Теория вероятностей

Общее решение дифференциального уравнения первого порядка. Уравнение с разделенными переменными. Выбор частного интеграла. Частное решение дифференциального уравнения второго порядка. Вероятность проявления события, интегральная формула Муавра-Лапласа.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 19.08.2009
Размер файла 75,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

9

Содержание

  • Задание 1
    • Задание 2
    • Задание 3
    • Задание 4
    • Задание 5
    • Задание 6
    • Список используемой литературы

Задание 1

Найти общее решение дифференциального уравнения первого порядка:

.

Решение:

Преобразуем уравнение и разделяя переменные, получим уравнение с разделенными переменными:

Интегрируем его и получаем общее решение данного уравнения

Ответ: Общее решение данного уравнения

Задание 2

Найти общее решение дифференциального уравнения первого порядка:

.

Решение:

Вводим замену

>

Так как одну из вспомогательных функций можно взять произвольно, то выберем в качестве какой-нибудь частный интеграл уравнения . Тогда для отыскания получим уравнение . Итак, имеем систему двух уравнений:

Далее

Проверка:

верное тождество. Ч. т.д.

Ответ:

Задание 3

Найти частное решение дифференциального уравнения второго порядка, удовлетворяющее указанным начальным условиям:

,

Решение:

Общее решение данного уравнения

ищется по схеме:

Находим общее решение однородного уравнения. Составим характеристическое уравнение

и

Общее решение имеет вид:

,

где

Находим частное решение . Правая часть уравнения имеет специальный вид. Ищем решение

, т.е.

Найдем производные первого и второго порядков этой функции.

-2

1

1

>

>

>

Т.о. частное решение

Общее решение

Используя данные начальных условий, вычислим коэффициенты

Получим систему двух уравнений:

>

Искомое частное решение:

Ответ:

Задание 4

В читальном зале имеется 6 учебников по теории вероятностей, из которых 3 в мягком переплете. Библиотекарь взял 2 учебника. Найти вероятность того, что оба учебника в мягком переплете.

Решение:

Пусть имеется множество N элементов, из которых M элементов обладают некоторым признаком A. Извлекается случайным образом без возвращения n элементов. Вероятность события, что из m элементов обладают признаком А определяется по формуле:

(N=6, M=3, n=2, m=2)

Ответ:

Задание 5

Дана вероятность появления события A в каждом из независимых испытаний. Найти вероятность того, что в этих испытаниях событие A появится не менее и не более раз.

Решение:

Применим интегральную формулу Муавра-Лапласа

Где

и

Ф (x) - функция Лапласа , обладает свойствами

10. - нечетная, т.е.

20. При , значения функции представлены таблицей (табулированы) для

Так

Ответ:

Задание 6

Задан закон распределения дискретной случайной величины X (в первой строке указаны возможные значения величины X, во второй строке даны вероятности p этих значение).

Xi

8

4

6

5

pi

0,1

0,3

0,2

0,4

Найти:

1) найти математическое ожидание ,

2) дисперсию ;

3) среднее квадратичное отклонение .

Математическое ожидание (ожидаемое среднее значение случайной величины):

Дисперсия (мера рассеяния значений случайной величины Х от среднего значения а):

.

Второй способ вычисления дисперсии:

где

.

Среднее квадратичное отклонение (характеристика рассеяния в единицах признака Х):

>

Ответ:

Математическое ожидание

Дисперсия

Среднее квадратичное отклонение

Задание 7

Случайные отклонения размера детали от номинала распределены нормально. Математическое ожидание размера детали равно 200 мм, среднее квадратическое отклонение равно 0,25 мм. Стандартными считаются детали, размер которых заключен между 199,5 мм и 200,5 мм. Найти процент стандартных деталей.

Решение:

Таким образом, процент стандартных деталей составляет 95,45%

Ответ: Стандартных деталей 95,45%.

Список используемой литературы

Горелова Г.В. Теория вероятностей и математическая статистика в примерах и задачах с применением MS Excel. /Под ред. Г.В. Гореловой, И.А. Кацко. - Ростов н/Д: Феникс, 2006. - 475 с.

Ковбаса С.И., Ивановский В.Б. Теория вероятностей и математическая статистика: Учебное пособие для экономистов. - СПб.: Альфа, 2001. - 192 с.

Кочетков Е.С., Смерчинская С.О., Соколов В.В. Теория вероятностей и математическая статистика: Учебник. - М.: ФОРУМ, 2008. - 200 с.

Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник. - М.: ЮНИТИ-ДАНА, 2007. - 551 с.

Пехлецкий И.Д. Математика. / Под ред. И.Д. Пехлецкого. - М.: Издательский центр "Академия", 2003. - 421с.

Пугачев В.С. Теория вероятностей и математическая статистика: Учебное пособие. - М.: ФИЗМАТЛИТ, 2002. - 496 с.


Подобные документы

  • Особенности выражения производной неизвестной функции. Общий вид дифференциального уравнения первого порядка, его решение. Сущность теоремы Коши (о существовании и единственности решения), её геометрический смысл. Общее и частное решение уравнения.

    презентация [77,7 K], добавлен 17.09.2013

  • Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.

    курсовая работа [347,1 K], добавлен 26.01.2015

  • Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.

    презентация [206,3 K], добавлен 17.09.2013

  • Нахождение частных производных, градиента функции. Вычисление интеграла, переход от двойного интеграла к последовательному, пределов интегрирования. Общее и частное решение дифференциального уравнения второго порядка. Применение признака Даламбера.

    контрольная работа [297,6 K], добавлен 11.05.2013

  • Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.

    лекция [520,6 K], добавлен 18.08.2012

  • Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.

    контрольная работа [65,3 K], добавлен 15.12.2010

  • Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.

    контрольная работа [94,3 K], добавлен 02.11.2011

  • Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.

    курсовая работа [81,9 K], добавлен 29.08.2010

  • Понятие и математическое описание элементов дифференциального уравнения как уравнения, связывающего искомую функцию одной или нескольких переменных. Состав неполного и линейного дифференциального уравнения первого порядка, их применение в экономике.

    реферат [286,2 K], добавлен 06.08.2013

  • Уравнения с разделяющими переменными. Частное решение линейного дифференциального уравнения. Оценка вероятностей с помощью неравенства Чебышева. Нахождение плотности нормального распределения. Построение гистограммы и выборочной функции распределения.

    контрольная работа [387,4 K], добавлен 09.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.