Линейное уравнение с одной переменной
Понятие уравнения, его корни. Решение уравнения, усвоение понятий равносильного и линейного уравнений, нахождение их корней при переносе слагаемых, при наличии скобок. Формирование вычислительных навыков учащихся, их памяти и мыслительных операций.
Рубрика | Математика |
Вид | конспект урока |
Язык | русский |
Дата добавления | 14.05.2014 |
Размер файла | 118,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Тема урока:
Линейное уравнение с одной переменной
Куделько Марины
302 группа
Цели урока:
Образовательные: закрепить понятие уравнения, корни уравнения, вспомнить, что означает решить уравнение, ввести и усвоить понятие равносильного уравнения, линейного уравнения, уметь находить линейные уравнения и научиться решать их, ученики должны знать, сколько корней может иметь линейное уравнение.
Развивающие: Развивать у учащихся аккуратность оформления записей, вычислительные навыки учащихся, формировать интерес и любовь к предмету, память и мыслительные операции, формировать умения четко и ясно излагать свои мысли, четко формировать вопросы.
Воспитательные: Способствовать выявлению и раскрытию способностей учащихся, прививать самостоятельность.
Тип урока: изучение нового материала.
План урока:
1. Проверка домашнего задания (5 минут)
Так как сегодняшний урок-это урок изучения нового материала, времени на проверку домашнего задания нет, я соберу тетради на проверку, заранее предупредив учеников. Тетради ученики положат на край парты.
2. Актуализация опорных знаний
В начале урока нужно вместе с учениками вспомнить уже знакомые понятия уравнения, корня уравнения, вспомнить смысл требования решить уравнение. Учитель проводит фронтальный опрос. А также учитель заранее приготовил на доске маленькие примеры по данным вопросы, ученики выходят к доске и самостоятельно решают, желательно без помощи учителя, так как уже это пройденный материал.
Примеры:
1. Доказать, что каждое из чисел -5, 0 ,3 является корнем уравнения:
А) z(z-3)(z+5)=0;
Б) ;
В)
2. Решить уравнение:
А) ;
Б)
3. Найдите корень уравнения:
А)
Б)
В)
Так как в данной теме нам нужно работать с понятием, неизвестным для учеников, то мы его должны сначала ввести. Это понятие - равносильные уравнения. Можно сначала дать несколько уравнений, попросить, чтобы ученики решили их. Потом спросить, что между уравнениями общего. Окажется, что общее между уравнениями -- это их одинаковые корни. Если ученики сразу не поймут, то нужно дать еще парочку примеров. И сказать, что такого типа уравнения называются равносильными. Т.е. равносильные уравнения - это уравнения, имеющие одни и те же корни.
Примеры:
Являются ли уравнения равносильными???
и
и
Можно привести таблички на доске (или на интерактивной доске):
Размещено на http://www.allbest.ru/
3. Изучение нового материала
Теперь, когда нужные понятия были вспомнены, некоторые понятия успешно введены, преступим к изучению нового материала.
Учитель заранее подготовил на доске рисунке (или презентацию на эту тему, что намного лучше).
Учитель предлагает задачу ученикам.
Решим уравнение , которое можно наглядно представить на рисунках: корень линейный равносильный уравнение
Мы представили условие уравнения в виде рисунка, что намного нагляднее и понятнее ученикам. Нам даны весы, на которых стоят чашки чая и гирьки, и взаимно друг друга уравновешивают.
Теперь мы будем рассуждать, что будет происходить с нашими весами, если мы отнимем или прибавим одинаковое количество пачек чая.
Рассуждать можно так. Равновесие часов не нарушится, если с каждой чашки снять по 3 пачки чая. (Это видно на рисунке 2).Если 2 пачки чая (!!одинакового веса!!) весят 150г., то одна пачка чая весит 150г. : 2 = 75г.
Эти рассуждения показывают такой путь решения данного уравнения. Вычтем из левой и правой частей уравнения выражение . Получим:
Слагаемые и - в правой части дают нуль. Поэтому получаем:
Далее находим:
Значит, ответ .Эти действия учитель делает вместе с учениками, они ему должны подсказывать и помогать. Учитель может попросить повторить сказанное или, что лучше, объяснить эту задачу друг другу в парах, а один или пара учеников потом у доски. Учитель не забывает про похвалу учащихся.
Потом вместе, фронтально, решаем следующий пример.
Пример
Решим уравнение:
Если к каждой части уравнения прибавить выражение , то после привидения подобных в правой части не будет слагаемых с переменной, сделаем это (учитель просит проговаривать учеников вслух действия, может спросить у отдельного ученика проговорить или объяснить):
(Приведем подобные и заметим, что 3x и -3x взаимно уничтожатся.)
Сравнивая полученное уравнение с данным, замечаем, что слагаемое - перешло из правой части в левую с противоположным знаком. Приводим подобные в левой части:
Замечаем, что уравнение получается из уравнения после переноса числа из левой части уравнения в правую с противоположным знаком.
Находим, наконец, :
Замечаем, что если в уравнении любое слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.
Переносят слагаемое не просто так, а чтобы в левой части были слагаемые с переменной, а в другой - известные числа. В левой части - неизвестные, в правой - известные.
Если уравнение содержит скобки, то сначала их нужно раскрыть.
Размещено на allbest.ru
Подобные документы
Уравнение как равенство, содержащее неизвестное число. Примеры уравнений с одной переменной. Условия обращения уравнения в истинное числовое равенство – его решение (корень). Множество решений уравнения. Уравнение без решения (множество решений пусто).
презентация [12,2 K], добавлен 20.12.2011Нахождение решения уравнения с заданными граничными и начальными условиями, система дифференциальных уравнений. Симметричное преобразование Фурье. Решение линейного разностного уравнения. Допустимые экстремали функционала. Уравнение Эйлера-Лагранжа.
контрольная работа [51,5 K], добавлен 05.01.2016Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.
презентация [206,3 K], добавлен 17.09.2013Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.
презентация [103,1 K], добавлен 29.03.2016Понятие иррационального уравнения. Применение формул сокращённого умножения. Посторонние корни и причины их появления. Возведение обеих частей уравнения в одну и ту же степень. Метод замены переменной. Иррациональные уравнения, не имеющие решений.
презентация [94,6 K], добавлен 08.11.2011Понятие и математическое описание элементов дифференциального уравнения как уравнения, связывающего искомую функцию одной или нескольких переменных. Состав неполного и линейного дифференциального уравнения первого порядка, их применение в экономике.
реферат [286,2 K], добавлен 06.08.2013Системы уравнений. Запись в виде системы. Линейное уравнение с двумя переменными. Квадратные уравнения второй степени. Упрощенное уравнение третей степени. Переменная в четвертой степени. Множество корней (решений). Способ подстановки. Способ сложения.
реферат [96,3 K], добавлен 02.06.2008Гиперкомплексные числа: общее понятие и основные свойства. Нахождение корней трансцендентного уравнения в комплексных числах на примере уравнения классической задачи теории флаттера в математическом виде. Программная реализация решения в среде Maple.
контрольная работа [1,2 M], добавлен 28.06.2013Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлен 18.08.2012