948 |
2141 |
44971 |
Рисунок 5
Преимущество прогнозирования по скользящей средней состоит в простоте метода. Основным недостатком является то, что значимость значений прошлых периодов при прогнозировании будущей потребности одинакова. Например, если в расчете скользящей средней используется 6 значений, то значимость каждого значения равна 1/6. Между тем, очевидно, что значимость статистики последнего из предшествующих периодов более велика, чем предыдущих.
c. Расчет прогноза потребления ресурсов по взвешенной скользящей средней
Для учета важности отдельных периодов наблюдений используют метод взвешенной скользящей средней. В этом методе каждому используемому в расчете скользящей средней периоду присваивается коэффициент, отражающий значимость влияния этого периода на прогнозное значение потребления. Значимость более поздних периодов должна быть выше, чем значимость более ранних периодов. Например, из 6-ти периодов расчета скользящей средней последнему может быть присвоен удельный вес 5, предыдущему - 4, далее 3; 2; 1 и 1.
Для рассматриваемого в этом разделе примера (см. Таблица 3 и комментарий к ней) выберем коэффициенты значимости прошлых периодов при прогнозировании потребности будущего периода. Для последнего периода коэффициент значимости принимается равным 5, для предпоследнего - 1. Расчет взвешенной скользящей средней приведен в таблице 4.
Таблица 4. Иллюстрация результатов прогнозирования потребности в запасах на основе взвешенной скользящей средней (см. Таблица 4) приведена на Рисунок 6.
Месяц |
Фактическое потребление за месяц |
Число рабочих дней |
Среднее потребление в день |
Прогноз среднедневной потребности |
Прогноз месячной потребности по взвешенной скользящей средней |
|
Январь |
19944 |
16 |
1247 |
0 |
0 |
|
Февраль |
59987 |
20 |
2999 |
0 |
0 |
|
Март |
49904 |
21 |
2376 |
2561 |
53784 |
|
Апрель |
59947 |
21 |
2855 |
2532 |
53175 |
|
Май |
49977 |
20 |
2499 |
2735 |
54701 |
|
Июнь |
39933 |
22 |
1815 |
2588 |
56931 |
|
Июль |
29930 |
20 |
1497 |
1986 |
39721 |
|
Август |
69989 |
23 |
3043 |
1576 |
36252 |
|
Сентябрь |
59963 |
22 |
2726 |
2656 |
58440 |
|
Октябрь |
49944 |
21 |
2378 |
2805 |
58904 |
|
Ноябрь |
39997 |
21 |
1905 |
2465 |
51767 |
|
Декабрь |
19914 |
21 |
948 |
2023 |
42484 |
Рисунок 6
В целом, прогнозирование по взвешенной скользящей средней дает более точные результаты, чем по простой скользящей средней. Главное преимущество взвешивания состоит в том, что в прогнозируемой величине в большей степени учитываются последние значения потребности. Определенную проблему представляет собой подбор коэффициентов значимости. Они, как правило, определяются экспертно и проверяются экспериментально, то есть путем проб и ошибок.
d. Расчет прогноза потребления ресурсов по методу экспоненциального сглаживания
Более сложный метод прогнозирования на основе расчета взвешенного среднего - это метод экспоненциального сглаживания. В этом методе каждый новый прогноз основан на учете значения предыдущего прогноза и его отклонения от фактического значения. Прогнозное значение по методу экспоненциального сглаживания определяется следующим образом:
Прогнозное значение =
Значение предыдущего прогноза
+
а*(Фактическая потребность - Значение предыдущего прогноза)
или
Рj = Pj-1 + a*(Fj-1 - Pj-1),
где Рj - прогнозируемый объем потребности в j-ом периоде времени, единиц;
Рj-1 - прогнозируемый объем потребности в (j-1) - ом периоде времени, единиц;
а - константа сглаживания,
Fj-1 - фактическая потребность в (j-1) - ом периоде, единиц.
Константа сглаживания а определяет чувствительность прогноза к ошибке. Чем ближе ее значение к нулю, тем медленнее прогноз будет реагировать на ошибки. Тем, следовательно, будет выше степень сглаживания прогноза. Напротив, чем ближе значение сглаживающей константы к единице, тем выше чувствительность и меньше сглаживание. Подбор значения константы сглаживания проводится экспериментально. Цель такого подбора состоит в том, чтобы определить такое значение а, чтобы, с одной стороны, прогноз был чувствителен к изменениям временного ряда, а с другой стороны, хорошо сглаживал скачки потребления, вызванные случайными факторами.
Пример расчета прогноза при константе сглаживания равной 0,2 приведен в таблице 5.
Таблица 5. Для выявления, при каком значении константы сглаживания (а = 0,2) прогноз Таблица 5 (см. так же Рисунок 7) имеет более высокую точность следует провести оценку точности прогноза.
Месяц |
Фактическое значения |
Число рабочих дней |
Среднее потребление в день |
Прогноз среднедневной потребности при а=0,2 |
Прогноз месячной потребности при а=0,2 |
|
Январь |
19944 |
16 |
1247 |
0 |
0 |
|
Февраль |
59987 |
20 |
2999 |
0 |
0 |
|
Март |
49904 |
21 |
2376 |
2561 |
53784 |
|
Апрель |
59947 |
21 |
2855 |
2524 |
53008 |
|
Май |
49977 |
20 |
2499 |
2590 |
51805 |
|
Июнь |
39933 |
22 |
1815 |
2572 |
56584 |
|
Июль |
29930 |
20 |
1497 |
2421 |
48412 |
|
Август |
69989 |
23 |
3043 |
2236 |
51423 |
|
Сентябрь |
59963 |
22 |
2726 |
2397 |
52739 |
|
Октябрь |
49944 |
21 |
2378 |
2463 |
51721 |
|
Ноябрь |
39997 |
21 |
1905 |
2446 |
51366 |
|
Декабрь |
19914 |
21 |
948 |
2338 |
49092 |
Рисунок 7
В практике довольно часты случаи, когда запасы отгружаются неравномерно. В неравномерности могут присутствовать сразу несколько составляющих. Разберем их последовательно.
Прогнозирование сезонной потребности в ресурсах
Спрос является сезонным, если в нем имеются краткосрочные (менее года) регулярные изменения, связанные с погодой или с определенными календарными периодами (время отпусков, праздники, времена года и пр.). Сезонный спрос проявляется в периодическом увеличении или уменьшении спроса в течение года.
Для прогнозирования такого явно выраженного сезонного спроса требуется использовать статистику отгрузок соответствующих периодов прошлых лет.
На рисунке 8 приведена иллюстрация результатов прогнозирования сезонной потребности (см. столбец 14 Таблица 6). Прогнозирование выявленной сезонной потребности дает лучший результат по сравнению с прогнозированием методом наивного прогноза (см. Рисунок 1), простой средней (см. Рисунок 2), скользящей средней (см. Рисунок 5) взвешенной скользящей средней (см. Рисунок 6) и методом экспоненциального сглаживания (см. Рисунок 7).
Рисунок 8. Прогноз потребности по методу взвешенной скользящей средней с учетом долгосрочной тенденции
Если временной ряд имеет сезонное потребление на фоне наличия долгосрочной тенденций (увеличение или уменьшение год от года продаж сезонных товаров) для прогнозирования сезонной потребности требуется учитывать коэффициент тенденции.
Результаты расчета прогноза потребности, имеющей сезонный характер, при наличии долгосрочной тенденции (по данным столбца 6, таблица 7) приведены на рисунке 8. Сравнение результатов прогнозирования объема потребности по этой же статистике по методу взвешенной скользящей средней без учета долгосрочной тенденции показывает значительно более высокую точность прогнозирования объема отгрузок с учетом как сезонной, так и долгосрочной тенденции.
Рисунок 9
2. Прогнозирование потребности по индикаторам
Работа с временными рядами статистических данных предполагает анализ потребности в запасах по сложившимся с течением времени тенденциям. В силу влияния случайных факторов зачастую складывается ситуация, когда прогнозирование по данным временных рядов не дает требуемой точности прогноза. В таких случаях можно воспользоваться идеей о том, что на отгрузки запасов рассматриваемых товарно-материальных ценностей оказывает влияние какая-либо переменная, от которой зависит прогнозируемый спрос. Например, температура воздуха оказывает воздействие на интенсивность спроса на прохладительные напитки, численность новорожденных детей определяет через 2-3 года спроса на детскую книжную продукцию и т.п. Определение и анализ таких переменных, которые принято называть индикаторами, дает возможность составить прогноз будущего потребления.
Индикаторами, оказывающими воздействие на спрос, являются, например,
· индекс оптовых цен,
· индекс потребительских цен,
· объем производства,
· показатели миграции населения,
· процентные ставки за кредит,
· уровень платежеспособности населения,
· затраты на рекламу и др.
Для того чтобы те или иные события могли служить индикаторами, требуются следующие три условия:
а) Наличие логического объяснения связи индикатора и прогнозируемой потребности.
б) Интервал времени между изменением индикатора и изменением потребности должен быть достаточно велик для возможности использования прогноза.
в) Наличие высокой корреляционной связи между индикатором и уровнем потребности.
Рассмотрим задачу прогнозирования спроса на основные продукты питания в ресторане гостиницы. В качестве индикатора прогнозирования спроса выбран показатель численности постояльцев гостиницы. Имеется статистический ряд, описывающий связь между числом постояльцев и спросом на основные виды продуктов (см. Таблица 8). Места в гостинице бронируются за 10 дней до заезда. Это позволяет утверждать, что второе условие использования индикатора (см. выше) выполнено. Коэффициент корреляции между значениями индикатора и потребности равен 99,8%, что соответствует достаточно тесной статистической связи между этими двумя показателями.
Статистические данные о связи двух показателей
Число постояльцев |
Объем потребления основных продуктов питания |
|
200 |
1399 |
|
230 |
1499 |
|
250 |
1599 |
|
270 |
1699 |
|
300 |
1799 |
|
330 |
1899 |
|
350 |
1999 |
|
Коэффициент корреляции |
0,998 |
Для прогнозирования потребности в запасах на основе индикаторов используют регрессионный анализ. Простейшей формой регрессии является линейная связь между двумя переменными. Уравнение линейной регрессии имеет вид
,
где y - прогнозируемая (зависимая) переменная, единиц;
а, в-коэффициенты;
х - индикатор (независимая переменная), единиц.
Коэффициенты а и б вычисляются следующим образом:
,
где а, в - коэффициенты,
n - количество парных наблюдений,
y - прогнозируемая (зависимая) переменная, единиц;
х - индикатор (независимая переменная), единиц.
Кроме линейной регрессии можно использовать и иные, более сложные виды регрессии (параболическую, гиперболическую, экспоненциальную и др.).
Рисунок 10
Аналогичным образом находится уу.
Таблица 9
Число постояльцев |
Объем потребления основных продуктов питания |
||||||
X |
xi - x |
(xi - x)2 |
Y |
yi - y |
(yi - y)2 |
||
200 |
-76 |
5776 |
1399 |
-300 |
90000 |
||
230 |
-46 |
2116 |
1499 |
-200 |
40000 |
||
250 |
-26 |
676 |
1599 |
-100 |
10000 |
||
270 |
-6 |
36 |
1699 |
0 |
0 |
||
300 |
24 |
576 |
1799 |
100 |
10000 |
||
330 |
54 |
2916 |
1899 |
200 |
40000 |
||
350 |
74 |
5476 |
1999 |
300 |
90000 |
||
Среднее значение ряда |
276 |
1699 |
|||||
Стандартное отклонение ряда |
50.10 |
200 |
|||||
Коэффициент корреляции |
0.998 |
Коэффициент корреляции между значениями индикатора и потребности равен 99,8%, что соответствует достаточно тесной статистической связи между этими двумя показателями.
Для прогнозирования потребности в запасе на основе индикаторов используют регрессионный анализ. Простейшей формой регрессии является линейная связь между двумя переменными. Уравнение линейной регрессии имеет вид
y = a + bx,
где y - прогнозируемая (зависимая) переменная; a, b - коэффициенты; x - индикатор (независимая переменная).
Найти с помощью регрессионного анализа линейную, экспоненциальную и квадратичную зависимости между показателями, представленными в табл. 8.
Экспоненциальную зависимость представить в виде
y = A*exp(Bx).
Квадратичную зависимость представить в виде
y = a0 + a1 x + a2x2.
Для определения коэффициентов a0, a1, a2 использовать систему уравнений
? yi = na0 + a1? xi + a2? xi2
?xiyi = a0? xi + a1? xi2 + a2? xi3
?xi 2yi = a0? xi2 + a1? xi3 + a2? xi4
Вычисления выполнить в Microsoft Excel. Результаты вычислений поместить в табл. 19 и представить графически.
Для всех трех видов зависимости оценить точность прогноза по значениям стандартного отклонения ошибки прогноза, Mу.
Вычисления выполнены в Microsoft Excel. Результаты вычислений помещены в табл. 10.
Число постояльцев |
Прогноз потребления основных продуктов питания |
|
200 |
1397 |
|
220 |
1477 |
|
230 |
1517 |
|
250 |
1597 |
|
260 |
1636 |
|
270 |
1676 |
|
280 |
1716 |
|
290 |
1756 |
|
300 |
1796 |
|
320 |
1875 |
|
330 |
1915 |
|
350 |
1995 |
|
3300 |
20354 |
Для всех трех видов зависимости оценим точность прогноза по значениям стандартного отклонения ошибки прогноза, Mу.
n
Mу = v(? (Fi - Pi)2) /(n-1),
i=1
где Fi - фактическое значение объема потребления для постояльцев i; Pi - прогноз объема потребления для постояльцев i.
Стандартное отклонение рассчитывается как корень квадратный из значения среднего квадрата ошибки.
Прогноз потребления основных продуктов питания |
||||
Число постояльцев |
линейная зависимость |
экспоненциальная зависимость |
квадратичная зависимость |
|
200 |
1397,37 |
1397,37 |
1398,39 |
|
220 |
1477,05 |
1477,05 |
1477,42 |
|
230 |
1516,89 |
1516,89 |
1517,00 |
|
250 |
1596,56 |
1596,56 |
1596,31 |
|
260 |
1636,40 |
1636,40 |
1636,04 |
|
270 |
1676,24 |
1676,24 |
1675,81 |
|
280 |
1716,07 |
1716,07 |
1715,63 |
|
290 |
1755,91 |
1755,91 |
1755,50 |
|
300 |
1795,75 |
1795,75 |
1795,41 |
|
320 |
1875,42 |
1875,42 |
1875,38 |
|
330 |
1915,26 |
1915,26 |
1915,43 |
|
350 |
1994,93 |
1994,93 |
1995,69 |
|
Значение отклонения |
||||
13,77 |
13,77 |
13,92 |
Рисунок 11
Рисунок 12
прогнозирование потребность потребление
Рисунок 13
Размещено на Allbest.ru
Подобные документы
Расчет потребности в основном капитале и оборотных фондах магазина. Определение потребности в трудовых ресурсах. Расчет себестоимости единицы продукции, стоимости материальных затрат за периоды. Финансовые результаты, расчет прибыли и рентабельности.
контрольная работа [30,6 K], добавлен 25.06.2014Этапы формирования логистики. Значение закупочных операций. Роль материально-технического снабжения, организация управления в этой сфере, методы и формы. Определение потребности в материальных ресурсах, выбор поставщика, процесс приобретения материалов.
курсовая работа [68,3 K], добавлен 12.02.2015Прогнозирование в системе маркетинга. Основы прогнозирования потребности в специалистах с высшим образованием. Выявление и формирование спроса на специалистов на основе реального состояния и перспектив развития экономики по различным ее отраслям.
доклад [21,4 K], добавлен 28.04.2011Значение материально-технического снабжения. Организация управления, методы и формы производственного снабжения фирмы. Определение потребности в материальных ресурсах, стадии процесса их приобретения. Выбор поставщика в закупочной деятельности фирмы.
реферат [45,2 K], добавлен 22.07.2010Характеристика личного, производственного и общественного уровней потребления продукции. Ознакомление с разными методами привлечения покупателей и способами сбыта продукции. Описание инструментов маркетинга - учета, прогнозирования спроса, рекламы.
реферат [30,6 K], добавлен 20.09.2011Роль закупочной логистики в управлении товародвижением. Анализ рынка материальных ресурсов и определение потребности в ресурсах, планирование закупок и выбор поставщика. Маркетинговая характеристика и организация логистического управления на предприятии.
курсовая работа [94,3 K], добавлен 07.08.2011Исторические вехи глобализации потребления. Стратегии глобальной стандартизации, однородность потребностей и интересов потребителей в масштабах всего мира. Ограниченность тенденции к глобализации потребления. Формирование этнической сегментации рынка.
реферат [19,6 K], добавлен 06.05.2010Коммерческий продукт и новизна предпринимательского проекта. Оценка потребности в финансовых ресурсах. Показатели коммерческой и бюджетной эффективности. Оценка отрасли: рынок предоставления услуг по доставке грузов. Стратегия маркетинга предприятия.
бизнес-план [87,8 K], добавлен 10.05.2012Прогнозирование как инструмент стратегического планирования предприятия. Проблемы применения наиболее известных методов прогнозирования сбыта. Внедрение эконометрической модели прогнозирования на основе "разладки" процесса сбыта на ОАО "ГМС Насосы".
курсовая работа [2,1 M], добавлен 23.08.2011Установление прожиточного минимума. Идентификация нормативных минимальных объемов потребления. Верификация нормативных минимальных объемов потребления. Оценка нормативных объемов и структуры потребления. Выявление актуальных трендов культуры потребления.
дипломная работа [111,6 K], добавлен 19.08.2010