Технология теории решения изобретательных задач (ТРИЗ)

Ознакомление с содержанием и этапами реализации программы ТРИЗ как способа развития диалектического мышления и творческого воображения. Сравнительный анализ технологий теории решения изобретательных задач в исполнении Г.С. Альтшуллера и Р. Бартини.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 10.07.2010
Размер файла 49,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Осталось только показать, как получается k=0. Очень просто, и следует из формулы

расход нагретого газа V 0 =расход холодной воды.

Баланс ресурсов показывает, что Бартини работал с нескольким входными факторами, а не с двумя, как АРИЗ. Именно в этом заключается важное

Отличие метода Бартини от АРИЗ

Решение Бартини, можно сказать, более геометрично и физично. В той же задаче о запайке ампул пока еще не найденная вода, а всего лишь тепло/хладоноситель, уже получается расходуемой и распределенной по высоте, что соответствует физике и геометрии процесса, а Альтшуллер и Селюцкий сначала находят, что это вода, - на противопоставлении огню при тушении пожаров (а это, скорее, психология подпускается), а потом говорят, что воду можно (а разве она не испаряется?) сделать проточной.

Хорошее определение геометрических, временных и физических свойств икс-элемента является компенсацией за то, что не называется сам икс-элемент. По Бартини мы должны опознать его по найденным свойствам.

Если проводить аналогии между методом Бартини и ТРИЗ, то наиболее похожей на LT-таблицу Бартини является, уже упоминавшаяся выше, таблица выбора приемов устранения ТП. Генеалогию этой таблицы в серии статей подробно разобрал Л. Шуб и раскритиковал таблицу ТП еще более резко, чем Б.А.Лабковский.

Вот что пишет Л. Шуб в [15, ч.4]: "В типовых приемах недостатка больше не было (списки постоянно уточнялись). А вот вплотную подойти к выделению "типовых противоречий" до сих пор не удавалось. И главное, неясной оставалась будущая логическая связка, позволяющая безошибочно находить для каждого "типового противоречия" свой - типовой же - прием".

Бартини в своей LT-таблице нашел эту связку: на уровне физических размерностей противоречивых свойств и икс-элемента. Статья Бартини опубликована в 1965 г. Примерно в это же время, по свидетельству Л.Шуба, оформилась и таблица Альтшуллера. Эти две таблицы схожи своей, так сказать, физикой. Действительно, в обеих таблицах встречаются одинаковые физические понятия: длина, скорость, время, сила, давление, вес и т.п. Если в физике какое-либо свойство не измеряется, то его можно оценить косвенно. Например, форма может быть оценена аэродинамическим сопротивлением.

Из физики Бартини пошел в математику, в формулы размерности, и на 20-30 лет раньше, чем Альтшуллер. Альтшуллер же пошел в психологию, в стереотипы поведения, сложившиеся в глубокой древности при обращении человека с палкой, камнем, водой, огнем, простейшими орудиями труда. Древний человек не только пробы и ошибки совершал, он еще и обучался, опыта и стереотипов поведения набирался и детишкам передавал: "бьют - беги, дают - бери", опять же матрешку придумал! И это древнее, чем математика, для математики нужен достаточно высокий уровень абстрактности.

Альтшуллер был писателем-фантастом, ему были ближе психологические подходы. А Бартини все-таки был инженер-конструктор, его математика была на голову выше, чем математика Альтшуллера. Каждый работал своим методом. И если у Альтшуллера с таблицей ТП получилось, как пишет Л.Шуб, неудачное исполнение, то задумка-то была очень даже неплохой: здесь можно поработать, начиная со стереотипа конфронтации типа ФП "свой-чужой" или "плюс-минус" и переходя далее к другим стереотипам бинарных отношений. А пока у нас есть еще

Пара тестовых задач которые все знают, и которые в ТРИЗ у всех на слуху. Разберем их очень коротко, в стиле Бартини. Естественно, это перевозка шлака и молниеотводы, тривиальнее не выбрать. Между прочим, Б.А.Лабковский тоже рассматривает решения этих задач.

Вот цитата из его книги "Наука изобретать"[9, с.336]: " ...рассмотрим известное изобретение о вывозе горячего шлака. Мы помним, что высвободить ковш от горячего шлака эффективнее всего при выполнении двух условий. Во-первых, образовавшаяся корка должна быть как можно более тонкой. Во-вторых, она должна быть как можно менее прочной. Таким образом, двум следствиям соответствует одна причина. Решение (если оно возможно) проще всего отыскивается в таблице фиксированием двух следствий в одном столбце. В нашем примере следствия ув и q находятся в одном столбце со входом и, определяющим плотность. Таким образом, мы сразу приходим к задаче увеличения пористости застывающей корки".

Здесь имеется в виду, что ув - предел прочности, а q, хотя и не определено, но можно догадаться, что это толщина корки, и - плотность. Под таблицей понимается "Таблица физических эффектов", которую сам же автор [9] критикует за неудобство пользования из-за большой размерности.

Попробуем решить задачу по методу Бартини. Предел прочности в системе СИ измеряется в [МПа], т.е. в единицах давления. По LT-таблице находим размерность давления и умножаем на размерность толщины корки, т.е. длину, и получаем

L2T-4 · L1T0 = L3T-4 , Sn+m =3-4=-1.

Попадаем на верхний серый тренд ВПР в клетку L3T-4 . Но при движении по этому тренду никак не попасть на размерность массовой плотности L0T-2, которая находится на верхнем голубом тренде ВПР с суммой Sn+m =-2.

Что-то не получается. Давайте разберемся. А для этого посмотрим, как формулирует макро-ФП для этой задачи Г.С. Альтшуллер [16, с.147]: "Слой воздуха в ОЗ должен быть заполнен нетеплопроводным веществом, чтобы уменьшить охлаждение шлака, и не должен быть заполнен веществом, чтобы не мешать заливу и сливу шлака".

Каковы главные факторы, определяющие противоречие, и которые имеют физическую размерность? Ясно, что это теплопроводность и опять-таки толщина корки, так как отсутствие вещества в слое ОЗ означает корку нулевой толщины, а толщина опять-таки измеряется единицами длины.

Теплопроводность в системе СИ измеряется в [Вт/м·K] или, при переводе мощности и температуры в LT-базис, в L-1T-1. Находим родительский тренд

L-1T-1 · L1T0 = L0T-1 , Sn+m =0-1=-1.

Решение по Бартини с выбранными нами исходными данными из модели Альтшуллера, так и из модели Лабковского, дает один и тот же родительский тренд ВПР. Поэтому на нем и будем искать ответ, не так уж много элементов в этом тренде в нашей LT-таблице, всего-то 5 штук. Естественно, самое подходящее свойство - поверхностное натяжение с размерностью L-3T-4, определяющее капиллярно-пористую структуру, а именно, пену. И у Альтшуллера решением является пена. Если же использовать плотность L0T-2, то ее надо было бы рассматривать как входной фактор задачи (обеспечение нужной плотности корки), т.е. выше мы сделали ошибку, рассматривая плотность как выход. Второй входной фактор, естественно, - корка нужной толщины. Тогда снова выйдем на поверхностное натяжение

L0T-2 · L1T0 = L1T-2 , Sn+m =1-2=-1.

Задача о молниеотводе в формулировке [17, 9]: "Для защиты антенны радиотелескопа, спрятанного внутри пластмассового купола, нужно расставить внутри молниеотводы. Но молниеотводы - проводники, а проводники задерживают радиоволны, создают радиотень". Ответом задачи является изготовление молниеотвода из диэлектрической трубы с пониженным давлением.

Определим основные факторы, влияющие на работу молниеотвода-прототипа. Это электрическая прочность воздуха и проводимость металлического штыря, концом зарытого в землю. В системе СИ электрическая прочность измеряется в [В/м]. В вольтах измеряется разность потенциалов, которая по таблице Бартини имеет размерность L2T-2, тогда электрическая прочность будет иметь размерность L1T-2. Проводимость в базисе LT Бартини имеет размерность L-1T1 (строго говоря, такой размерности в системе СИ соответствует ом [Ом], т.е. единица электрического сопротивления, но Бартини эту клетку назвал проводимостью, поэтому будем придерживаться его терминологии). Умножаем размерность электрической прочности на проводимость

L1T-2 · L-1T1 = L0T-1 , Sn+m =0-1=-1.

Выходим на верхний серый тренд ВПР с Sn+m =-1. Размерность давления L2T-4, давление находится на верхнем голубом тренде с Sn+m =-2. Тренды не совпадают. Какой вывод? Не учтен еще какой-то основной фактор. Какой? Попробуем его найти. Для этого нужно с серого тренда перейти на голубой, т.е. уменьшить сумму Sn+m =-1 на единицу. Сделаем это следующим образом: домножим полученный результат L0T-1 на L0T-1, тогда переходим в клетку L0T-2 на голубом тренде ВПР. По размерности L0T-1 находим в LT-таблице неучтенный фактор - это частота, конечно, электромагнитного излучения радиотелескопа.

Вот почти и все. Осталось

Несколько слов о том, почему Бартини не опубликовал свой метод

Здесь могут быть следующие соображения. В 1935 году метод был, конечно, засекречен, так как Бартини докладывал его военным слушателям. Потом Бартини был репрессирован и работал в "шарашке", затем была война, потом реабилитация, так что первую свою статью [6] "Некоторые соотношения между физическими константами" Бартини с большим трудом удалось опубликовать в журнале "Доклады Академии наук СССР" только в 1965г. И то - из-за представления статьи академиком Бруно Понтекорво, тоже итальянцем. Статья была настолько оригинальна, что после ее выхода некоторые академики-физики подняли скандал: "Кто это такой Бартини, и что за мистификации печатает солидный журнал?" Жаловались в отдел науки ЦК КПСС. Бартини повезло, что о нем знали в оборонном отделе того же ЦК. Когда оба отдела состыковались, от Бартини отстали.

Допустим, что после этого шума Бартини все-таки написал бы статью, как пользоваться его таблицей. Попала бы эта статья на рецензию какому-нибудь физику.

- И что бы он сказал? -

- А вот что: -

- А где тут новое? LT-базис придумал Максвелл, а Вы заполнили клетки только известными законами, а новых не открыли - пустых-то сколько осталось!

- Вообще, Ваша таблица представляет шпаргалку для студентов, правда, хорошо организованную, сжатую (кстати, большое достоинство шпор - все знают!). А то, что по ней можно узнать, что разряд молнии зависит от свойств воздуха и сопротивления заземления, так это всем известно, откройте наши учебники физики в разделе "Электричество", там про это уже все написано-

Но все, конечно, понимают, что это только предположение. На самом деле все было не так, все было гораздо проще и идеальнее, просто ИКР!

Вот как было на самом деле.

Приходит Бартини в редакцию какого-нибудь научно-технического журнала и говорит: "Я расшифровал метод Бартини. Опубликуете? " - а ему в ответ: "Хм... бартини?? Нам бы лучше мартини!!"

Ну, как тут после этого открывать

Новые горизонты и направления развития?

Не надо забывать, что только встав на плечи гигантов, мы можем заглянуть за горизонт. И если с работами Г.С.Альтшуллера и других создателей ТРИЗ мы худо-бедно знакомы, то работы Р.О.Бартини и П.Г.Кузнецова только начинаем изучать. После П.Г.Кузнецова осталась его школа, ученики, базирующиеся, в основном, в Дубне. Они продвигают идеи Р.О.Бартини-П.Г.Кузнецова не только в физику, но и химию, биологию, экологию, экономику и другие естественно-научные и социально-экономические науки [14]. Особенно хочу обратить внимание тех тризовцев, которые используют идеи ТРИЗ в бизнесе: клетки таблицы Бартини уже расширены до свойств, которые используются при анализе организационно-экономических систем, например, мобильность L+6T-6 (это свойство в практику ввел еще П.Г.Кузнецов), экстенсия L+6T-5 , экспансия L+7T-5, маневренность L+7T-6 , интенсивность L+7T-7 и др. (А.Г.Алейников [18] - 2007 г.). Если дело пойдет такими же темпами, то скоро в LT-базисе, того и гляди, появятся понятия и свойства искусства.

Вторым важным направлением, по всей видимости, является генетика техники, передача наследственных свойств от прототипов к новым системам, или более широко, эволюция техники, ее выживаемость и приспособляемость. В этом еще больше убеждают некоторые черновые материалы, любезно присланные автору В.В.Митрофановым и Ю.Даниловским. К сожалению, в этом расследовании генетическое направление развить пока не удалось. Многое еще не ясно. Есть еще подводные камни. Желающие могут их найти и бросить в автора (см. E.mail).

Если Вы не знаете, как это делается, так можно показать.

Образец первого камня, с которым каждый может ознакомится, нам уже представил Ю.Карасик, любезно разметив на сайте "Anti TRIZ-journal" рецензию [19] на другую статью автора.

Вот второй камень: "Это сплошная ерунда! Какие там гены длины, времени? Передача наследственной информации по родительским трендам и т.п.? Разве автор статьи не знает, что во времена Бартини "генетика была продажной девкой империализма"? А Бартини хоть и был бароном, однако красным бароном, антифашистом и итальянским коммунистом, и всегда хотел, чтобы красные самолеты летали быстрее, чем черные! С этим и иммигрировал в СССР! А автор статьи несет отсебятину и еще имеет наглость приписывать ее Бартини!"

Ну, что тут ответить?

Автор, хоть и не биолог, но знает, что во времена Бартини никаких генов не было, и они были изобретены значительно позже. Однако автор хотел показать, как с этими своими генами дошел до жизни такой, когда можно легко и просто по таблице Бартини решать уже решенные альтшуллеровские задачи!

Более того, автор знает и может показать, как используя LT-таблицу размерностей физических величин, балансы ресурсов и др., Бартини решал свои задачи и получал в ответе не только эту злосчастную воду для запайки, но и всевозможные другие решения без всяких генов, шума и пыли. Практически это уже просто видно и вылезает из всех щелей статьи.

А набравшись смелости, а не наглости, как утверждает оппонент, автор имеет честь заявить уважаемым читателям, что у него есть соображения по поводу того, как Бартини решал задачу дальше, выбирая оптимальное решение из множества всевозможных.

Бартини все это делал так. Сначала он брал кассету, ампулы с лекарством, горелку, газ, пламя, и ... что там еще? Ах, да! давление и ...

... и... дальше автор устал. Он не физик, и не химик, и даже не математик! Он хочет отдохнуть, открыть окна и проветрить помещение! Пусть теперь читатели поработают бартинями (автор - и не филолог!).

В заключение поблагодарим также наших уважаемых свидетелей: В.А.Королева, А.В.Кудрявцева, Ю.П.Саламатова. Расследование базируется на их показаниях, но, если в 2197 году, когда вскроют завещание Р.Бартини, окажется, что все было не так, как на самом деле, тогда уж не обессудьте - отвечать будем вместе, у стенки и дружно:

"Evviva la Bartini!"

Список литературы

1. Королев В.А. Другая ТРИЗ. "Энциклопедия ТРИЗ", 1999.

2. Чутко И. Э. Красные самолеты. - М.: Политиздат, 1978. - 128 с.

3. Кудрявцев А.В. Роберт Бартини. "Metodolog.ru" , 2005.

4. Саламатов Ю.П. Ответ на форуме сайта "Institute of Innovative Design" от 19.10.2006.

5. Ильф И. и Петров Е. Двенадцать стульев. - М.: Художественная литература, 1974. - 295 с.

6. Ди Бартини Р.О. Некоторые соотношения между физическими константами. Доклады А к а д е м и и наук СССР 1965. Том 163, N. 4. C.861-864. http://ph-pr.narod.ru/bartini.htm

7. Ди Бартини Р.О., Кузнецов П.Г. Множественность геометрий и множественность физик. // Материалы семинара "Кибернетика электроэнергетических систем". Брянск,1974.

http://situation.ru/app/rs/lib/pobisk/ur_model_sys/ur_model_sys.htm

8. Randall Marin. TRIZ AND THE OPTIMIZATION CONJECTURE. TRIZfest-07 "Теория и практика решения изобретательских задач" Сб. докладов конференции. Москва, 2007.

9. Лабковский Б.А. Наука изобретать. - СПб.: Нордмет-Издат, 2000. - 372 c. ISBN 5-93114-013-1.

10. Бушуев А.Б. Моделирование противоречий в АРИЗ. "Metodolog.ru" , 2005

11. Бушуев А.Б. Динамический вепольный анализ в АРИЗ. "Metodolog.ru" , 2005

12. Бушуев А.Б. Х-элемент: поиск, захват, слежение. Труды Международной конференции ТРИЗФЕСТ 2006// "Три поколения ТРИЗ". Россия. СПб. 2006. с.310-317. http://www.matriz.ru/6activity/06-works/06-works-05.pdf

13. Альтшуллер Г.С., Селюцкий А.Б. Крылья для Икара: Как решать изобретательские задачи.- Петрозаводск: Карелия, 1980. - 224 с.

14. http://pobisk.narod.ru/Pr-ob-ch/003_oglav.htm

15. Шуб Л. Осторожно! Таблица технических противоречий. "Metodolog.ru" , 2006.

16. Альтшуллер Г.С. Найти идею. Введение в теорию решения изобретательских задач.- Новосибирск: Наука. Сиб. отд-ние, 1991.- 225 с. ISBN 5-02-029265-6.

17. Дерзкие формулы творчества/ Составитель Селюцкий Б.А. - Петрозаводск: Карелия, 1987. - 269 с.

18. Andrei Aleinikov. NINE NEW LAWS OF CONSERVATION: FUTURE SCIENCE HORIZONS. Allied Academies International Conference. Reno, NV, October 3-5, 2007. Academy of Strategic Management . PROCEEDINGS. V. 6, N. 2 2007, pp.5-10.

19. Karasik Y.B. TRIZ-journal as a podium for mentally ill people. Anti TRIZ-journal, December 2004, Vol.3, No.11.


Подобные документы

  • Методы решения задач с экономическим содержанием повышенного уровня сложности. Выявление структуры экономических задач на проценты. Вывод формул для решения задач на равные размеры выплат. Решение задач на сокращение остатка на одну долю от целого.

    курсовая работа [488,3 K], добавлен 22.05.2022

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация [247,7 K], добавлен 20.02.2015

  • Составление четкого алгоритма, следуя которому, можно решить большое количество задач на нахождение угла между прямыми, заданными точками на ребрах многогранника. Условия задач по теме и примеры их решения. Упражнения для решения подобного рода задач.

    практическая работа [1,5 M], добавлен 15.12.2013

  • Рассмотрение общих сведений обратных задач математической физики. Ознакомление с методами решения граничных обратных задач уравнений параболического типа. Описание численного решения данных задач для линейно упруго-пластического режима фильтрации.

    диссертация [2,8 M], добавлен 19.06.2015

  • Применение граф-схем - кратчайший путь доказательства теорем. Нахождение искомых величин путем рассуждений. Алгоритм решения логических задач методами таблицы и блок-схемы. История появления теории траекторий (математического бильярда), ее преимущества.

    реферат [448,4 K], добавлен 21.01.2011

  • Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.

    курсовая работа [1,8 M], добавлен 18.01.2013

  • Понятие "задача" и процесс ее решения. Технология обучения приемам восприятия и осмысления, поиска и составления плана решения. Методика обучения решению задач различными методами. Сущность, смысл и обозначение дробей, практические способы их сравнения.

    методичка [242,5 K], добавлен 03.04.2011

  • Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.

    курсовая работа [2,2 M], добавлен 11.12.2011

  • Развитие аналитического, логического, конструктивного мышления учащихся и формирование их математической зоркости. Изучение тригонометрии в курсе геометрии основной школы, методы решения нестандартных задач из курса 8 класса и из альтернативных учебников.

    курсовая работа [396,0 K], добавлен 01.03.2014

  • Методы решения комбинаторных задач детьми на уроках математики. Определение уровня логического и алгоритмического мышления учащихся. Ознакомление школьников с методом организованного перебора, с помощью графа, таблицы и дерева возможных вариантов.

    курсовая работа [1,3 M], добавлен 24.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.