Топологическая определяемость верхних полурешёток

Упорядоченные множества. Решётки. Дистрибутивные решётки. Топологические пространства. Верхние полурешётки. Стоуново пространство. Множество простых идеалов с введенной на нём топологией.

Рубрика Математика
Вид дипломная работа
Язык русский
Дата добавления 08.08.2007
Размер файла 245,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

17

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Топологическая определяемость верхних полурешёток.

Выполнил:

студент V курса математического факультета

Малых Константин Леонидович

Научный руководитель:

кандидат физико-математических наук, доцент кафедры алгебры и геометрии В.В. Чермных

Рецензент:

доктор физико-математических наук, профессор, заведующий кафедрой алгебры и геометрии Е.М. Вечтомов

Допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. Кафедрой Е.М. Вечтомов

«___»___________2005 г. Декан факультета В.И. Варанкина

Киров 2005

Оглавление.

Введение …………………………………………………………………стр. 3

Глава 1 ……………………………………………………………………стр. 4

1. Упорядоченные множества ………………………………………стр. 4

2. Решётки.……………………………………………………………стр. 5

3. Дистрибутивные решётки ………………………………………..стр. 8

4. Топологические пространства……………………………………стр.10

Глава 2…………………………………………………………………….стр.11

1. Верхние полурешётки…………………………………………….стр.11

2. Стоуново пространство …………………………………………..стр.15

Список литературы……………………………………………………….стр.21

Введение.

Дистрибутивная решётка является одним из основных алгебраических объектов. В данной работе рассматривается частично упорядоченное множество P(L) простых идеалов. Оно даёт нам много информации о дистрибутивной решётке L, но оно не может её полностью охарактеризовать. Поэтому, для того, чтобы множество P(L) характеризовало решётку L, необходимо наделить его более сложной структурой. Стоун [1937] задал на множестве P(L) топологию.

В этой работе рассматривается этот метод в несколько более общем виде.

Работа состоит из двух глав. В первой главе вводятся начальные понятия, необходимые для изучения данной темы. Во второй главе рассматриваются верхние полурешётки, а также множество простых идеалов с введенной на нём топологией.

Глава 1.

1. Упорядоченные множества.

Определение: Упорядоченным множеством называется непустое множество, на котором определено бинарное отношение , удовлетворяющее для всех следующим условиям:

1.Рефлексивность: .

2.Антисимметричность: если и , то .

3.Транзитивность: если и , то .

Если и , то говорят, что меньше или больше , и пишут или .

Примеры упорядоченных множеств:

1. Множество целых положительных чисел, а означает, что делит .

2. Множество всех действительных функций на отрезке и

означает, что для .

Определение: Цепью называется упорядоченное множество, на котором для имеет место или .

Используя отношение порядка, можно получить графическое представление любого конечного упорядоченного множества . Изобразим каждый элемент множества в виде небольшого кружка, располагая выше , если . Соединим и отрезком. Полученная фигура называется диаграммой упорядоченного множества .

Примеры диаграмм упорядоченных множеств:

2. Решётки

Определение: Верхней гранью подмножества в упорядоченном множестве называется элемент из , больший или равный всех из .

Определение: Точная верхняя грань подмножества упорядоченного множества - это такая его верхняя грань, которая меньше любой другой его верхней грани. Обозначается символом и читается «супремум X».

Согласно аксиоме антисимметричности упорядоченного множества, если точная верхняя грань существует, то она единственна.

Понятия нижней грани и точной нижней грани (которая обозначается и читается «инфинум») определяются двойственно. Также, согласно аксиоме антисимметричности упорядоченного множества, если точная нижняя грань существует, то она единственна.

Определение: Решёткой называется упорядоченное множество , в котором любые два элемента и имеют точную нижнюю грань, обозначаемую , и точную верхнюю грань, обозначаемую .

Примеры решёток:

1. Любая цепь является решёткой, т.к. совпадает с меньшим, а с большим из элементов .

2.

Наибольший элемент, то есть элемент, больший или равный каждого элемента упорядоченного множества, обозначают , а наименьший элемент, то есть меньший или равный каждого элемента упорядоченного множества, обозначают .

На решётке можно рассматривать две бинарные операции:

- сложение и

- произведение

Эти операции обладают следующими свойствами:

1. , идемпотентность

2. , коммутативность

3. ,

ассоциативность

4. ,

законы поглощения

Теорема. Пусть - множество с двумя бинарными операциями , обладающими свойствами (1) - (4). Тогда отношение (или ) является порядком на , а возникающее упорядоченное множество оказывается решёткой, причём:

Доказательство.

Рефлексивность отношения вытекает из свойства (1). Заметим, что оно является следствием свойства (4):

Если и , то есть и , то в силу свойства (2), получим . Это означает, что отношение антисимметрично.

Если и , то применяя свойство (3), получим: , что доказывает транзитивность отношения .

Применяя свойства (3), (1), (2), получим:

,

.

Следовательно, и

Если и , то используя свойства (1) - (3), имеем:

, т.е.

По определению точней верхней грани убедимся, что

Из свойств (2), (4) вытекает, что и

Если и , то по свойствам (3), (4) получим:

Отсюда по свойствам (2) и (4) следует, что

, т.е.

Таким образом, . ¦

Пусть решётка, тогда её наибольший элемент характеризуется одним из свойств:

1.

2. .

Аналогично характеризуется наименьший элемент :

1.

2. .

3. Дистрибутивные решётки.

Определение: Решётка называется дистрибутивной, если для выполняется:

1.

2.

В любой решётке тождества (1) и (2) равносильны. Доказательство этого факта содержится в книге [1], стр. 24.

Теорема: Решётка с 0 и 1 является дистрибутивной тогда и только тогда, когда она не содержит подрешёток вида

Доказательство этого факта можно найти в книге [2].

Далее под словом “решётка” понимается произвольная дистрибутивная решётка с 0 и 1 (причём ).

Определение: Непустое множество называется идеалом в решётке , если выполняются условия:

1.

2.

Определение: Идеал в решётке называется простым, если

или .

Идеал, порождённый множеством Н (т.е. наименьший идеал, содержащий H), будет обозначаться (Н]. Если Н = {a}, то вместо ({a}] будем писать (a] и называть (a] главным идеалом.

Обозначим через I(L) множество всех идеалов решётки L. I(L) будем называть решёткой идеалов.

Определение: Решётки и называются изоморфными (обозначение: ), если существует взаимно однозначное отображение , называемое изоморфизмом, множества на множество , такое, что

,

.

4. Топологические пространства.

Определение: Топологическое пространство - это непустое множество с некоторой системой выделенных его подмножеств, которая удовлетворяет аксиомам:

1. Пустое множество и само пространство принадлежит системе : .

2. Пересечение любого конечного числа множеств из принадлежит , т.е. .

3. Объединение любого семейства множеств из принадлежит , т.е. .

Таким образом, топологическое пространство - это пара <, >, где - такое множество подмножеств в , что и замкнуто относительно конечных пересечений и произвольных объединений. Множества из называют открытыми, а их дополнения в замкнутыми.

Определение: Пространство называется компактным, если в любом его открытом покрытии можно выбрать конечное подпокрытие.

Определение: Подмножество пространства называется компактным, если в любом его открытом покрытии можно выбрать конечное подпокрытие.

Определение: Топологическое пространство называется - пространством, если для любых двух различных его точек существует открытое множество, содержащее ровно одну из этих точек.

Глава 2.

1. Верхние полурешётки.

Определение: Ч.у. множество называется верхней полурешёткой, если sup{a,b} существует для любых элементов a и b.

Определение: Непустое множество I верхней полурешётки L называется идеалом, если для любых включение имеет место тогда и только тогда, когда .

Определение: Верхняя полурешётка называется дистрибутивной, если неравенство ? (, , L) влечёт за собой существование элементов , таких, что , , и = .(рис.1). Заметим, что элементы и не обязательно единственны.

Некоторые простейшие свойства дистрибутивной верхней полурешётки даёт:

Лемма 1:

(*). Если <, > - произвольная полурешётка, то верхняя полурешётка дистрибутивна тогда и только тогда, когда решётка дистрибутивна.

(**). Если верхняя полурешётка дистрибутивна, то для любых существует элемент , такой, что и . Следовательно, множество является решёткой.

(***). Верхняя полурешётка дистрибутивна тогда и только тогда, когда множество является дистрибутивной решёткой.

Доказательство.

(*). <, > - дистрибутивна и , то для элементов , , справедливо равенство :

значит, полурешётка <,> - дистрибутивна.

<,> - дистрибутивна. Пусть решётка содержит диамант или пентагон (рис.2).

1) Пусть решётка содержит пентагон, . Нужно найти такие элементы и , чтобы выполнялось равенство . Но множество элементов меньших b или c состоит из элементов {0,b,c} и их нижняя граница не даст a. Получили противоречие с тем, что <,> - дистрибутивна. Значит, наше предположение неверно и решётка не содержит пентагона.

2) Пусть решётка содержит диамант, . Аналогично, множество элементов меньших b или c состоит из элементов {0,b,c}, их нижняя граница не даст a. Значит, решётка не содержит диаманта.

Можно сделать вывод, что решётка дистрибутивна.

(**). Имеем , поэтому , где (по определению дистрибутивной полурешётки). Кроме того, является нижней границей элементов и .

Рассмотрим идеалы, содержащие элемент и - и . Тогда Ш ,т.к. , нижняя граница элементов a и b, содержится там.

Покажем, что I(L) - решётка, т.е. существуют точные нижняя и верхняя грани для любых A и B.

Покажем, что совпадает с пересечением идеалов A и B. Во-первых, - идеал. Действительно, и и Во-вторых, пусть идеал и . Тогда , т.е. - точная нижняя грань идеалов A и B, т.е. .

Теперь покажем, что совпадает с пересечением всех идеалов , содержащих A и B. Обозначим . Поскольку для для , то C идеал. По определению C он будет наименьшим идеалом, содержащим A и B.

(***). Пусть - верхняя дистрибутивная полурешётка. Покажем, что

.

Пусть , т.е. (рис.3), для некоторых

Понятно, что . По дистрибутивности, существуют такие, что . Т.к. A - идеал, то , потому что . Аналогично, . Т.е. . Точно также, . Если , то легко показать, что .

Доказали, что - идеал. Очевидно, он является верхней гранью идеалов A и B. Если C содержит A и B, то C будет содержать элементы для любых , т.е. Поэтому , поскольку является верхней гранью идеалов A и B и содержится в любой верхней грани.

Теперь покажем, что выполняется равенство:

.

. Пусть , где ,. Т.к. , то , откуда и следовательно . Аналогично, , значит,

. Пусть ,где .

Отсюда следует дистрибутивность решётки .

- дистрибутивная решётка, . Теперь рассмотрим идеалы, образованные этими элементами:

(,будет нижней границей для ). Поэтому , что и доказывает дистрибутивность полурешётки . ¦

2. Стоуново пространство.

Определение: Подмножество верхней полурешётки называется коидеалом, если из неравенства следует и существует нижняя граница множества , такая, что .

Определение: Идеал полурешётки называется простым, если и множество является коидеалом.

В дальнейшем нам потребуется лемма Цорна, являющаяся эквивалентным утверждением аксиоме выбора.

Лемма Цорна. Пусть A - множество и X - непустое подмножество множества P(A). Предположим, что X обладает следующим свойством: если C - цепь в <>, то . Тогда X обладает максимальным элементом.

Лемма 2: Пусть - произвольный идеал и - непустой коидеал дистрибутивной верхней полурешётки . Если , то в полурешётке существует простой идеал такой, что и .

Доказательство.

Пусть X - множество всех идеалов в L,содержащих I и не пересекающихся с D. Покажем, что X удовлетворяет лемме Цорна.

Пусть C - произвольная цепь в X и Если , то для некоторых Пусть для определённости . Тогда и , т.к. - идеал. Поэтому . Обратно, пусть , тогда , для некоторого Получаем , откуда .

Доказали, что M - идеал, очевидно, содержащий I и не пересекающийся с D, т.е. . По лемме Цорна X обладает максимальным элементом, т.е. максимальным идеалом P среди содержащих I и не пересекающихся с D.

Покажем, что P - простой. Для этого достаточно доказать, что L\P является коидеалом. Пусть L\P и . Поскольку , то , иначе в противном случае по определению идеала. Следовательно, . Если , то и пересекающихся с D в силу максимальности P. Получаем и для некоторых элементов . Существует элемент такой, что и , по определению коидеала, следовательно и для некоторых Заметим, что и не лежат в P, т.к. в противном случае .

Далее, , поэтому для некоторых и . Как и прежде . Кроме того , поэтому - нижняя грань элементов a и b, не лежащая в P. ¦

В дальнейшем, через будем обозначать дистрибутивную верхнюю полурешётку с нулём, через множество всех простых идеалов полурешётки .

Множества вида представляют элементы полурешётки в ч.у. множестве (т.е. ). Сделаем все такие множества открытыми в некоторой топологии.

Обозначим через топологическое пространство, определённое на множестве . Пространство SpecL будем называть стоуновым пространством полурешётки L.

Лемма 3: Для любого идеала I полурешётки L положим:

Тогда множества вида исчерпывают все открытые множества в стоуновом пространстве SpecL.

Доказательство.

Нужно проверить выполнение аксиом топологического пространства.

1) Рассмотрим идеал, образованный 0. Тогда

,

но 0 лежит в любом идеале, а значит .

2) Возьмём произвольные идеалы и полурешётки и рассмотрим

Пусть . Тогда существуют элементы a и Отсюда следует, что , где L\P - коидеал. По определению коидеала существует элемент d такой, что и , значит,. Т.к. , следовательно, . Получаем, что .

Обратное включение очевидно.

2) Пусть - произвольное семейство идеалов. Через обозначим множество всех точных верхних граней конечного числа элементов, являющихся представителями семейства . Покажем, что - идеал. Пусть , тогда , где для некоторого идеала . Тогда лежит в идеале , следовательно, и , т.е. . Обратно очевидно.

Доказали, что - идеал. Теперь рассмотрим произвольное объединение.

¦

Лемма 4: Подмножества вида пространства можно охарактеризовать как компактные открытые множества.

Доказательство.

Действительно, если семейство открытых множеств покрывает множество , т.е. , то Отсюда следует, что для некоторого конечного подмножества , поэтому . Таким образом, множество компактно.

Пусть открытое множество r(I) компактно, тогда и можно выделить конечное подпокрытие для некоторых .

Покажем, что I порождается элементом .

Предположим, что это не так, и в идеале I найдётся элемент b не лежащий в . Тогда [b) - коидеал, не пересекающийся с . По лемме 2 найдётся простой идеал P содержащий и не пересекающийся с [b). Получаем, , т.к. (т.е. ), но , т.к. , противоречие. Следовательно, компактным открытым множеством r(I) будет только в случае, если - главный идеал.¦

Предложение 5: Пространство является - пространством.

Доказательство.

Рассмотрим два различных простых идеала и Q. Хотя бы один не содержится в другом. Допустим для определённости, что . Тогда r(P) содержит Q, но не содержит P, т.е. SpecL является - пространством. ¦

Теорема 6: Стоуново пространство определяет полурешётку с точностью до изоморфизма.

Доказательство.

Нужно показать, что две полурешётки и изоморфны тогда и только тогда, когда пространства и гомеоморфны.

Очевидно, если решётки изоморфны, то пространства, образованные этими полурешётками будут совпадать.

Пусть и гомеоморфны () и . Тогда a определяет компактное открытое множество r(a). Множеству r(a) соответствует компактное открытое множество , с однозначно определённым элементом по лемме 4. Таким образом получаем отображение : , при котором . Покажем, что - изоморфизм решёток. Если a,b - различные элементы из , то , следовательно, , поэтому и - инъекция.

Для произвольного открытому множеству соответствует и очевидно , что показывает сюръективность .

Пусть a,b - произвольные элементы из . Заметим, что . Открытому множеству при гомеоморфизме соответствует открытое множество , а соответствует . Следовательно, =. Поскольку =, то , т.е. ¦

Литература.

1. Биргкоф Г. Теория решёток. - М.:Наука, 1984.

2. Гретцер Г. Общая теория решёток. - М.: Мир, 1982.

3. Чермных В.В. Полукольца. - Киров.: ВГПУ, 1997.


Подобные документы

  • Упорядоченные множества. Решётки. Дистрибутивные решётки. Обобщённые булевы решётки, булевы решётки. Идеалы. Конгруэнции. Основная теорема. Установление взаимно однозначного соответствия между конгруэнциями и идеалами.

    дипломная работа [354,6 K], добавлен 08.08.2007

  • Теория частичных действий как естественное продолжение теории полных действий. История создания и перспективы развития теории упорядоченных множеств. Частично упорядоченные множества. Вполне упорядоченные множества. Частичные группоиды и их свойства.

    реферат [185,5 K], добавлен 24.12.2007

  • Порядковые определения. Топологические определения. Вполне упорядоченные множества и их свойства. Конечные цепи и их порядковые типы. Порядковый тип. Свойства ординальных чисел. Пространство ординальных чисел W(1) и его свойства.

    дипломная работа [136,4 K], добавлен 08.08.2007

  • Наделение множества метрикой, основные аксиомы метрического пространства. Равномерная метрика, нормы элементов и линейное пространство. Фундаментальная последовательность элементов линейного нормированного пространства. Понятие банахова пространства.

    реферат [375,9 K], добавлен 04.12.2011

  • Основная задача геометрии чисел. Теорема Минковского. Доказательство теоремы Минковского. Решётки. Критические решётки. "Неоднородная задача". Герман Минковский (Minkowski) (1864 - 1909) - выдающийся математик, еврей, родом из России, профессор.

    курсовая работа [581,4 K], добавлен 29.05.2006

  • Типы бинарных отношений. Изображение графов в виде схемы. Цикл в графе, совпадение его начальной и конечной вершины. Понятие достижимости в теории графов, их математические свойства. Частично упорядоченное множество как один из типов бинарного отношения.

    контрольная работа [116,5 K], добавлен 04.09.2010

  • Понятие и признаки метрического пространства. Свойства топологических пространств. Замкнутые множества: внутренние, внешние и граничные точки. Топологические преобразования топологических пространств. Понятие и содержание двумерного многообразия.

    курсовая работа [481,4 K], добавлен 28.04.2011

  • Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.

    курсовая работа [222,3 K], добавлен 11.01.2011

  • Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.

    курсовая работа [1,1 M], добавлен 24.06.2015

  • Бинарные отношения на множестве. Рефлективность, примеры рефлективности. Симметричность, транзитивность, отношение порядка. Примеры дестрибутивных и недестребутивных решеток. Основные определения и свойства теории структур. Операции над множествами.

    курсовая работа [64,0 K], добавлен 04.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.