Регресійний аналіз інтервальних даних
Лінійна багатовимірна регресія, довірчі інтервали регресії та похибка прогнозу. Лінійний регресійний аналіз інтервальних даних, методи найменших квадратів для інтервальних даних і лінійної моделі. Програмний продукт "Інтервальне значення параметрів".
Рубрика | Математика |
Предмет | Регресійний аналіз |
Вид | дипломная работа |
Язык | украинский |
Прислал(а) | Припутень Юлия |
Дата добавления | 12.08.2010 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Характеристика, поняття, сутність, положення і особливості методів математичної статистики (дисперсійний, кореляційний і регресійний аналіз) в дослідженнях для обробки експериментальних даних. Розрахунки для обчислення дисперсії, кореляції і регресії.
реферат [140,6 K], добавлен 25.12.2010Поняття економетричної моделі та етапи її побудови. Сутність та характерні властивості коефіцієнта множинної кореляції. Оцінка значущості множинної регресії. Визначення довірчих інтервалів для функції регресії та її параметрів. Метод найменших квадратів.
курсовая работа [214,6 K], добавлен 24.05.2013Знаходження коефіцієнтів для рівнянь нелінійного виду та аналіз рівняння регресії. Визначення параметрів емпіричної формули. Метод найменших квадратів. Параболічна інтерполяція, метод Лагранжа. Лінійна кореляція між випадковими фізичними величинами.
курсовая работа [211,5 K], добавлен 25.04.2014Метод найменших квадратів. Задача про пошуки параметрів. Означення метода найменших квадратів. Визначення параметрів функціональних залежностей. Вид нормальної системи Гауса. Побудова математичної моделі, використовуючи метод найменших квадратів.
реферат [111,0 K], добавлен 25.12.2010Етапи побудови емпіричних формул: встановлення загального виду формули; визначення найкращих її параметрів. Суть методу найменших квадратів К. Гауса і А. Лежандра. Побудова лінійної емпіричної формули. Побудова квадратичної емпіричної залежності.
контрольная работа [128,1 K], добавлен 22.01.2011Вивчення наслідків порушення основних припущень лінійного регресійного аналізу: припущення про незміщеність похибок, про однакову дисперсію і некорельованість похибок, про нормальний розподіл похибок та припущення про незалежність спостережень.
магистерская работа [4,7 M], добавлен 12.08.2010Дослідження тенденцій захворюваності на туберкульоз (усі форми), рак, СНІД, гепатити А та Б в двадцяти чотирьох областях України, Криму, містах Києві та Севастополі в період з 1990 по 2005 роки шляхом застосування методів лінійного регресійного аналізу.
дипломная работа [5,7 M], добавлен 12.08.2010Вивчення методів розв'язання лінійної крайової задачі комбінуванням двох задач Коші. Переваги та недоліки інших методів: прицілювання, колокацій, Гальоркіна, найменших квадратів та ін. Пошук єдиного розв'язку звичайного диференціального рівняння.
курсовая работа [419,2 K], добавлен 29.08.2010Основні поняття математичної статистики. Оцінювання параметрів розподілів. Метод максимальної правдоподібності. Парадокси оцінок математичного сподівання та дисперсії, Байєса, методу найменших квадратів, кореляції, перевірки гіпотез та їх пояснення.
дипломная работа [1,1 M], добавлен 12.08.2010Основні поняття логлінійного аналізу - статистичного аналізу зв’язку таблиць спряженості за допомогою логлінійних моделей. Аналіз зв’язку категоризованих змінних. Канонічна кореляція при аналізі таблиць спряженості ознак. Побудова логарифмічної моделі.
контрольная работа [87,4 K], добавлен 12.08.2010