Транспортная задача линейного программирования
История зарождения и создания линейного программирования. Транспортная задача. Общая постановка, цели, задачи. Основные типы, виды моделей. Методы составления начального опорного плана. Понятие потенциала и цикла. Задача, двойственная к транспортной.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 17.07.2002 |
Размер файла | 166,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1,0
2,0
3,0
2,5
3,5
0
А2(а2=20)
U2=-0,6
0,4
3,0
1,0
2,0
3,0
0
А3(а3=75)
U3=-1
0,7
1,0
1,0
0,8
1,5
0
А4(а4=80)
U4=0
1,2
2,0
2,0
1,5
2,5
0
Стоимость 4-ого плана: D4=1*35+2*15+0,4*5+1*15+1*35+1,5*40+1,5*75=289,5.
Для всех клеток последней таблицы выполнены условия оптимальности:
1)ui+vj-сij=0 для клеток, занятых перевозками;
2)ui+vj-сij ?0 для свободных клеток.
Несодержательные ответы:
Прямой ЗЛП:
35 15 0 0 0 0
5 0 15 0 0 0
X = 0 35 0 0 40 0
0 0 0 75 0 5
min=289,5.
Двойственной ЗЛП:
U1=0 ; U2=-0,6 ; U3=-1 ; U4=0 ; V1=1 ; V2=2 ; V3=1,6 ; V4=1,5 ; V5=2,5 ; V6=0.
max=289,5.
Так как min=max, то по критерию оптимальности найдены оптимальные решения прямой и двойственной ЗЛП. Содержательный ответ: Оптимально перевозить так:
Из А1 в B1 - 35 рулонов полотна;
Из А1 в B2 - 15 рулонов полотна;
Из А2 в B1 - 5 рулонов полотна;
Из А2 в B3 - 15 рулонов полотна;
Из А3 в B2 - 35 рулонов полотна;
Из А3 в B5 - 40 рулонов полотна;
Из А4 в B4 - 75 рулонов полотна.
При этом стоимость минимальна и составит Dmin=289,5. 5 рулонов полотна необходимо оставить на складе А4 для их последующей перевозки в другие магазины.
8.Выводы.
В курсовой работе изложены основные подходы и методы решения транспортной задачи, являющейся одной из наиболее распространенных задач линейного программирования. Решение данной задачи позволяет разработать наиболее рациональные пути и способы транспортирования товаров, устранить чрезмерно дальние, встречные, повторные перевозки. Все это сокращает время продвижения товаров, уменьшает затраты предприятий и фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.
Алгоритм и методы решения транспортной задачи могут быть использованы при решении некоторых экономических задач, не имеющих ничего общего с транспортировкой груза. В этом случае величины тарифов cij имеют различный смысл в зависимости от конкретной экономической задачи. К таким задачам относятся следующие:
- оптимальное закрепление за станками операций по обработке деталей. В них cij является таким экономическим показателем, как производительность. Задача позволяет определить, сколько времени и на какой операции нужно использовать каждый из станков, чтобы обработать максимальное количество деталей. Так как транспортная задача требует нахождения минимума, то значения cij берутся с отрицательным знаком;
- оптимальные назначения, или проблема выбора. Имеется m механизмов, которые могут выполнять m различных работ с производительностью cij. Задача позволяет определить, какой механизм и на какую работу надо назначить, чтобы добиться максимальной производительности;
- задача о сокращении производства с учетом суммарных расходов на изготовление и транспортировку продукции;
- увеличение производительности автомобильного транспорта за счет минимизации порожнего пробега. Уменьшение порожнего пробега сократит количество автомобилей для перевозок, увеличив их производительность;
- решение задач с помощью метода запрещения перевозок. Используется в том случае, если груз от некоторого поставщика по каким-то причинам не может быть отправлен одному из потребителей. Данное ограничение можно учесть, присвоив соответствующей клетке достаточно большое значение стоимости, тем самым в эту клетку не будут производиться перевозки.
Таким образом, важность решения данной задачи для экономики несомненна. Приятно осознавать, что у истоков создания теории линейного программирования и решения, в том числе и транспортной задачи, стоял русский ученый - Леонид Витальевич Канторович.
Список используемой литературы:
1. Кузнецов А.В., Сакович В.А., Холод Н.И. ”Высшая математика. Математическое программирование ”, Минск, Вышейшая школа, 2001г.
2. Красс М.С., Чупрынов Б.П. ”Основы математики и ее приложения в экономическом образовании”, Издательство “Дело”, Москва 2001г.
3. В.И. Ермаков “Общий курс высшей математики для экономистов”, Москва, Инфра-М, 2000г.
Подобные документы
Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.
задача [165,3 K], добавлен 21.08.2010Линейная производственная задача. Двойственная задача. Задача о "Расшивке узких мест производства". Транспортная задача. Распределение капитальных вложений. Динамическая задача управления запасами. Анализ доходности и риска.
курсовая работа [530,4 K], добавлен 29.05.2006Предназначена библиотеки "simplex" для оптимизации линейных систем с использованием симплексного алгоритма. Построение экономико-математической модели формирования плана производства. Основные виды транспортных задач, пример и способы ее решения.
курсовая работа [477,9 K], добавлен 12.01.2011Целочисленные задачи математического программирования. Постановка транспортной задачи по критерию стоимости в матричной форме. Задача о назначении (проблема выбора, задача о женихах и невестах). Алгоритм метода Гомори. Формирование правильного отсечения.
курсовая работа [868,8 K], добавлен 05.12.2012Обыкновенные и модифицированные жордановы исключения. Последовательность решения задач линейного программирования симплекс-методом применительно к задаче максимизации: составлении опорного плана решения, различные преобразования в симплекс-таблице.
курсовая работа [37,2 K], добавлен 01.05.2011Задача целочисленного линейного программирования, приведение к канонической форме. Общие идеи методов отсечения. Алгоритм Гомори для решения целочисленных задач линейного программирования. Понятие правильного отсечения и простейший способ его построения.
курсовая работа [67,5 K], добавлен 25.11.2011Составление математической модели задачи. Приведение ее к стандартной транспортной задаче с балансом запасов и потребностей. Построение начального опорного плана задачи методом минимального элемента, решение методом потенциалов. Анализ результатов.
задача [58,6 K], добавлен 16.02.2016Общая формулировка задания на курсовой проект. Линейное программирование. Задача целочисленного линейного программирования, с булевскими переменными. Нелинейное программирование. Задача поиска глобального экстремума функции.
курсовая работа [506,1 K], добавлен 17.05.2006Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.
задача [656,1 K], добавлен 01.06.2016Решение двойственной задачи с помощью первой основной теоремы теории двойственности, графическим и симплексным методом. Математическая модель транспортной задачи, расчет опорного плана перевозок методами северо-западного угла и минимального элемента.
контрольная работа [333,3 K], добавлен 27.11.2011