Решение задач с использованием производных

Исследование функции на непрерывность. Алгоритм вычисления производных первого и второго порядков. Порядок определения скорости и ускорения в определенный момент времени при помощи производных. Особенности исследования функции на наличие точек экстремума.

Рубрика Математика
Предмет Математический анализ
Вид контрольная работа
Язык русский
Прислал(а) Ольга
Дата добавления 23.03.2014
Размер файла 362,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Исследование функции на непрерывность. Определение производных показательной функции первого и второго порядков. Определение скорости и ускорения материальной точки, движущейся прямолинейно по закону. Построение графиков функций, интервалов выпуклости.

    контрольная работа [180,3 K], добавлен 25.03.2014

  • Основные определения и теоремы производной, дифференциала функции; техника дифференцирования. Применение производных к вычислению пределов. Исследование функции на монотонность и точки локального экстремума. Полное исследование функции, асимптоты графика.

    контрольная работа [539,8 K], добавлен 20.03.2016

  • Определение частных производных первого и второго порядков заданной функции, эластичности спроса, основываясь на свойствах функции спроса. Выравнивание данных по прямой методом наименьших квадратов. Расчет параметров уравнения линейной парной регрессии.

    контрольная работа [99,4 K], добавлен 22.07.2009

  • Нахождение производных функций. Определение наибольшего и наименьшего значения функции. Область определения функции. Определение интервалов возрастания, убывания и экстремума. Интервалы выпуклости, вогнутости и точки перегиба. Производные второго порядка.

    контрольная работа [98,4 K], добавлен 07.02.2015

  • Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.

    контрольная работа [75,6 K], добавлен 23.10.2010

  • Расчет частных производных первого порядка. Поиск и построение области определения функции. Расчет полного дифференциала. Исследование функции на экстремум. Поиск наибольшего и наименьшего значения функции в замкнутой области. Производные второго порядка.

    контрольная работа [204,5 K], добавлен 06.05.2012

  • Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.

    курсовая работа [81,9 K], добавлен 29.08.2010

  • Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.

    курсовая работа [836,0 K], добавлен 09.12.2013

  • Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.

    курсовая работа [294,7 K], добавлен 17.06.2014

  • Задания на установление заданных пределов без использования правила Лопиталя. Определение точек разрыва функции и построение ее графика. Правило вычисления производной, заданной неявно. Исследование функции методами дифференциального исчисления.

    контрольная работа [570,8 K], добавлен 10.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.