Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби"
Теоретические основы формирования устных вычислительных навыков. Сущность понятия в психолого-педагогической литературе. Разработка системы упражнений по формированию устных вычислительных навыков. Опытно-экспериментальная работа и анализ результатов.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 24.06.2008 |
Размер файла | 78,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Повторительно-обобщающий урок по теме «Сложение и вычитание десятичных дробей». Одна из главных задач для учителя на данном уроке - это проверка устных приемов сложения и вычитания десятичных чисел. Поставленные цели урока были реализованы. Выбранные упражнения оказались оптимальными для реализации целей урока, способствовали формированию вычислительных навыков учащихся. На уроке развивала логическое мышление, внимание, память, активность учащихся, чередовала письменные виды деятельности с устными.
Урок в 5 классе МОУ «Атнягузинская средняя общеобразовательная школа
Тема: Умножение десятичных дробей на натуральные числа
Цели урока: закрепить навык умножения десятичной дроби на натуральное число, в том числе и на 10, 100, 1000 и т. д.; развивать математическую речь, навыки устных вычислении, внимание, память; воспитывать интерес к математике.
Оборудование: нарисованный медведь, дерево, телефон, жетоны, магниты, карточки
I. Организационный момент
Тот из вас мне всех милее,
Кто считает всех милее.
II. Устные упражнения
1. Игровой момент
- Ребята, посмотрите, у нас гость! Это - Михаил Потапович. Он пытается дозвониться лесным жителям: Айболиту, Бабе-Яге, Белоснежке и гномам, Царевне-лягушке. Но все номера телефонов смыл вчерашний дождь, и теперь ему никак не дозвониться ни к одному лесному жителю. Но скажу вам по секрету: если мы очень постараемся и выполним все задания устного счета, то поможем узнать Михаилу Потаповичу все номера лесных жителей. Итак, за дело.
1. Вычисли:
53,25+5,75; 25,005-2,005; 34,1005-13,1005.
Постепенно на доске появляется номер телефона Айболита:
2.Округлите данные числа до единиц: 13,547; 87,0125; 60,411.
На доске появляется номер телефона Бабы-Яги:
3. Заполните таблицу:
I слагаемое |
7,8 |
8,65 |
||
II слагаемое |
6,43 |
1,35 |
||
Сумма |
9,8 |
11,43 |
Учитель записывает на доске номер телефона Белоснежки и гномов.
4. Выполните действие
1,2•10; 0,06•1000; 0.99•100.
На доске появляется номер телефона Царевны-лягушки:
Молодцы, ребята! Вы хорошо потрудились, сразу видно, что вы владеете вычислительными навыками. Ну а самое главное - мы сделали доброе дело, помогли нашему гостю в беде.
2. «Найди ошибку»:
0,01·3=0,3; 0,05·2=0,01;
0,08·4=32; 0,006·3=0,18;
0,007·3=2,1; 0,01·48=0,48.
( Внимание! В шестом примере ошибки нет!)
Затем учитель стирает правильные знаки и ответы, а ученики сами ,в течение 5-6 мин,записывают примеры в тетрадь, восстанавливая знаки и результаты. Учитель проходит по рядам,проверяя работу учеников.
Поясним целесообразность такого, на первый взгляд, нерационального расходования времени урока, связанного с двойным выполнением одного и того же задания. Учителю постоянно приходится изыскивать разнообразные способы для поддержания работоспособности учащихся в классе коррекции на должном уровне. Осознание ими того,что после устного выполнения данных заданий последует письменная работа, не позволяет им отвлекаться на этапе устной работы.
Анализ урока
Урок- закрепления и проверки знаний учащихся. Цели и задачи урока определены правильно. При этом учтены особенности детей этого класса. На уроке использовался словесный, наглядный, объяснительно - иллюстративный, частично - поисковый методы. Отрабатывались вычислительные навыки: устные и письменные приемы сложения, вычитания десятичных дробей, умножения десятичной дроби на натуральные числа, формировались общеучебные организационные умения и навыки, умение работать в коллективе. Каждый этап урока являлся составной частью всей работы и оценивался учителем с помощью жетонов. Использовались методы эмоционального стимулирования: поощрения, стимулирования словом. На уроке также формировалась монологическая и диалогическая математическая речь.
Упражнения в устных вычислениях пронизывали каждый урок математики. Они соединялись с проверкой домашних заданий, закреплением изученного материала, задавались учащимся при опросе. Задания для устных упражнений предлагались детям так, чтобы они воспринимали их либо зрительно, либо на слух, либо и зрительно, и на слух.
Дети охотно включались в устные упражнения, с охотой принимали ее условия. Здесь даже пассивные, несмелые дети активно включались в работу, применяя на практике свои знания и умения. Особенно учащимся нравились задания, в которых надо исправить ошибки. В уроки также включались сюжеты знакомых детям сказок и герои литературных произведении.
Таким образом, помимо того, что устный счет на уроках математики способствует развитию и формированию прочных вычислительных навыков и умении, он также развивает логическое мышление, личностные качества ребенка, повышает у детей познавательный интерес к урокам математики. Вызывая интерес и прививая любовь к математике с помощью различных видов устных упражнений, учитель будет помогать ученикам активно действовать с учебным материалом, пробуждать у них стремление совершенствовать способы вычислений и решения задач, менее рациональные заменять более совершенными. А это важнейшее условие сознательного усвоения материала.
2.3. Опытно-экпериментальная работа и анализ ее результатов
Формирование вычислительных навыков - одна из главных задач работы учителя. Добиться успеха в формировании вычислительных навыков можно только в том случае, если четко соблюдать некоторые требования к проведению устных упражнений:
четкое объяснение учителем цели задания;
исключение факторов, травмирующих учеников при организации работы;
наличие наглядности, художественного слова, дополнительного материала;
учет времени;
подведение итога устных упражнений микрообобщением или оценивание детей за хорошие успехи.
Исследование проходило на базе Атнягузинской и Енапаевской школ Октябрьского района. Были взяты два класса: 5 класс Атнягузинской школы - экспериментальный, и 5 класс Енапаевской школы - контрольный.
Характеристика экспериментального класса
В данном классе всего 13 человек: 8 мальчиков и 5 девочек. Класс занимается по учебнику «Математика 5» Виленкина Н. Я., Жохова А. С. при 6-ти часах в неделю. В классе есть учащиеся, которые отличаются высокой работоспособностью и активностью на уроках (Ягафарова Э., Шакурова Р., Хабибуллин А., Салимов И., Муртазин Т.), остальные ученики средне активны на уроках, редко участвуют при обсуждении новой темы, при решении задач и т. п. В классе также есть дети, которые не участвуют в коллективной работе, не поднимают руку чтобы отвечать на вопросы (Хабибрахманов С., Хатыпов Р., Низамутдинова Л., Салимова А.). Задания выполняются в тетрадях, которые систематически проверяются.
Характеристика контрольного класса
В данном классе 13 человек: 9 мальчиков и 4 девочек. Класс занимается по учебнику «Математика 5» Виленкина Н. Я., Жохова А. С. при 5-ти часах в неделю. Задания выполняются в тетрадях, которые систематически проверяются. В классе есть дети, которые отличаются высокой работоспособностью и активностью (Рахимов Р., Файзуллин А., Минияров А.), и дети, которые не поднимают руку, чтобы ответить, не участвуют в коллективной работе (Габдулхаева Р., Гарифуллина И.).
Таким образом, данные классы по уровню развития примерно одинаковы.
Для эксперимента была выбрана тема «Десятичные дроби», которая рассчитана на 50 часов.
По тематическому планированию данная тема включает вопросы:
Тема 1. Десятичная запись дробных чисел (3 ч.)
Тема 2. Сравнение десятичных дробей (4 ч.)
Тема 3. Сложение и вычитание десятичных дробей (7 ч.)
Тема 4. Приближенные значения чисел. Округление десятичных дробей (3 ч.)
Контрольная работа (1 ч.)
Тема 5. Умножение десятичных дробей на натуральные числа (4 ч.)
Тема 6. Деление десятичных дробей на натуральные числа(6 ч.)
Контрольная работа (1 ч.)
Тема 7. Умножение десятичных дробей (6 ч.)
Тема 8. Деление десятичных дробей (9 ч.)
Тема 9. Среднее арифметическое (5 ч.)
Контрольная работа (1 ч.)
Исследование проводилось в 3 этапа:
констатирующий эксперимент;
формирующий эксперимент;
контрольный эксперимент.
1. Констатирующий эксперимент
Цель: выявить, насколько сформированы устные вычислительные навыки у учащихся 5 класса на уроках математики на исходном этапе эксперимента.
Для этого были использованы следующие методы: анкетирование учащихся и учителей, беседа с учащимися, математический диктант.
1) Анкетирование учащихся.
Цель: проверить отношение учащихся к устным вычислениям.
Учащимся была предложена следующая анкета:
1) Фамилия, имя
2) Любишь ли ты устный счет?
3) Какие задания ты любишь выполнять на уроках математики? (решать выражения, задачи, устные упражнения,...)
4) Ты быстрее решаешь устно или письменно?
Данные экспериментального класса, которые отображены в таблице № 1 (см. приложение № 1), позволили получить следующие результаты: 53,8% детей любят устный счет, больше всего им нравится находить значения выражений, упражнения в виде игры. Но быстрее они решают письменно, чем устно.
Подобная анкета проводилась и в контрольном классе. Данные о результатах работы занесены в таблицу № 2 (см. приложение № 2). Результаты исследования по данным контрольного класса такие: 61,5% ребят любят устный счет. На уроках математики им нравится находить значения выражений, вычислять по цепочке, игровые моменты. 54% детей данного класса предпочитают решать письменно, чем устно.
Исходя из результатов анкет есть основания полагать, что дети не стремятся к устному выполнению вычислений. В связи с этим в контрольном и экспериментальном классах была проведена беседа по теме «Устный счет - гимнастика ума», в ходе которой выяснялась роль устных вычислений, ее важность в изучении математики.
2) Анкетирование учителей математики: Матыновой Г. Г. и Гарифуллиной И. Я.
Цель: выявить, как ведётся учителями работа по применению устных упражнений.
Учителям была предложена следующая анкета:
1) Фамилия имя отчество
2) Проводите ли вы устный счет?
3) Если да, то как часто (на каждом уроке, 3 раза в неделю, если останется лишнее время,...)?
4) На каком этапе урока проводятся Вами устные вычисления? (ответ подчеркнуть)
а - при проверке домашнего задания
б - при подготовке к изучению нового материала
в - при ознакомлении с новым материалом и при закреплении
г - при контроле знаний, умений и навыков
5) В какой форме вы предпочитаете проводить устный счет?
Анализ анкет показал, что учитель экспериментального класса проводит устную работу на любом этапе урока ежедневно, а учитель контрольного класса - не каждый день. Они пользуются различными видами устных упражнений, в основном предпочитают проводить в начале урока тесты, соревнования, игры, используя при этом плакаты, схемы для устных вычислений. (см. приложение № 3).
3. Математический диктант № 1.
Цель: выявить уровень сформированности вычислительных навыков у учащихся 5 класса.
Учащимся для этого был предложен математический диктант по теме «Обыкновенные дроби». На ее выполнение отводилось 10-12 минут. Учащиеся получают бланк для записи ответов (см. приложение № 3). Учитель диктует задания, а учащиеся для каждого из них вписывают в соответствующую клетку бланка только ответ (если ученик не знает ответа, он ставит прочерк).
Математический диктант по теме «Обыкновенные дроби»
1. и . Какая из двух дробей больше?
2. Запишите сумму дробей и .
3. Результат уменьшите на
4. Чему равна разность чисел 1 и
5. Запишите сумму получившейся дроби и дроби
6. Запишите число 4 в виде дроби со знаменателем 5.
7. Задача: Из помидоров массой кг и огурцов массой кг сделали салат. Какова масса салата?
8. Запишите неправильную дробь в виде смешанного числа.
9. Найдите сумму чисел 1и 2
10. Запишите число 5 в виде неправильной дроби
Оценка результатов работы производилась следующим способом:
10 баллов - очень высокий уровень;
8-9 баллов - высокий уровень;
5-7 баллов - средний уровень;
1-4 баллов - низкий уровень.
Результаты экспериментального класса приведены в таблице № 3 и представлены виде диаграммы № 1 (см. приложение № 4). Из таблицы видно, что всего лишь 1 человек имеет высокий уровень устных вычислительных навыков, 4 - средний уровень вычислительных навыков, 8 - низкий уровень. В основном, дети имеют большие проблемы с заданиями на представление смешанного числа в виде неправильной дроби и наоборот, на сложение и вычитание дробей с одинаковыми знаменателями. Дети слабо воспринимают материал на слух.
Таким образом, при проведении констатирующего эксперимента группа учащихся экспериментального класса (13 человек) показала следующие результаты: 7,7% детей имеет высокий уровень устных вычислительных навыков, 30,8% -средний вычислительных уровень, 61,5% -низкий уровень.
Подобный математический диктант проводился и в контрольном классе. Данные о результатах исследования занесены в таблицу № 4 и в диаграмму № 2 (см. приложение № 5).
Результаты исследования по данным контрольного класса (13 человек): никто не имеет высокий уровень устных вычислительных навыков, 6 человек (46,15%) - имеет средний вычислительных уровень, 7 человек (53,85%) - низкий уровень. Отсюда видно, что учитель не считал обязательным включение на каждых уроках математики устных упражнений.
Проанализировав результаты констатирующего эксперимента обоих классов, данные занесли в сравнительную таблицу № 5 и диаграммы № 3 и № 4 (см. приложение № 6). Таким образом, в результате сравнения полученных данных математического диктанта выяснилось, что классы находятся примерно на одинаковом уровне сформированности вычислительных навыков.
На основании анкетирования, беседы и математического диктанта можно сделать вывод о том, что уровень сформированности вычислительных навыков в экспериментальном и контрольном классах существенно не отличаются. У учащихся 5-го класса недостаточно развиты вычислительные навыки.
Таким образом, констатирующий эксперимент показал, что:
1) оба класса работают по учебнику «Математика 5 класс» Виленкина Н. Я., Жохова А. С.;
2) классы примерно равны по возрастным показателям и уровню развития;
3) дети быстрее решают письменно, чем устно;
4) у учащихся недостаточно развиты устные вычислительные навыки.
На основе констатирующего эксперимента выяснилось, что необходима работа, направленная на формирование устных вычислительных навыков. Для этого в экспериментальном классе были проведены уроки математики с систематическим использованием устных упражнении в различных формах и на разных этапах урока с целью повысить уровень сформированности вычислительных навыков. В контрольном классе такие уроки проводились не в системе.
2. Формирующий эксперимент
Цель: формировать вычислительные навыки учащихся экспериментального класса по теме «Десятичные дроби».
В ходе данного эксперимента автором работы была разработана система заданий и упражнений для проведения устного счета по основным темам раздела «Десятичные дроби» по формированию вычислительных навыков, которые описаны выше(см. приложение № 11).
Изложенные в работе упражнения включались на каждый урок математики в экспериментальном классе. Чаще всего они проводились в начале урока с целью подготовки ребят к усвоению материала, или в конце урока с целью проверки знаний, умений и навыков учащихся. Во время эксперимента ученики выполняли все задания учителя. Они с нетерпением ждали устные упражнения, активно работали на уроках. Более доступными для детей были задания в занимательной форме.
В результате работы было выявлено, как повлияли устные упражнения на формирование устных вычислительных навыков, результаты которых можно увидеть в ходе контрольного эксперимента.
3. Контрольный эксперимент
Цель: проверить уровень сформированности устных вычислительных навыков у учащихся экспериментального и контрольного класса.
Контрольный срез проводился в форме математического диктанта в экспериментальном и контрольном классах по теме «Десятичные дроби». На ее выполнение отводилось 10-12 мин.
Математический диктант № 2 по теме «Десятичные дроби»
1.Запишите в виде десятичной дроби число 2,0101.
2.Что больше: 30,07 или 30,11?
3.Запишите результат суммы чисел 2 и 1,5.
4.Результат уменьшите на 1,2.
5.Округлите число 26,71 до десятых.
6.Запишите любое число, расположенное на координатном луче между числами 0,1 и 0,2.
7. Найдите периметр квадрата, если его сторона равна 3,5 см.
8. Запишите результат разности чисел 3 и 0,4.
9. Чему равно произведение чисел 2,87 и 10.
10. Во сколько раз число 8,4 больше 2?
Результаты контрольного исследования (см. приложение № 3) экспериментального класса зафиксированы в таблице № 5 и представлены в виде диаграммы № 5 (см. приложение № 7), контрольного класса отражены в таблице № 6, в диаграмме № 6 (см. приложение № 8).
Анализируя результаты работ проведенного эксперимента, можно утверждать, что у учащихся экспериментального класса (12 человек) уровень сформированности устных вычислительных навыков возрос, а у учащихся контрольного класса (11 человек) - остался на прежнем уровне.
Проанализировав результаты работ контрольного эксперимента обоих классов, результаты занесли в сравнительную таблицу № 7, в диаграмму № 7 и № 8 (см. приложение № 9). Полученные данные показывают, что уровень вычислительных навыков у учащихся различен. Как видно на диаграмме, результаты работ экспериментального класса стали выше, чем результаты контрольного класса, т. е. уровень сформированности устных вычислительных навыков значительно повысился. Это обусловлено тем, что в экспериментальном классе проводилась систематическая работа с устными упражнениями по формированию вычислительных навыков, что явилось основанием для доказательства правильности выдвинутой гипотезы.
Таким образом, данная система упражнений по формированию устных вычислительных навыков доказала свою эффективность. Как показала практика, используя различные устные упражнения, дети лучше усваивают тему урока, быстрее считают (причем устно), активнее идут на контакт с учителем, воспринимают материал более осмысленно, занимаются с увлечением. С помощью устных упражнений учителю легче работать с отстающими детьми, осуществлять индивидуальный подход к ребенку, обеспечивать нужное количество повторений на разнообразном материале (в данном случае при изучении темы «Десятичные дроби» в 5-ом классе), постоянно поддерживая сохранять положительное отношение к математическому заданию. Особенно в игровой обстановке ребенок не боится отвечать на вопрос, даже если не знает правильного ответа. Именно поэтому систематическое использование устных упражнений на уроках математики положительно влияет на формирование вычислительных навыков учащихся.
Следовательно, учителю математики необходимо формировать у учащихся вычислительную культуру. А чтобы это сделать, надо сначала сформировать вычислительные навыки. Для достижения их сформированности, учителю необходимо составить систему упражнений и использовать их при выполнении вычислительных операции, желательно на каждом уроке.
Заключение
Вычислять быстро, подчас на ходу - это требование времени. Числа окружают нас повсюду, а выполнение арифметических действий над ними приводит к результату, на основании которого мы принимаем то или иное решение. Понятно, что без вычислений не обойтись как в повседневной жизни, так и во время учебы в школе. Этим, кстати, объясняется столь стремительное развитие удобных калькуляторов. Тем не менее калькулятор не может обеспечить ответ на все возникающие вопросы. Он не всегда имеется под рукой и бывает достаточно определить лишь примерный результат.
Многие навыки, сопутствующие вычислениям, неизбежно требуются и в быту, и в школьной практике. Так, нередко может потребоваться замена числа близким ему числом, например, 25% - это 0,25, т. е. четверть, сравнение чисел на основе качественных оценок.
Еще 5 - 10 лет тому назад каждый человек в повседневной жизни занимался определенным вычислениями. Сейчас же широкое распространение получили карманные микрокалькуляторы, и через несколько лет после окончания школы непрочные вычислительные навыки совершенно атрофируются. Если не заниматься физическим спортом, то наступает опасная для здоровья болезнь-гиподинамия, когда же не тренируется повседневного память, то наступает гиподинамия ума.(6,60)
В данной работе рассмотрена проблема формирования устных вычислительных навыков учащихся 5-го класса при изучении темы «Десятичные дроби» и эффективность применения устных упражнений. На первый взгляд кажется, что тема проста и доступна любому, но изучив литературу, понимаешь новизну и ее актуальность.
Работая над этой темой, приходишь к выводу, что формирование устных вычислительных навыков у учащихся в процессе изучения ими математики - это длительный процесс, и является одной из актуальных задач, стоящих перед преподавателем математики в современной школе.
Основным средством такого формирования устных вычислительных навыков учащихся являются устные упражнения. Устные упражнения важны тем, что они активизируют мыслительную деятельность учащихся; и при их выполнении у детей развивается память, речь, внимание, способность воспринимать сказанное на слух, быстрота реакции. В сочетании с другими формами работы устные упражнения позволяют создать условия, при мышление, речь, моторика. Устные упражнения в этом комплексе имеют большое значение.
В данной работе предложена система устных упражнений по основным вопросам темы «Десятичные дроби», направленные на формирование устных вычислительных навыков. Данные устные упражнения можно использовать на разных этапах урока.
Используя их на практике, было интересно узнать, влияют ли они на формирования вычислительных навыков. Результаты исследования указывают на то, что применение устных упражнений не только обоснованно, но и необходимо с целью формирования вычислительных навыков пятиклассников при изучении темы «Десятичные дроби». Проведенное исследования дает обоснование считать гипотезу, выдвинутую в начале работы, подтвердившихся, цели и задачи работы выполненными.
Вцелом экспериментальная работа прошла плодотворно. Из результата работы можно сделать вывод, что уровень сформированности устных вычислительных навыков детей значительно повысился и это свидетельствует о том, что предложенная система устных упражнений оказалась эффективной. Данный результат не считается конечным. Необходимо и далее разрабатывать и совершенствовать приемы и методы формирования вычислительных навыков в зависимости от индивидуальных свойств и особенностей каждого отдельно взятого ученика. Многое также будет зависеть от педагога - предметника, а именно от того, будет ли он учитывать особенности познавательных процессов школьников и применять приемы активизации знаний, умении и навыков в ходе объяснения и закрепления материала и от многих других факторов.
Данная работа может стать методическим пособием для студентов Кунгурского педагогического училища как при подготовке докладов и сообщении на эту тему, так и при проведении пробных уроков по математике. А так же ею могут воспользоваться учителя математики, преподающие в средней школе, которые стремятся формировать устный вычислительный навык при изучении предмета, используя для этого разные виды устных упражнений.
Список литературы
1. Абросимова Т. Обобщающие уроки по теме «Действия с десятичными дробями» //Математика в школе.- 2001. - №19. - С. 17-18.
2. Бантова М. А., Бельтюкова Г. В. Методика преподавания математики в нач. классах: Учеб. пособие для уч-ся школ. отд-ний пед. уч-щ / Под ред. М. А. Бантовой. - 3-е изд. - М.: Просвещение,1984. - 335 с.
3. Бантова М. А. Система формирования вычислительных навыков // Начальная школа. - 1993. - №11. - С. 38-43.
4. Белошистая А. В. Прием формирования устных вычислительных умении //Начальная школа.- 2001.- №7.- С. 44-49.
5. Корзанова К. Урок по теме «Сложение и вычитание десятичных дробей». - 2004.- №17.- С. 6-8.
6. Мартынов И. И. Устный счет для школьника что гаммы для музыканта // Начальная школа. 2003.- №12.- С. 59-61.
7. Мельникова Н. Развитие вычислительной культуры учащихся // Математика в школе.- 2001.- №18.- С. 9-14.
8. Менчинская Н. А., Моро М. И. Вопросы методики и психологии обучения арифметики в начальных классах.- М.: Просвещение, 1965.- 224 с.
9. Методика начального обучения математике: Учеб. пособие для студентов пед. ин-тов по спец-ти «Педагогика и методика начального обучения» / Под ред. Л. Н. Скаткина.- М.: просвещение, 1972.- 320с.
10. Минаева С. Формирование вычислительных умении в основной школе // Математика в школе.- 2006.- №2.- С. 3-6.
11. Нагорнова А. Устный счет при изучении десятичных дробей // Математика в школе. - 2000.- №24.- С.26.
12. Ралко Т. Урок по теме «Деление десятичных дробей» // Математика в школе.- 2003.- №4.
13. Санько С. Урок теме «Сложение и вычитание десятичных дробей» // Математика в школе. - 2003.- №6.
14. Словарь психолога-практика / Сост. С. Ю. Головин.- 2-е изд., перераб. и доп. - М.: Харьест, 2003.-565 с.
15. Судаева С., Урок по теме «Умножение десятичных дробей» // Математика в школе. - 2003. - № 3.
16. Федотова Л., Повышение вычислительной культуры учащихся // Математика в школе. - 2004. - №35. - С. 3-7.
17. Федотова Л. Повышение вычислительной культуры учащихся // Математика в школе. - 2004. - №43. - С. 2-5.
18. Филиппов Г. Устный счет - гимнастика ума // Математика. - 2001. - №3. - С. 25-27.
19. Чекмарев Я. Ф. Снигирев В. Т. Методика преподавания арифметики: Пособие для педучилищ - доп., изд 14-е. - М.:Просвещение, 1968. - 357 с.
20. Щекунова Т. Урок по теме «Умножение десятичных дробей» // Математика в школе. - 2000. - №12. - С. 5-6.
21. Я иду на урок математики. 5 класс: Книга для учителя. М: Издательство «Олимп»; Издательство «Первое сентября». 1999. - 352 с.
Подобные документы
Понятие уравнения, его корни. Решение уравнения, усвоение понятий равносильного и линейного уравнений, нахождение их корней при переносе слагаемых, при наличии скобок. Формирование вычислительных навыков учащихся, их памяти и мыслительных операций.
конспект урока [118,0 K], добавлен 14.05.2014- Основы вычислительной математики и использование системы Mathcad 14 для решения вычислительных задач
Методы, используемые при работе с матрицами, системами нелинейных и дифференциальных уравнений. Вычисление определенных интегралов. Нахождение экстремумов функции. Преобразования Фурье и Лапласа. Способы решения вычислительных задач с помощью Mathcad.
учебное пособие [1,6 M], добавлен 15.12.2013 Развитие вычислительных умений и навыков при решении задач. Закрепление формул для вычисления площадей геометрических фигур. Доказательства условий равенства пары треугольников. Определение соотношения прямых, заключающих равные углы у треугольников.
презентация [214,6 K], добавлен 04.12.2014Усвоение знаний, умений и навыков. Понятие и сущность знаний. Сущность умений и навыков. Проверка и учет знаний, умений и навыков учащихся по математике в начальных классах. Роль и функции проверки. Способы проверки и учета знаний, умений по математике.
курсовая работа [77,5 K], добавлен 09.10.2008Изучение численных методов приближенного решения нелинейных систем уравнений. Составление на базе вычислительных схем алгоритмов; программ на алгоритмическом языке Фортран - IV. Приобретение практических навыков отладки и решения задач с помощью ЭВМ.
методичка [150,8 K], добавлен 27.11.2009Теоретико-методологические основы формирования математического понятия дроби на уроках математики. Процесс формирования математических понятий и методика их введения. Практическое исследование введения и формирования математического понятия дроби.
дипломная работа [161,3 K], добавлен 23.02.2009Архитектура 32-х разрядных систем. Алгоритмы выполнения арифметических операций над сверхбольшими натуральными числами, представленными в виде списков. Инициализация системы. Сложение. Вычитание. Умножение.
доклад [56,2 K], добавлен 20.03.2007Описания доказательства вреда курения с помощью математических вычислений. Анализ развития вычислительных способностей учащихся, памяти, сообразительности. Нахождение процентов от числа и их выражения десятичной дробью, выполнение заданий на внимание.
презентация [20,3 M], добавлен 15.09.2011Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.
дипломная работа [1,9 M], добавлен 06.05.2010Ознакомление с формулами длины окружности, площади круга (частью плоскости, ограниченной окружностью) и исходящими из них формулами расчета радиуса, диаметра. Получение навыков применения формул, закрепление полученных знаний в ходе выполнения упражнений.
конспект урока [227,7 K], добавлен 17.05.2010