Товароведная характеристика и экспертиза качества муки

Химический состав и пищевая ценность муки, сырье для ее производства. Виды помолов. Ассортимент муки, показатели качества (органолептические, физико-химические), идентификация и фальсификация. Причины возникновения дефектов. Упаковка и хранение муки.

Рубрика Маркетинг, реклама и торговля
Вид контрольная работа
Язык русский
Дата добавления 06.04.2012
Размер файла 389,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию Российской Федерации

Московский государственный университет технологий и управления

Филиал в г. Архангельске

Факультет технологического менеджмента

КОНТРОЛЬНАЯ РАБОТА

По дисциплине Товароведение и экспертиза продовольственных товаров

По теме: «Товароведная характеристика и экспертиза качества муки»

Студента (ки) курса СФО 4

Специальность 080401 Шифр 4840

Ф.И.О. Васюк Светланы Михайловны

Архангельск

2011 г.

Содержание

мука ассортимент качество фальсификация хранение

Введение

1. Химический состав и пищевая ценность муки

2. Сырьё

3. Производство муки

4. Ассортимент муки

5. Требования к качеству муки

6. Дефекты муки

7. Хлебопекарные качества муки

8. Упаковка и хранение муки

9. Идентификация и фальсификация муки

10. Экспертиза качества муки

Заключение

Литература

Введение

Пшеничная мука - пожалуй, самая популярная в мире мука для выпечки. Она бывает нескольких видов. В муке высшего сорта (на некоторых упаковках пишется слово «экстра») довольно мало клейковины, а на вид она совсем белая. Такая мука идеально подходит для сдобных изделий, её часто применяют как загуститель в соусах. Мука первого сорта хороша для несдобной выпечки, а изделия неё черствеют гораздо медленнее. Во Франции из пшеничной муки первого сорта принято печь хлеб. Что же касается муки второго сорта, то в ней до 8% отрубей, поэтому она гораздо темнее первосортной. Её используют в нашей стране - именно из неё делают несдобные изделия и обычный белый хлеб, а смешав в ржаной мукой - чёрный.

Рожь - одна из важнейших злаковых культур. Норма потребления ржаной муки (в процентах от всех злаков) около 30. Ржаная мука обладает многочисленными полезными свойствами. В её состав входит необходимая нашему организму аминокислота - лизин, клетчатка, марганец, цинк. В ржаной муке на 30 % больше железа, чем пшеничной муке, а также в 1,5-2 раза больше магния и калия. Ржаной хлеб выпекается без дрожжей и на густой закваске. Поэтому употребление ржаного хлеба помогает снизить холестерин в крови, улучшает обмен веществ, работу сердца, выводит шлаки, помогает предотвратить несколько десятков заболеваний, в том числе и онкологических. Из-за повышенной кислотности (7-12 градусов), защищающей от возникновения плесени и разрушительных процессов, ржаной хлеб не рекомендуется людям с повышенной кислотностью кишечника, страдающих язвенными болезнями. Хлеб, по содержанию состоящий на 100% изо ржи, действительно слишком тяжел для ежедневного потребления. Оптимальный вариант: рожь 80-85% и пшеница 15-25%. Сорта ржаного хлеба: из сеяной муки, из обдирной муки, житный, простой, заварной, московский и др.

1. Химический состав и пищевая ценность муки

Мука изготавливается из зёрен, размельчённых до порошкообразного состояния. Именно от муки зависит основная структура выпеченного хлеба. Наиболее распространена мука ржаная, ячменная, кукурузная и другие, но для приготовления хлеба чаще всего используется пшеничная мука, размолотая по специальной технологии. В среднем зерно в процессе превращения в муку проходит путь в 5 км по различным этажам современной мельницы. В составе муки в хлеб попадают крахмал и белки.

Кроме крахмала, пшеничная мука содержит вещества трёх водорастворимых белковых групп: альбумин, глобулин, протеоза, и двух нерастворимых в воде белковых групп: глутенин и глиадин. При смешивании с водой растворимые протеины растворяются, а оставшиеся глутенин и глиадин формируют структуру теста. При замешивании теста глутенин складывается в цепочки длинными тонкими молекулами, а более короткий глиадин формирует мостики между цепочками глутенина. Получающаяся сетка из этих двух протеинов и называется клейковиной.

Мука

Белки %

Углеводы %

Клетчатка %

Зольность %

Жиры %

Энергетическая ценность, кДж

Пшеничная (высш. сорт)

10,3

74,2

0,1

0,5

0,9

1373

Пшеничная (I сорт)

10,6

73,2

0,2

0,7

1,3

1382

Пшеничная (II сорт)

11,7

70,8

0,2

0,7

1,3

1382

Пшеничная (сеяная)

6,9

76,9

0,5

0,6

1,1

1369

Химический состав муки зависит от зерна, из которого она получена. Так как химический состав зерна изменяется в зависимости от почвы, удобрения, климатических условий, то и химический состав муки не является постоянным. Кроме того, мука различных сортов, полученная из одного и того же зерна, имеет различный состав. Это объясняется тем, что при размоле зерна в различные сорта муки попадает неодинаковое количество эндосперма, алейронового слоя, оболочек и зародыша. Так как химический состав этих частей зерна неодинаков, то и различные сорта муки имеют неодинаковый химический состав. В состав муки входят те же вещества, что и в состав зерна: углеводы, белки, жиры и др.

Азотистые вещества муки в основном состоят из белков. Небелковые азотистые вещества (аминокислоты, амиды и др.) содержатся в небольшом количестве (2--3 % от общей массы азотистых соединений). Чем выше выход муки, тем больше содержится в ней азотистых веществ и небелкового азота.

Белки пшеничной муки. В муке преобладают простые белки-- протеины. Белки муки имеют следующий фракционный состав (в %): проламины 35,6; глютелины 28,2; глобулины 12,6; альбумины 5,2. Среднее содержание белковых веществ в пшеничной муке 13--16%, нерастворимого белка 8,7%.

Проламины и глютелины различных злаков имеют свои особенности в аминокислотном составе, различные физико-химические свойства и разные названия. Проламины пшеницы и ржи называются глиадинами, проламин ячменя -- гордеином, проламин кукурузы -- зеином, а глютелин пшеницы -- глютенином.

Следует учитывать, что альбумины, глобулины, проламины и глютелины -- не индивидуальные белки, а только белковые фракции, выделяемые различными растворителями.

Технологическая роль белков муки в приготовлении хлебных изделий очень велика. Структура белковых молекул и физико-химические свойства белков определяют реологические свойства теста, влияют на форму и качество изделий. От соотношения дисульфидных и сульфгчдрильных группировок во многом зависит характер вторичной и третичной структуры молекулы белка, а также технологические свойства белков муки, особенно пшеничной.

При замесе теста и других полуфабрикатов белки набухают, адсорбируя большую часть влаги. Большей гидрофильностью отличаются белки пшеничной и ржаной муки, способные поглотить до 300 % воды от своей массы.

Оптимальная температура для набухания белков клейковины 30 °С. Глиадиновая и глютелиновая фракции клейковины, выделенные отдельно, различаются по структурно-механическим свойствам. Масса гидратированного глютелина коротко растяжимая, упругая; масса глиадина жидкая, вязкая, лишенная упругости. Клейковина, образованная этими белками, включает в себя структурно-механические свойства обеих фракций. При выпечке хлеба белковые вещества подвергаются тепловой денатурации, образуя прочный каркас хлеба.

Среднее содержание сырой клейковины в пшеничной муке 20--30%. В различных партиях муки содержание сырой клейковины колеблется в. широких пределах (16--35%).

Состав клейковины. Сырая клейковина содержит 30--35 % сухих веществ и 65--70 % влаги. Сухие вещества клейковины на 80--85 % состоят из белков и различных веществ муки (липидов, углеводов и др.), с которыми глиадин и глютенин вступают в реакцию. Белки клейковины связывают около половины всего количества липидов муки. В состав клейковинного белка входит 19 аминокислот. Преобладает глютаминовая кислота (около 39%), пролин (14 %) и лейцин (8 %). Клейковина разного качества имеет одинаковый аминокислотный состав, но разную структуру молекул. Реологические свойства клейковины (упругость, эластичность, растяжимость) в значительной степени определяют хлебопекарное достоинство пшеничной муки. Распространена теория о значении дисульфидных связей в молекуле белка: чем больше дисульфидных связей возникает в молекуле белка, тем выше упругость и ниже растяжимость клейковины. В слабой клейковине дисульфидных и водородных связей меньше, чем в крепкой.

Белки ржаной муки. По аминокислотному составу и свойствам белки ржаной муки отличаются от белков пшеничной муки. Ржаная мука содержит много водорастворимых белков (около 36 % от общей массы белковых веществ) и солерастворимых (около 20%). Проламиновая и глютелиновая фракции ржаной муки значительно ниже по массе, в обычных условиях клейковину не образуют. Общее содержание белковых веществ в ржаной муке несколько ниже, чем в пшеничной (10--14%). В особых условиях из ржаной муки можно выделить белковую массу, напоминающую по эластичности и растяжимости клейковину.

Гидрофильные свойства ржаных белков специфичны. Они быстро набухают при смешивании муки с водой, причем значительная часть их набухает неограниченно (пептизируется), переходя в коллоидный раствор. Пищевая ценность белков ржаной муки выше, чем у белков пшеницы, так как в них содержится больше незаменимых в питании аминокислот, особенно лизина.

Углеводы.В углеводном комплексе муки преобладают высшие полисахариды (крахмал, клетчатка, гемицеллюлоза, пентозаны). В небольшом количестве мука содержит сахароподобные полисахариды (ди- и трисахариды) и простые сахара (глюкоза, фруктоза).

Крахмал. Крахмал -- важнейший углевод муки, содержится в виде зерен размером от 0,002 до 0,15 мм. Размер, форма, способность к набуханию и клейстеризации крахмальных зерен различны для муки различных видов. Крупность и целость крахмальных зерен влияет на консистенцию теста, его влагоемкость и содержание в нем сахара. Мелкие и поврежденные зерна крахмала быстрее осахариваются в процессе приготовления хлеба, чем крупные и плотные зерна.

В крахмальных зернах, кроме собственно крахмала, содержится незначительное количество фосфорной, кремниевой и жирных кислот, а также других веществ.

Структура зерен крахмала кристаллическая, тонкопористая. Крахмал характеризуется значительной адсорбционной способностью, вследствие чего он может связывать большое количество воды даже при температуре 30°С, т. е. при температуре теста.

Крахмальное зерно неоднородно, оно состоит из двух полисахаридов: амилозы, образующей внутреннюю часть крахмального зерна, и амилопектина, составляющего его наружную часть. Количественные соотношения амилозы и амилопектина в крахмале различных злаков составляют 1 : 3 или 1 : 3,5.

Амилоза отличается от амилопектина меньшей молекулярной массой и более простым строением молекулы. Молекула амилозы состоит из 300--800 глюкозных остатков, образующих прямые цепи. Молекулы амилопектина имеют разветвленное строение и содержат до 6000 глюкозных остатков. При нагревании крахмала с водой амилоза переходит в коллоидный раствор, а амилопектин набухает, образуя клейстер. Полная клейстеризация крахмала муки, при которой его зерна теряют форму, осуществляется при соотношении крахмала и воды 1 : 10.

Подвергаясь клейстеризации, крахмальные зерна значительно увеличиваются в объеме, становятся рыхлыми и более податливыми действию ферментов. Температура, при которой вязкость крахмального студня наибольшая, называется температурой клейстеризации крахмала. Температура клейстеризации зависит от природы крахмала и от ряда внешних факторов: рН среды, наличия в среде электролитов и др.
Температура клейстеризации, вязкость и скорость старения крахмального клейстера у крахмала различных видов неодинакова. Ржаной крахмал клейстеризуется при температуре 50--55°С, пшеничный при 62--65°С, кукурузный при 69--70 °С. Такие особенности крахмала имеют большое значение для качества хлеба.

Присутствие поваренной соли значительно повышает температуру клейстеризации крахмала.

Технологическое значение крахмала муки в производстве хлеба очень велико. От состояния крахмальных зерен во многом зависит водопоглотительная способность теста, процессы его брожения, структура хлебного мякиша, вкус, аромат, пористость хлеба, скорость черствения изделий. Крахмальные зерна при замесе теста связывают значительное количество влаги. Особенно велика водопоглотительная способность механически поврежденных и мелких зерен крахмала, так как они имеют большую удельную поверхность. В процессе брожения и расстойки теста часть крахмала под действием 3-амилазы осахаривается, превращаясь в мальтозу. Образование мальтозы необходимо для нормального брожения теста и качества хлеба. При выпечке хлеба крахмал клейстеризуется, связывая до 80 % влаги, находящейся в тесте, что обеспечивает образование сухого эластичного мякиша хлеба. Во время хранения хлеба крахмальный клейстер подвергается старению (синерезису), что является основной причиной черствения хлебных изделий.

Клетчатка. Клетчатка (целлюлоза) находится в периферийных частях зерна и потому в большом количестве содержится в муке высоких выходов. В обойной муке содержится около 2,3 % клетчатки, а в муке пшеничной высшего сорта 0,1--0,15 %. Клетчатка не усваивается организмом человека и снижает пищевую ценность муки. В отдельных случаях высокое содержание клетчатки полезно, так как ускоряет перистальтику кишечного тракта.

Гемицеллюлозы. Это полисахариды, относящиеся к пентозанам и гексозанам. По физико-химическим свойствам они занимают промежуточное положение между крахмалом и клетчаткой. Однако организмом человека гемицеллюлозы не усваиваются. Пшеничная мука в зависимости от сорта имеет различное содержание пентозанов -- основной составной части гемицеллюлозы.В муке высшего сорта содержится 2,6 % всего количества пентозанов зерна, а в муке II сорта -- 25,5%. Пентозаны делятся на растворимые и нерастворимые. Нерастворимые пентозаны хорошо набухают в воде, поглощая воду, в количестве, превышающем их массу в 10 раз. Растворимые пентозаны или углеводные слизи дают очень вязкие растворы, которые под влиянием окислителей переходят в плотные гели. Пшеничная мука содержит 1,8--2 % слизей, ржаная -- почти в два раза больше.

Липиды. Липидами называются жиры и жироподобные вещества (липоиды). Все липиды нерастворимы в воде и растворимы в органических растворителях. Общее содержание липидов в целом зерне пшеницы около 2,7 %, а в пшеничной муке 1,6--2 %. В муке липиды находятся как в свободном состоянии, так и в виде комплексов с белками (липопротеиды) и углеводами (гликолипиды). Последние исследования показали, что связанные с белками клейковины липиды значительно влияют на ее физические свойства.

Жиры. Жиры -- сложные эфиры глицерина и высокомолекулярных жирных кислот. В пшеничной и ржаной муке различных сортов содержится 1--2 % жира. Жир, находящийся в муке, имеет жидкую консистенцию. Он состоит в основном из глицеридов ненасыщенных жирных кислот: олеиновой, линолевой (преимущественно) и линоленовой. Эти кислоты имеют высокую пищевую ценность, им приписывают витаминные свойства. Гидролиз жира во время хранения муки и дальнейшие превращения свободных жирных кислот существенно влияют на кислотность, вкус муки и на свойства клейковины.

Липоиды. К липоидам муки относятся фосфатиды -- сложные эфиры глицерина и жирных кислот, содержащие фосфорную кислоту, соединенную с каким-либо азотистым основанием.

В муке содержится 0,4--0,7 % фосфатидов, относящихся к группе лецитинов, в которых азотистым основанием является холин. Лецитины и другие фосфатиды характеризуются высокой пищевой ценностью и имеют большое биологическое значение. Они легко образуют соединения с белками (липо-протеидные комплексы), играющие важную роль в жизни каждой клетки. Лецитины -- гидрофильные коллоиды, хорошо набухающие в воде.
Являясь поверхностно-активными веществами, лецитины также хорошие пищевые эмульгаторы и улучшители хлеба.

Пигменты. К растворимым в жирах пигментам относятся каротииоиды и хлорофилл. Цвет каротиноидных пигментов муки желтый или оранжевый, а хлорофилла -- зеленый. Каротииоиды обладают провитаминными свойствами, так как способны в животном организме превращаться в витамин А.

Наиболее известные каротииоиды представляют собой ненасыщенные углеводороды. При окислении или восстановлении каротиноидные пигменты переходят в бесцветные вещества. На этом свойстве основан процесс отбеливания пшеничной сортовой муки, применяющийся в некоторых зарубежных странах. Во многих странах отбеливание муки запрещено, так как оно снижает ее витаминную ценность. Жирорастворимым витамином муки является витамин Е, остальные витамины этой группы в муке практически отсутствуют.

Минеральные вещества. Мука состоит в основном из органических веществ и небольшого количества минеральных (зольных). Минеральные вещества зерна сосредоточены главным образом в алейроновом слое, оболочках и зародыше. Особенно много минеральных веществ в алейроновом слое. Содержание минеральных веществ в эндосперме невелико (0,3--0,5%) и повышается от центра к периферии, поэтому зольность служит показателем сорта муки.

Большая часть минеральных веществ муки состоит из соединений фосфора (50%), а также калия (30%), магния и кальция (15 %).

В ничтожных количествах содержатся различные микроэлементы (медь, марганец, цинк и др.). Содержание железа в золе разных сортов муки 0,18--0,26%. Значительная доля фосфора (50--70 %) представлена в виде фитина -- (Са -- Mg -- соль инозитфосфорной кислоты). Чем выше сорт муки, тем меньше в ней находится минеральных веществ.

Ферменты. В зернах хлебных злаков содержатся разнообразные ферменты, сосредоточенные главным образом в зародыше и периферийных частях зерна. Ввиду этого в муке высоких выходов ферментов содержится больше, чем в муке низких выходов.

Ферментная активность у разных партий муки одного и того же сорта различна. Она зависит от условий произрастания, хранения, режимов сушки и кондиционирования зерна перед помолом. Повышенная активность ферментов отмечена у муки, полученной из несозревшего, проросшего, морозобойного или пораженного клопом-черепашкой зерна. Высушивание зерна при жестком режиме снижает активность ферментов, при хранении муки (или зерна) она также несколько уменьшается.

Ферменты активны только при достаточной влажности среды, поэтому при хранении муки влажностью 14,5 % и ниже действие ферментов проявляется очень слабо. После замеса в полуфабрикатах начинаются ферментативные реакции, в которых участвуют гидролитические и окислительно-восстановительные ферменты муки. Гидролитические ферменты (гидролазы) разлагают сложные вещества муки на более простые водорастворимые продукты гидролиза.

Отмечено, что протеолиз в пшеничном тесте активизируется веществами, содержащими сульфгидрильные группы, и другими веществами с восстанавливающими свойствами (аминокислота цистеин, тиосульфат натрия и др.).

Вещества с противоположными свойствами (со свойствами окислителей) значительно тормозят протеолиз, укрепляют клейковину и консистенцию пшеничного теста. К ним относятся перекись кальция, бромат калия и многие другие окислители. Воздействие окислителей и восстановителей на процесс протеолиза сказывается уже при очень малых дозировках этих веществ (сотые и тысячные доли % от массы муки). Существует теория, что влияние окислителей и восстановителей на протеолиз объясняется тем, что они меняют соотношение сульфгидрильных групп и дисульфидных связей в молекуле белка, а возможно и самого фермента. Под действием окислителей за счет групп образуются дисульфидные связи, укрепляющие структуру белковой молекулы. Восстановители разрывают эти связи, что вызывает ослабление клейковины и пшеничного теста. Химизм действия окислителей и восстановителей на протеолиз окончательно не установлен.

Автолитическая активность пшеничной и особенно ржаной муки служит важнейшим показателем ее хлебопекарного достоинства. Автолитические процессы в полуфабрикатах при их брожении, расстойке и выпечке должны протекать с определенной интенсивностью. При повышенной или пониженной авто-литической активности муки в худшую сторону изменяются реологические свойства теста и характер брожения полуфабрикатов, возникают различные дефекты хлеба. Для того чтобы регулировать автолитические процессы, необходимо знать свойства важнейших ферментов муки. К основным гидролитическим ферментам муки относятся протеолитические и амилолитические ферменты.

Протеолитические ферменты. Действуют на белки и продукты их гидролиза. Наиболее важная группа протеолитических ферментов -- протеиназы. Протеиназы типа папаин содержатся в зерне и муке разных злаков. Оптимальными показателями для действия зерновых протеиназ являются рН 4--5,5 и температура 45-- 47 °С-

При брожении теста зерновые протеиназы вызывают частичный протеолиз белков. Интенсивность протеолиза зависит от активности протеиназ и от податливости белков действию ферментов.

Протеиназы муки, полученной из зерна нормального качества, мало активны. Повышенная активность протеиназ наблюдается у муки, приготовленной из проросшего зерна и особенно из зерна, пораженного клопом-черепашкой. Слюна этого вредителя содержит сильные протеолитические ферменты, проникающие при укусе в зерно. Во время брожения в тесте, приготовленном из муки нормального качества, происходит начальная стадия протеолиза без заметного накопления водорастворимого азота. В процессе приготовления пшеничного хлеба регулируют протеолитические процессы, меняя температуру и кислотность полуфабрикатов и добавляя окислители. Протеолиз несколько тормозит поваренная соль.

Амилолитические ферменты. Это р- и а-амилазы. р-Амилаза обнаружена как в проросших зернах хлебных злаков, так и в зернах нормального качества; а-амилаза содержится только в проросших зернах. Однако заметное количество активной а-амилазы обнаружено в ржаном зерне (муке) нормального качества. а-Амилаза относится к металлопротеинам; в состав ее молекулы входит кальций, р- и а-амилазы находятся в муке главным образом в связанном с белковыми веществами состоянии и после протеолиза расщепляются. Обе амилазы гидролизуют крахмал и декстрины. Наиболее легко разлагаются амилазами механически поврежденные зерна крахмала, а также оклейстеризованный крахмал. Работами И. В. Глазунова установлено, что при осахаривании декстринов р-амилазой образуется в 335 раз больше мальтозы, чем при осахаривании крахмала. Нативный крахмал гидролизуется р-амилазой очень медленно. р-Амилаза, действуя на амилозу, превращает ее полностью в мальтозу. При воздействии на амилопектин р-амилаза отщепляет мальтозу только от свободных концов глюкозидных цепочек, вызывая гидролиз 50--54 % количества амилопектина. Высокомолекулярные декстрины, образующиеся при этом, сохраняют гидрофильные свойства крахмала. а-Амилаза отщепляет ответвления глюкозидных цепочек амилопектина, превращая его в низкомолекулярные декстрины, не окрашиваемые йодом и лишенные гидрофильных свойств крахмала. Поэтому при действии а-амилазы субстрат значительно разжижается. Затем декстрины гидролизуются а-амилазой до мальтозы. Термолабильность и чувствительность к рН среды у обеих амилаз различны: а-амилаза по сравнению с (3-амилазой более термоустойчива, но более чувствительна к подкислению субстрата (снижению рН). р-Амилаза наиболее активна при рН среды -4,5--4,6 и температуре 45--50 °С. При температуре 70 °С р-ами-лаза инактивируется. Оптимальная температура а-амилазы 58--60 °С, рН 5,4--5,8. Влияние температуры на активность а-амилазы зависит от реакции среды. При снижении рН снижается как температурный оптимум, так и температура инактивации а-амилазы.

По мнению некоторых исследователей, а-амилаза муки инактивируется в процессе выпечки хлеба при температуре 80-- 85 °С, однако некоторые работы показывают, что в пшеничном хлебе а-амилаза инактивируется только при температуре 97-- 98 °С. Активность а-амилазы значительно снижается в присутствии 2 % хлористого натрия или 2 % хлористого кальция (в кислой среде). р-Амилаза теряет свою активность при воздействии веществ (окислителей), превращающих сульфгидрильные группы в дисульфидные. Цистеин и другие препараты с протеолитической активностью активизируют р-амилазу.Слабое нагревание водно-мучной суспензии (40--50° С) в течение 30-- 60 мин повышает активность р-амилазы муки на 30--40%. Подогрев до температуры 60--70 °С снижает активность этого фермента. Технологическое значение обеих амилаз различно.

Во время брожения теста р-амилаза осахаривает некоторую часть крахмала (в основном механически поврежденные зерна) с образованием мальтозы. Мальтоза необходима для получения рыхлого теста и нормального качества изделий из муки пшеничной сортовой (если сахар не входит в рецептуру изделия).

Осахаривающее влияние р-амилазы на крахмал значительно возрастает при клейстеризации крахмала, а также в присутствии а-амилазы.

Декстрины, образуемые а-амилазой, осахариваются р-амилазой значительно легче, чем крахмал.

При действии обеих амилаз крахмал может быть гидролизован полностью, в то время как одна р-амилаза гидролизует его примерно на 64 %.

Оптимальная температура для а-амилазы создается в тесте при выпечке из него хлеба. Повышенная активность а-амилазы может привести к образованию значительного количества декстринов в мякише хлеба. Низкомолекулярные декстрины плохо связывают влагу мякиша, поэтому он становится липким и заминающимся. Об активности а-амилазы в пшеничной и ржаной муке судят обычно по автолитической активности муки, определяя ее по числу падения или по автолитической пробе. Кроме амилолитических и протеолитических ферментов на свойства муки и качество хлеба оказывают влияние другие ферменты: липаза, липоксигеназа, полифенолоксидаза.

Липаза. Липаза расщепляет жиры муки при хранении на глицерин и свободные жирные кислоты. В зерне пшеницы активность липазы невысока. Чем больше выход муки, тем выше сравнительная активность липазы. Оптимум действия зерновой липазы находится при рН 8,0. Свободные жирные кислоты -- основные кислореагирующие вещества муки. Они могут подвергаться дальнейшим превращениям, влияющим на качество муки -- теста -- хлеба.

Липоксигеназа. Липоксигеназа относится к окислительно-восстановительным ферментам муки. Она катализирует окисление кислородом воздуха некоторых ненасыщенных жирных кислот, превращая их в гидроперекиси. Наиболее интенсивно липоксигеназа окисляет линолевую, арахидоновую и линоленовую кислоты, которые входят в состав жира зерна (муки). Точно так же, но более медленно, действует липоксигеназа в составе нативных жиров на жирные кислоты.

Оптимальными параметрами для действия липоксигеназы является температура 30--40 °С и рН среды 5--5,5.

Гидроперекиси, образовавшиеся из жирных кислот под действием липоксигеназы, сами являются сильными окислителями и оказывают соответствующее влияние на свойства клейковины.

Липоксигеназа содержится во многих злаках, в том числе в зернах ржи и пшеницы.

Полифенолоксидаза (тирозиназа) катализирует окисление аминокислоты тирозина с образованием темноокрашенных веществ -- меланинов, вызывающих потемнение мякиша хлеба из сортовой муки. Полифенолоксидаза содержится главным образом в муке высоких выходов. В пшеничной муке II сорта наблюдается большая активность этого фермента, чем в муке высшего или I сорта. Способность муки к потемнению в процессе переработки зависит не только от активности полифенолоксидазы, но и от содержания свободного тирозина, количество которого в муке нормального качества незначительно. Тирозин образуется при гидролизе белковых веществ, поэтому мука из проросшего зерна или пораженного клопом-черепашкой, где протеолиз идет интенсивно, имеет высокую способность к потемнению (почти в два раза выше, чем у нормальной муки). Кислотный оптимум полифенолоксидазы находится в зоне рН 7--7,5, а температурный -- при 40--50 °С. При рН ниже 5,5 полифенолоксидаза неактивна, поэтому при переработке муки, имеющей способность к потемнению, рекомендуется повышать кислотность теста в необходимых пределах.

Витамины.В муке содержатся витамины В6, В12, РР и др. Содержание этих витаминов зависит главным образом от сорта муки. В муке высших сортов витаминов значительно меньше, чем в муке низших сортов. Это объясняется тем, что витамины содержатся главным образом в зародыше и алейроновом слое зерна, которых в высших сортах муки мало.

2. Сырьё

Основным сырьем для производства муки служит зерно пшеницы и ржи. Эти культуры обладают высокой пищевой ценностью. Важным фактором, влияющим на качество производимой муки и хлеба, является качество перерабатываемого зерна, определяемое его химическим составом и технологическими свойствами, которые зависят от сортовых особенностей зерна и почвенно-климатических условий выращивания.

Под технологическими свойствами зерна следует понимать совокупность признаков и показателей его качества, определяющих поведение зерна в технологическом процессе его переработки, выход и качество муки.

Учитывая широкую изменчивость почвенно-климатических условий выращивания зерна в различных зонах пашей страны, ежегодно высевают в среднем около 80 основных сортов озимой и свыше 100 сортов яровой пшеницы, характерных для каждой зоны. Лучшие сорта пшеницы отечественной селекции: Мироновская 808 и Безостая 1, Одесская 51, Саратовская 29, Казахстанская 126, Харьковская 46 и др. Эти сорта, как правило, обладают хорошими технологическими свойствами и обеспечивают получение муки высокого качества при высоком ее выходе.

Рожь занимает второе место после пшеницы по ее использованию для производства муки. Распространена в основном в северных и северо-западных областях европейской части нашей страны, а также в некоторых восточных районах.

Каждый сорт пшеницы и ржи обладает характерными, присущими данному сорту, свойствами. Однако на эти свойства оказывает влияние изменение почвенно-климатических условий выращивания как в различные годы, так и в разных зонах. Поэтому оценка технологических свойств зерна -- важнейшее условие эффективного его использования.

Учитывая разнообразие качества заготовляемой пшеницы и ржи, их классифицируют в отдельные группы по типам, стекловидности, силе муки и др. В основу классификации пшеницы по типам положены следующие признаки: вид (мягкая или твердая), форма (яровая или озимая) и цвет зерна (краснозерная или белозерная). По стандартам на пшеницу, заготовляемую и распределяемую, предусмотрено ее деление на пять типов: I тип -- яровая краснозерная, II тип -- яровая твердая (дурум), III тин -- яровая белозерная, IV тип -- озимая краснозерная, V тип -- озимая белозерная.

В основу классификации пшеницы на подтипы положены оттенок цвета и стекловидность. Так, при делении пшеницы I и IV типа на подтипы учитывают оттенок цвета и стекловидность, для II типа -- оттенок цвета, а для III типа -- стекловидность. Пшеницу V типа на подтипы не подразделяют. Наибольшее значение для мукомольной промышленности имеет пшеница I и IV типа как наиболее распространенная и обладающая высокими технологическими свойствами. Пшеницу II типа используют для выработки макаронной муки.

Рожь классифицируют на три типа, используя ее форму и территориальные признаки выращивания: I тип -- озимая северная, II тип -- озимая южная, III тип -- яровая. Рожь I и II типа делят на подтипы по районам произрастания. Озимая рожь обладает более высокими технологическими свойствами, чем яровая.

Классификация зерна пшеницы и ржи по типам и подтипам имеет важное технологическое значение, поскольку позволяет определить и использовать дифференцированные методы и режимы переработки различного по качеству зерна с высокой эффективностью.

3. Производство муки

Производство муки -- одно из старейших на земном шаре, оно возникло около 6--10 тыс. лет назад. Орудия, а позднее и комплекс машин, которыми человек стал измельчать зерно в муку, получили название мельниц. Такое название сохранилось и за целыми предприятиями, ведущими помол зерна. В настоящее время все государственные мельницы называют мукомольными заводами.

Для измельчения зерна до порошкообразного продукта требуются значительные усилия. Этот процесс может быть довольно просто выполнен с применением тех или иных машин ударного или истирающего действия. Получится темная по цвету мука, хлеб из которой окажется также темноокрашенным, поскольку при таком способе измельчения все части зерна, в том числе и его темноокрашенные оболочки, попадают в муку. Если ее просеять через довольно густое (частое) шелковое или капроновое сито с мелкими ячейками, то легко убедиться, что она состоит из различных по размерам частиц. При этом крупные частицы, оставшиеся на сите, как правило, содержат и оболочки. Прошедшая через сито мука более светлая, однако и в ней находятся оболочки. Поэтому мякиш хлеба из такой муки все-таки будет серым.

Для получения белого хлеба (со светлым мякишем) необходимо выработать муку только из эндосперма, т. е. уметь в процессе измельчения возможно полнее отделять оболочки. Этого достигают, используя неодинаковую прочность различных частей зерновки -- хрупкость ее эндосперма и большую прочность оболочек и зародыша.

Приведенный выше пример с просеиванием муки из целого зерна убеждает, что для возможно полного отделения оболочек от эндосперма быстрое интенсивное измельчение зерна неприемлемо. Только при постепенных и многократных механических воздействиях можно сохранить частицы оболочек более крупными и выделить в виде мелких частиц содержимое эндосперма. При этом после каждого измельчения полученный продукт необходимо сортировать, выделяя из него частицы, достигшие величины, свойственной муке. Таким образом, появились различные помолы зерна с применением разных измельчающих и просеивающих машин.

Неоднородная прочность структуры зерновки даже в пределах эндосперма позволяет при правильно поставленном процессе измельчения и сортирования частиц получать муку из разных частей эндосперма (внутренней и периферийной), отличающуюся по своему химическому составу, свойствам и питательности вследствие неравномерного распределения веществ в зерне.

На основании этого на крупных государственных и сельскохозяйственных мукомольных предприятиях применяют несколько видов помола и получают различные выхода и сорта муки.

Выходом муки называют количество ее, полученное из зерна в результате его помола. Выход выражают в процентах к весу переработанного зерна. Он может быть 100%-ный (практически 99,5%-ный), когда все зерно превращено в муку. Однако при таком выходе мука может иметь пороки в качестве: хруст, измененный вкус и худший цвет. Поэтому муку такого выхода не вырабатывают.

Кроме того, получают односортную муку из смеси зерна пшеницы и ржи: пшенично-ржаную (70% пшеницы и 30% ржи) с выходом 96% и ржано-пшеничную (60% ржи и 40% пшеницы) с выходом 95%. Односортные выхода пшеничной муки -- 96%-ный и 85%-ный. Муку выходом 70% получают на опытных лабораторных мельницах для мукомольно-хлебопекарной оценки сортов пшеницы. Ржаную муку выпускают главным образом односортную с выходом 95, 87 и 63%.

В нашей стране известны следующие выхода муки, имеющие и свои сортовые названия:

а) пшеничная

96% -- обойная (односортная)

85% -- второго сорта (односортная

78%--двухсортная и трехсортная

77% -- односортная (улучшенная второго сорта)

75%--трехсортная

72%--первого сорта (односортная)

70% -- двухсортная или односортная

б) ржаная

95%--обойная (односортная)

87%--обдирная (односортная)

78% --двухсортная

63% -- сеяная (односортная)

Отмеченная выше неоднородная прочность структуры частей зерновки позволяет, в зависимости от схемы помола, получать муку в пределах общего установленного выхода (70--72--78%) в виде одного или нескольких сортов. Так, удлиняя схему технологического процесса, т. е. последовательного измельчения зерна и сортирования образующихся продуктов с использованием большего числа машин, можно при общем выходе муки 78% выпустить два или три сорта ее. При двухсортном помоле можно получить 45% муки первого сорта и 33% второго. При выработке трех сортов можно получить 10% крупчатки или взамен ее 15% высшего сорта, а остальное -- муку первого и второго сорта. При помоле зерна твердой и высокостекловидной мягкой пшеницы для макаронной промышленности в пределах 78%-ного выхода получают 15--20% "крупки" (высший сорт), 40% "полукрупки" (первый сорт) и 23% муки второго сорта.

Описанные выхода и сорта муки вырабатываются и в других странах. Общий выход муки ниже 70% получают сравнительно редко, так как в нормально выполненном зерне пшеницы содержание эндосперма достигает 81--85%. Нужно только уметь правильно организовать технологический процесс, обеспечивающий наибольшее измельчение эндосперма. При хорошей работе мельницы выхода и сорта муки с сохранением показателей ее качества могут быть значительно больше базисных. Так, на многих мельницах нашей страны получают при двух- и трехсортных помолах до 60% и более муки высших сортов (высшего и первого).

Кроме муки, в процессе помола образуются побочные продукты: различной ценности отходы, содержащие то или иное количество зерна и семян сорняков, мучная пыль, отруби и т. д. Их выхода также показаны в приложении 4. Следует отметить, что расчет выходов ведется от норм качества зерна, предусмотренных помольными базисными кондициями.

Виды помолов.

Мука различных выходов и сортов необходима как благодаря ее различной питательности и усвояемости, так и по соображениям эстетическим и вкусовым. Мука высшего и первого сорта содержит меньше белков, чем обойная и второго сорта. Однако усвояемость ее значительно больше. Зато мука обойная и второго сорта наряду с большим содержанием белков и уменьшением углеводов содержит больше витаминов группы В, минеральных веществ и провитамина А -- каротина.

По рекомендациям Института питания Академии медицинских наук в рационе питания человека должен быть как черный, так и белый хлеб из пшеничной и ржаной муки в следующих примерных соотношениях: ржаной--14--16% и пшеничной 84--86%. Общее количество хлеба темных сортов должно быть не менее 30% суточного рациона.

Для получения муки, соответствующей требованиям государственного нормирования, и в количествах, отвечающих выходам, применяют различные виды помолов с использованием разнообразных машин различной производительности, последовательно связанных между собой. Поэтому помолом называют совокупность процессов и операций, проводимых с зерном и образующимися при его измельчении промежуточными продуктами.

Схемы помолов, характеризующие взаимосвязь машин и движение продуктов, принято изображать графически. Степень сложности схем зависит от вида помола и производительности мельницы. Чем проще ведется измельчение зерна, тёк проще и схема помола.

Классификация помолов, применяемых на мельницах

Все помолы подразделяют на разовые и повторительные (см. схему). Первые названы так потому, что превращение зерна в муку совершается после однократного его пропуска через измельчающий механизм или машину. К машинам такого типа относятся жерновые постава и дробилки (например, молотковые). При этом измельчающие органы (например, жернова) должны быть размещены один от другого на таком близком расстоянии, чтобы зерно за время прохождения от центра жерновов к их окружности было полностью растерто до состояния муки. Этому способствуют насеченные на рабочей части жерновов по определенным правилам бороздки глубиной 7--12 мм. Один из жерновов, сделанных из естественного или искусственного камня, закрепляется неподвижно (лежень), а второй (бегунок) вращается с окружной скоростью 10--12 м/с. Зерно засыпается в глоток (рис. 1) и при вращении бегунка затягивается в пространство между жерновами.

Пройдя мелющий пояс, продукт превращается в муку, состоящую из частиц разной крупности. Расстояние между жерновами регулируется. Их можно установить горизонтально (что бывает чаще) или вертикально. Производительность жернового постава 100--125 кг зерна на 1 см диаметра жерновов в сутки. Жернова изготовляют диаметром 55, 76, 100 и 120 см. Следовательно, при диаметре их 1 м выработка достигает примерно 10--12 т муки в сутки.

Разовые помолы проводят с контрольным просеиванием продуктов, размола или без него. Просеивание на буратах или центрофугалах (призматических или цилиндрических рамах, обтянутых шелковыми или металлоткаными ситами с определенными размерами ячеек) исключает попадание в тесто и печеный хлеб крупных недомолотых частиц, которые при высеивании снова направляются на жерновой постав для измельчения.

На молотковых дробилках измельчение идет более интенсивно. Домол частиц зерна происходит в дробилке без повторного их возвращения.

При разовых помолах с предварительной очисткой зерна получают обойную муку установленных выходов. Более светлую муку (серую "сеяную") можно получить отсеиванием на густых (частых) ситах.

Повторительные помолы, как показывает само название, состоят в том, что всю массу муки получают не за один пропуск через измельчающую машину. При последовательных механических воздействиях на зерно достигается постепенное его измельчение, при котором более хрупкий, чем оболочки, эндосперм скорее превращается в муку.

Измельчают зерно на специальных машинах -- вальцовых станках. Рабочей частью их служит пара чугунных валков длиной 1 м, вращающихся навстречу друг другу с разными скоростями, соотношение которых составляет 1 : 1,5; 1:2, 1 : 2,5 и т. д. Расстояние между этими валками различно на разных этапах схемы помола. Наибольшее расстояние между ними (мелющая щель) на первой системе, на которую и попадает целое зерно.

На первых системах поверхность валков (по их длине и под углом) рифленая, причем в начале схемы рифли самые крупные. Зерно поступает на мелющие валки через питательный механизм (валик), распределяется по всей длине валков, захватывается ими и очень быстро проходит через мелющую щель. В связи с тем, что валки вращаются с разной скоростью, зерно между валками не расплющивается, а скалывается и разворачивается. При этом сразу же небольшая часть эндосперма измельчается до состояния муки. После прохождения через вальцовый станок продукт поступает на просеивающую машину -- рассев, имеющий набор различных сит, на которых продукт рассортировывается по крупноте на несколько фракций.

Наиболее крупная фракция состоит из оболочек со значительным содержанием эндосперма. Другие фракции в зависимости от крупности называются крупная крупа, мелкая крупа, дунст и мука. Полученную при этом муку направляют для формирования какого-либо сорта, а остальные фракции продуктов -- раздельно на другие машины. Так, после просеивания наиболее крупная фракция поступает вновь на вальцовые станки, где происходит дальнейшее выкрашивание эндосперма. Вслед за этим снова производят просеивание продуктов. Этот прием, повторяемый 5-7 раз, называется драным процессом. На последних драных системах продукт состоит в основном из оболочек зерна и небольшого количества прикрепленного к ним эндосперма. Образующиеся при этом мука и крупа также содержат большое количество мелких частиц оболочек.

Крупная и мелкая, крупы в большинстве случаев состоят в основном из частиц эндосперма с тем или иным количеством оболочек. Для отделения их крупу направляют на другие вальцовые станки, на которых устанавливают соответствующие параметры и режимы измельчения. Количество образующейся при этом муки составляет 5--10% веса продукта, поступившего на вальцовый станок. Такой процесс обработки промежуточного продукта называют шлифовочным.

После рассортирования в рассевах продуктов, прошедших шлифовочные системы, число которых достигает 3--5, получают несколько фракций продуктов, часть которых (крупу и дунсты) направляют на ситовеечные машины.

Этот процесс сильно разветвлен при сложных двух- и трехсортных и особенно при макаронных помолах, где нужно получить как можно больше крупитчатой муки высшего и первого сортов.

На ситовеечных машинах происходит сортирование частиц крупок и дунстов по крупноте и по удельному весу. Если частица состоит из чистого эндосперма, она имеет больший удельный вес. Другая частица такого же размера, но содержащая некоторое количество оболочек, обладает меньшим удельным весом. Принцип работы ситовеечных машин состоит в том, что сквозь наклонное сито с прямолинейно-возвратным движением, на которое поступает продукт, снизу засасывается воздух, препятствующий прохождению сквозь сита более легких частиц с малым удельным весом (они удерживаются во взвешенном состоянии), но не задерживающий частицы, состоящие из чистого эндосперма.

Одна из фракций крупной крупы, получаемая на ситовейках, называется манной крупой. При помоле пшеницы ее получается 2--3%.

Частицы, прошедшие сквозь сита ситовеечных машин, в зависимости от крупности и качества направляют на вальцовые станки шлифовочных и размольных систем для последующего измельчения. При этом мелкую крупу и дунет интенсивно измельчают до крупности муки. Этот этап размола промежуточных продуктов называется размольным. Однако весь продукт, поступивший на вальцовый станок, не может быть измельчен до состояния муки за один пропуск через мелющую щель. Поэтому размольный процесс также осуществляется на нескольких системах.

На первых размольных системах, куда направляют частицы крупы с наименьшим количеством оболочек, получают муку высшего сорта. На последующих системах, на которые поступают частицы, не измельченные на первых размольных системах, а также продукты, содержащие оболочки, получают муку первого или второго сорта. При сортовых помолах пшеницы используют 8-- 12 размольных систем.

Таким образом, при разветвленных схемах повторных помолов на мельнице применяют три вида основных машин: вальцовые станки, рассева и ситовейки. Кроме того, имеются очень важные технологические машины (щеточные, размольно-бичевые, которые оттирают остатки эндосперма от оболочек, и др.). Число машин и их размеры зависят от вида помола и производительности мельницы. Наименьшее число машин нужно при обойном помоле, когда измельчение идет более интенсивно по сокращенной схеме и совсем не используются ситовейки.

Для выработки муки высокого качества при любом виде помола очень важна следующая подготовка зерна:

1. подбор партий зерна таким образом, чтобы они обладали хорошими мукомольными и хлебопекарными достоинствами;

2. тщательная очистка зерна от примесей и загрязнения с некоторым удалением покровных тканей его. Это достигается сухой и мокрой очисткой: зерно пропускают через сепараторы, триеры, аспирационные колонки, обоечные и щеточные машины, очищающие зерно от пыли, некоторых покровных тканей (бородок, оболочек) и удаляющие зародыш; если на мельницах имеются моечные установки, зерно промывают водой, удаляя с его поверхности грязь и микроорганизмы;

3. улучшение физических и биохимических свойств зерна перед размолом. Это достигается увлажнением зерна с последующей отлежкой при определенной температуре (холодное или горячее кондиционирование). Подготовленное таким образом зерно легче вымалывается, лучше отделяются оболочки от эндосперма, а иногда улучшаются и хлебопекарные качества в результате деятельности ферментных систем.

Подготовка зерна к помолу на крупных товарных мельницах настолько многогранна, что третья часть корпуса мельницы бывает занята оборудованием, предназначенным на эти цели. Две трети помещения занимает размольное отделение.

На мельницах сельскохозяйственного типа применяют в основном два первых вида подготовки к помолу. Сохранились еще и мельницы без зерноочистительного отделения или с далеко не полным комплектом машин. Отправка зерна на помол на такие мельницы требует особого внимания. Очистка партии зерна и подготовка ее к помолу должны проводиться в хозяйстве.

Операции, связанные с перемещением, очисткой и размолом зерна, сопровождаются выделением пыли. Для улавливания ее непосредственно в машинах применяется система вентиляции (аспирация).

4. Ассортимент муки

Вид муки определяется той хлебной культурой, из которой она получена. Различают муку пшеничную, ржаную ячменную, овсяную, рисовую, гороховую, гречневую, соевую. Муку можно получать из одной культуры и из смеси пшеницы и ржи (пшенично-ржаная и ржано-пшеничная).

Тип муки определяется ее целевым назначением. Например, мука пшеничная может вырабатываться хлебопекарной и макаронной. Хлебопекарная мука вырабатывается в основном из мягкой пшеницы, макаронная -- из твердой высоко-стекловидной. Ржаная мука вырабатывается только хлебопекарной.

Сорт муки является основным качественным показателем всех ее видов и типов. Сорт муки связан с ее выходом, т. е. количеством муки, получаемой из 100 кг зерна. Выход муки выражают в процентах. Чем больше выход муки, тем ниже ее сорт.

Для выработки хлеба и хлебобулочных изделий на хлебопекарных предприятиях применяют в основном пшеничную и ржаную муку. Пшеничную муку вырабатывают пяти сортов: крупчатка, высшего, первого, второго сортов и обойная или четырех сортов «Мука пшеничная» высшего, первого, второго сортов и обойная. Кроме того вырабатывают муку пшеничную подольскую и муку пшеничную хлебопекарную «Особая высшего и первого сортов.

Мука ржаная хлебопекарная вырабатывается трех сортов -- сеяная, обдирная и обойная. Кроме того вырабатывается мука ржаная хлебопекарная «Особая».

Муку, полученную из зерновых и крупяных культур, используют в составе композитных смесей. Это следующие виды и сорта муки: мука ячменная сортовая, мука пшенная сортовая мука кукурузная сортовая (крупная и мелкая), мука рисовая 1 сорта, мука гороховая сортовая, мука пшеничная с высоким содержанием отрубянистых частиц, мука пшеничная, обогащенная пищевыми волокнами (докторская).

В настоящее время стали создаваться композитные мучные смеси для хлебобулочных изделий. Композитные мучные смеси для хлеба включают три компонента: муку пшеничную хлебопекарную 1 сорта (65%), муку ржаную обдирную (15%) и крупяную (ячменную сортовую, пшенную сортовую или гречневую 1 сорта) (20%). Смеси для хлебцев состоят из двух компонентов -- муки пшеничной хлебопекарной высшего сорта (89%) и крупяной муки (11%). Композитные смеси для кондитерских изделий включают муку пшеничную хлебопекарную высшего сорта (80%) и крупяную муку (20%). Композитные мучные смеси предназначены для расширения ассортимента изделий с улучшенным аминокислотным составом, повышенным количеством макро- и микроэлементов и витаминов.

5. Требования к качеству муки

Качество муки оценивают такими показателями: цвет, запах, вкус, величина помола, влажность, зольность (белизна), массовая доля примесей, зараженность вредителями хлебных злаков, массовая доля клейковины и ее качество, число падения. Цвет, величина помола, зольность (белизна), массовая доля клейковины нормируются по каждому сорту муки.


Подобные документы

  • Обзор рынка муки России и Пермского края. Классификация и ассортимент пшеничной муки, ее пищевая ценность, химический состав. Упаковка, маркировка, транспортировка, хранение продукта. Органолептические показатели и оценка качества пшеничной муки.

    курсовая работа [4,9 M], добавлен 26.10.2014

  • Ассортимент и значение муки для питания. Номенклатура потребительских свойств и показателей качества муки. Сохранение качества и потребительских свойств муки на стадиях технологического цикла. Средства товарной информации для идентификации муки.

    курсовая работа [50,3 K], добавлен 16.06.2012

  • Классификация и ассортимент хлебобулочных изделий, особенности хлебобулочных изделий из ржаной муки. Потребительские свойства и пути обеспечения качества, транспортирование. Виды и формы товарной информации, новые направления в развитии хлебопечении.

    курсовая работа [68,6 K], добавлен 12.06.2011

  • Потребительские достоинства макаронных изделий. Пищевая ценность и потребительские достоинства, их зависимость от сорта, состава муки и применяемых обогатителей. Классификация и ассортимент, технология производства. Экспертиза и показатели качества.

    доклад [93,2 K], добавлен 29.03.2015

  • Химический состав и пищевая ценность кофе. Факторы, формирующие его качество, а также процессы, происходящие при хранении. Возможные способы фальсификации кофе. Экспертиза качества кофе. Органолептические и физико-химические качества растворимого кофе.

    курсовая работа [97,0 K], добавлен 16.04.2008

  • Химический состав и пищевая ценность сгущенных молочных консервов. Сгущенные молочные продукты на "Эрконпродукт". Органолептические показатели качества. Дефекты товара, способы фальсификации и методы их обнаружения. Упаковка, маркировка и хранение.

    курсовая работа [389,8 K], добавлен 22.05.2015

  • Химический состав и пищевая ценность гречневой крупы, ее классификация и ассортимент. Основные операции производства гречневой крупы, органолептические и физико-химические показателям ее качества. Проведение товароведческой экспертизы качества товара.

    курсовая работа [51,3 K], добавлен 12.12.2010

  • Пищевая ценность, классификация и ассортимент сметаны. Ключевые этапы и особенности производства продукта. Основное и вспомогательное сырье и компоненты. Экспертиза качества и характеристика дефектов сметаны. Показатели, характеризующие качество продукта.

    курсовая работа [51,3 K], добавлен 09.11.2014

  • Химический состав и пищевая ценность масла, его физико-химические, микробиологические и органолептические показатели качества. Пороки масла коровьего, причины их возникновения и меры предупреждения. Маркировка, упаковка и транспортировка продукта.

    курсовая работа [1,6 M], добавлен 24.11.2012

  • Товароведческая характеристика сыра, его химический состав и пищевая ценность, факторы определяющие качество. Технология производства сыра. Упаковка, маркировка и хранение продукта. Определение органолептических и физико-химических показателей качества.

    курсовая работа [66,1 K], добавлен 16.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.