Алгебра октав
Доказательство утверждений непротиворечивости и категоричности системы аксиом алгебры октав. Практическое изучение действий над октавами (сложение, умножение) и применимых к ним тождеств (Муфанга, Клейнефлда). Формулировка теорем Гурвица и Фробениуса.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 13.02.2010 |
Размер файла | 500,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
< ><С другой стороны,
w(w11) = w|w1|2.
Сравнивая правые части этих равенств, получаем:
(ww1) 1 = w(w11).
Покажем также, что в алгебре октав имеет место равенство:
1(w1w) = (1w1)w).
Действительно,
1(w1w) = (u1 - v1e)((u1+ v1e)(u+ve)) = (u1 - v1e) ((u1u -v1 )+(vu1+ v1u)e) = (u1(u1u--v1 ) - ()(-v1))+((vu1+ v1u)u1 - v1())e = (u1(u1u-v1 ) + (u1+ u)v1) + ((vu1+ v1u)u1 - v1(u u1 - v))e= (u1u1u- u1v1 + u1v1+ uv1) + (vu1 u1+ v1uu1 - v1uu1 - v1v)e =(|u1|2u + u|v1|2)+(v|u1|2 + |v1|2v)e = (|u1|2+ |v1|2)u + (|u1|2 + |v1|2)ve = (|u1|2+ |v1|2)( u+ ve) = |w1|2w..
С другой стороны,
(1w1)w = |w1|2w.
Сравнивая правые части этих равенств, получаем:
1(w1w) = (1w1)w.
Рассмотрим уравнение wх = w1, где
w = и + ve = a+bi+cj+dk+ Ae+BI+CJ+DK,
w1 =a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K.
- известные октавы, а х - неизвестная октава. Умножим слева это уравнение на , w ? 0. Тогда:
(wх) = w1 (w)х = w1 |w|2 х = w1 х = w1 .
В этом случае октава х называется левой частной от деленияоктавы w1ww на октаву w.
Аналогично, решением уравнения yw = w1 является
yy y = w1,
называемый правым частным от деления октавы w1ww на октаву w.
Найдем квадратный корень из октавы
ww w = a + bi + cj + dk + Ae + BI + CJ + DK.
Значение квадратного корня из этой октавы будем искать как октаву
?= x + yi + zj + tk +Xe + YI + ZJ + TK ,
где x, y, z, t, X, Y, Z, T R, удовлетворяющий условию ? 2 = w. Следовательно,
(x + yi + zj + tk +Xe + YI + ZJ + TK)( x + yi + zj + tk +Xe + YI + ZJ + TK) = a + bi + cj + dk + Ae + BI + CJ + DK x2 - y2 - z2 - t2 -X2 - Y2 - Z2 - T2+ 2xyi + 2xzj + 2xtk + 2xXe + 2 xYI +2xzj + 2xtk = = a + bi + cj + dk + Ae + BI + CJ + DK
Если x ? 0, тo из первого уравнения системы следует, что
4х4 - 4ах2 - (b2 + c2 + d2 + A2 + B2 + C2 + D2) = 0
x2= (a± ) = (a± |w|).
Так как х2 ? 0, то х2 = (a± |w|), откуда x=± .Определив х, значения y, z, t, X, Y, Z, T находим из равенств
y = , z = , t = , X = , Y = , Z = , T = .
Из рассмотрения свойств кватернионов и октав можно заметить, что у этих числовых систем много общего. Алгебраические формы записи элементов этих числовых систем представляют собой некоторые многочлены от действительного числа и мнимых единиц с действительными коэффициентами. Одинаковым образом вводится понятие элемента сопряженного данному элементу. Свойства сопряженных элементов одни и те же, в некоторых случаях лишь с поправкой на число мнимых единиц. Понятие модуля кватерниона и октавы вводится одинаковым образом и обладает одинаковыми свойствами. То, что квадрат чисто мнимого кватерниона или октавы есть неположительное действительное число, дает для них возможность записи в виде а + t, где а R и t2 ? 0. Формула извлечения корня квадратного как из кватерниона, так и из октавы одна и та же, опять-таки с учетом количества мнимых единиц. При внимательном подходе к аксиоматическому определлллению этих числовых систем так же можно заметить общий подход к построению моделей этих числовых систем. Это так называемый метод удвоения, который заключается в том, что при введении нового числового множества мы строим декартов квадрат предыдущего чисссслового множества и новые числа рассматриваем как упорядоченные пары из чисел предыдущего числового множества. Так, удвоением множества действительных чисел получили множество комплексных чисел, удвоением множества комплексных-чисел - множество кватернионов, удвоением множества кватернионов - множество октав, причем операции сложения и умножения в построенных моделях определялись совершенно одинаково. Такими же свойствами обладает и множество комплексных чисел, однако, в силу того, что их. свойства хорошо изучены на младших курсах, здесь ограничились лишь аксиоматическим построением этой числовой системы.
Теорема Фробениуса, которую мы рассмотрели в , поле комплексных чисел и тело кватернионов анализирует с общей точки зрения, как частные случаи ассоциативной линейной алгебры с делением и содержащей единицу. В дальнейшим мы попытаемся установить общий подход к таким числовым системам, как поле комплексных чисел, тело кватернионов и алгебра октав.
4.2 Алгебраическое сопряжение
Определение. Алгебраическим сопряжением называется сопряжение, которое в сочетании с операцией умножения позволяет в любой алгебре получать действительное число. Как видим, различий относительно сопряжения по мнимой единице два - во-первых, отсутствует требование использования операции сложения и во-вторых в сочетании с произведением требуется получение числа именно алгебры действительных чисел, а не одной из предшествующих удвоению.
.
Или, алгебраическое сопряжение используется для определения модуля числа алгебры.
Для того, чтобы получить действительное число в случае произвольной гиперкомплексной алгебры, следует придумать процедуру, с помощью которой можно отбросить все мнимые единицы. Наиболее простой операцией сопряжения, при этом похожей на определенное выше сопряжение, является операция смены знаков сразу у всех мнимых единиц числа, безотносительно способа их получения и их свойств:
.
Сменив знаки при всех мнимых единицах, получим:
.
Естественно, что столь вольное обращение с мнимыми единицами не может гарантировать, что является действительным числом. Но при этом отметим, что сумма как раз является действительным числом. Таким образом, нам нужно отображение, которое произведению в одной области сопоставляет сложение в другой и наоборот. Такой операцией является пара отображений - логарифмирование и потенцирование. Еще раз напомним их свойства:
,
,
в случае, если a и b коммутируют по умножению.
Таким образом, для получения числа, алгебраически сопряженного заданному, нужно найти его логарифм, сменить знаки у всех мнимых единиц и потенцировать.
Любое число любой гиперкомплексной алгебры естественным образом коммутирует как само с собой, так и с действительным числом, поэтому
.
Или, если
, то .
Среди свойств алгебраического сопряжения отметим весьма важные:
- сопряженное произведения равно обратному произведению сопряженных:
,
,
- в некоторых алгебрах алгебраическое сопряжение совпадает по результату с сопряжением по действительных чисел, все виды сопряжения в ней совпадают. Сопряжение по мнимой единице:
.
a) Алгебраическое сопряжение:
;
,
то есть смена знаков мнимых единиц после логарифмирования эквивалентна смене знака у мнимой единицы самого числа:
.
Здесь одинаково обозначены сопряжение по мнимой единице и алгебраическое. Полагаю, пока нет совмещения сопряжений в одной формуле, разночтений возникнуть не должно.
б) кватернионы.
Кватернионы имеют строение:
и получены некоммутативным удвоением алгебры комплексных чисел:
.
Мнимая единица удвоения j не коммутирует с единицей i, поэтому сопряжение по ней требует сопряжения также и по i и по k:
.
Алгебраическое сопряжение в кватернионах, также как в комплексных числах, просто меняет знак у компонент при мнимых единицах:
.
То есть в кватернионах сопряжение по мнимой единице и алгебраическое сопряжение так же совпадают.
§5 .Некоторые тождества для октав
Приведем основные тождества, применимые к октавам. Тождества базируются на понятии ассоциатора, коммутатора и йорданова произведения.
()=- ассоциатор;
- коммутатор;
- йорданово произведение.
Линеаризуя тождества, несложно получить, что
& .
Таким образом, ассоциатор есть кососимметрическая функция от x, y, z. В частности:.
.
Алгебры, удовлетворяющие этому условию, называются эластичными. Таким образом, алгебра октав эластична. Покажем на основе эластичности тождество:
,
.
В силу того, что для октав всегда есть действительное число, а в силу эластичности, получаем:
.
Таким образом, для эластичной алгебры справедливо:
.
Функция Клейнфелд:
.
Лемма1. - кососимметрическая, для любой пары равных аргументов
.
В силу правой альтернативности
.
Во всякой алгебре справедливо тождество:
.
Достаточно раскрыть все ассоциаторы. Обозначив левую часть этого равенства через , получим:
Поменяв местами: получим: .
Используя , получим, что при любых одинаковых аргументах. Из этого следуют тождества:
1) ;
2) ;
3) ;
4) .
Тождества Муфанг.
Правое тождество Муфанг: ;
Левое тождество Муфанг: ;
Центральное тождество Муфанг: .
Вопросы о строении простых алгебр в том или ином многообразии являются одними из главных вопросов теории колец. Мы уже знаем один пример простой неассоциативной альтернативной алгебры - это алгебра Кэли-Диксона. Оказывается, что других простых неассоциативных альтернативных алгебр не существует. Этот результат доказывался с нарастанием общности на протяжении нескольких десятков лет разными авторами: вначале для конечномерных алгебр (Цорн, Шафер), затем для алгебр с нетривиальным идемпотентом (Алберт), для альтернативных тел (Брак, Клейнфелд, Скорнаков), для коммутативных альтернативных алгебр (Жевлаков) и т. д. Наибольшее продвижение было получено Клейнфелдом, доказавшим, что всякая простая альтернативная неассоциативная алгебра, не являющаяся ниль-алгеброй характеристики 3, есть алгебра Кэли-Диксона. Окончательное описание простых альтернативных алгебр осуществилось после появления теоремы Ширшова о локальной нильпонентности альтернативных ниль-алгебр с тождественными соотношениями.
§6. Теорема Гурвица
6.1 Нормированные линейные алгебры
Пусть -линейная алгебра ранга п над полем действительных чисел и х, у А. Если e1, e2, ..., еn - базис А, то:
х = х1е1 + х2е2 + .... + хпеп, у = y1е1 + y2е2 + .... + yпеп. .
Определение. Скалярным произведением элементов х, у А называется сумма х1у1 + х2у2 + ... + хпуп.
Обозначение скалярного произведения:
(х, у) = х1у1 + х2у2 + ... + хпуп.
В частности:
(х, х) = ++… +.
Скалярное произведение элементов х, уА должно удовлетворять общим условиям скалярного произведения в линейных пространствах:
1)для любых х, у А (х, у) ? 0 и (х, х) = 0 тогда и только тогда, когда х = 0;
2)для любых х, у А имеет место (х, у) = (у, х);
3)для любых х, у А и А R имеет место (?х, у) = (х, ?у) = ?(х, у):
4)для любых х, у, z А имеет место (х, у + z) = (х, у) + (х, z).
Определение. Линейная алгебра называется нормированной, если в ней можно ввести скалярное произведение для любых х, у А таким образом, чтобы выполнялось равенство:
(ху, ху) = (х, х)(у, у) . ()
Если положим =|х|. то равенство () записывается в виде:
|ху| = |х| |у|.
Из (ху, ху) = (х, х)(у, у) следует, что если ху = 0, то либо х = 0, либо у = 0. В самом деле, тогда
(0, 0) = (х, х)(у, у) (х, х)(у, у) = 0,
откуда либо (х, х) = 0, либо (у, у) = 0. А тогда либо х = 0, либо у =0.
Лемма 1. Любой элемент линейной алгебры молено разложить на два слагаемых, одно из которых пропорционально какому-либо ненулевому элементу, а другое ортогонально ему.
Пусть e А, и ue, а - произвольный элемент из А. Покажем, что найдется такое k R, что a - kee. Тогда:
a - kee (a - ke, e) = 0 (a, e) - k(e, e) = 0.
Скалярное, произведение (е, е) ? 0, так как е ? 0. Тогда а = kе + (а - kе) = kе + u, где u = a - kee.
Следствие. Если - линейная алгебра с единицей 1, то для любого а А имеет место а = k1 + u, где u 1.
Пример 1. Пусть (C, +, .R, .) - поле комплексных чисел. Базисом в С являются 1, i. Скалярное произведение двух комплексных чисел z =а+bi и u =с+ di определим как (z, u) = (zu + u).
Так как
zu = (а+ bi)(с- di) = (ac+bd)+(bc-ad)i,
u= (с+ di)( а-bi) = (ac+bd)+(ad-cb)i,
то (z, u) = (zu + u) = ac+bd.
В частности,
(z, z) = (z + z) = z= |z|2 = a2+b2.
Так как,
zu = (ac-bd)+(ad+bc)i,
то (zu, zu) = ((zu)*()+( zu)( ))=( zu)()=|zu|2 = (ac-bd)2+( ad+bc)2=
a2с2-2abcd + b2d2 + a2d2 + 2abcd + b2c2 = a2c2 + a2d2 + b2c2 + b2d2 =
a2 (c2 + d2) + b2 (c2 + d2) = (a2 + b2) (c2 + d2) = | z |2 | u |2 = (z, z)(u, и),
т.е. выполняется
(zu, zu) = (z, z)(u, и).
Проверим выполнение условий скалярного произведения:
1) (z, z) = | z |2 = a2 + b2 ? 0 и (z, z) = a2 + b2 = 0 a= 0 b= 0 z=0;
2) (z, u) = (zu + u) = ( u+zu) =(u, z);
3) (z, ku) = (z +(ku) ) = k(zu + u) =k(z, u);
4) (z, u+v) = (z +( u+v) ) = (zu+z+ u+ v) =(zu+ u)+ ( z+ v) = (z+u)+(z+v).
Итак, все условия скалярного произведения при
(z, u) = (zu + u)
выполнены для комплексных чисел z и u.
Пример 2. Пусть - тело кватернионов. Базисом в К являются 1, i, j, k. Если
р = a+bi+cj+dk, q = a1+b1i+c1j+d1k,
то по свойству 6 сопряженных кватернионов
p + q = 2(aa1 + bb1 + cc1 + dd1).
Возьмем в качестве скалярного произведения двух кватернионов р и q выражение
(p + q) = aa1 + bb1 + cc1 + dd1.
Итак,
(p, q) = (p + q).
В частности,
(p, p) = (p + p)= p = |p|2 = a2+ b2 + c2 + d2.
Проверим выполнение условий скалярного произведения:
1) (p, p) = |p|2 = a2+ b2 + c2 + d2 ? 0 и (p, p) = a2+ b2 + c2 + d2 = 0 a= 0 b= 0 c= 0 d= 0 p=0;
2) (p, q) = (p + q) = ( q+ p) = (q; p);
3) (p, kq) = (p +(kq) ) = k(p + q) =k(p, q);
4) (p, q1+q2) = (p +(q1+q2) ) = (p1+ p2+ q1+ q2) =(p1+ q1) + (p2+ + q2) = (p+q1)+(p+q2).
Проверим равенство:
(pq, pq) = (p, p)(q, q).
В самом деле,
(pq, pq) = ((pq) * () + (pq) * ()) = ((pq) * () + (pq) * ()) = (pq) * () = p(q)= |q|2 p=|p|2 + |q|2 = (a2 + b2 + c2 + d2)* () = (p,p ) (q, q).
Итак, все условия скалярного произведения при
(p, q) =(p + q)
выполнены для кватернионов р и q.
Пример 3. Пусть - алгебра октав. Базисом в U являются 1, i, j, k, e, I, J, K.
Если
w =и+ve =a+bi+cj+dk+Ae+BI+CJ+DK, и w1 =a1+b1i+c1j+d1k+ A1e+B1I+C1 J+D1K,
то по свойству 6) сопряженных октав
w+w1=2 (aa1+bb1+cc1+dd1+A A1+BB1+CC1 +DD1).
Возьмем в качестве скалярного произведения двух октав w и w1 выражение
(w+w1) =aa1+bb1+cc1+dd1+A A1+BB1+CC1 +DD.
Итак,
(w, w1) = (w+w1).
В частности,
(w, w) = (w+w) = w = | w |2 = a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2 .
Проверим выполнение условий скалярногопроизведения:
1) (w, w) = | w |2 = a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2 ? 0 и (w, w) = a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2 a= 0 b= 0 c= 0 d= 0 A = 0 b= 0 c= 0d= 0 w = 0;
2) (w, w1) = (w1+w1) = (w1+w1) =(w1, w);
3) (w, kw1) = (w(1)+(kw1)) = k(w1+w1) =k(w1, w);
4) (w, w1+ w2) = (w+(w1+w2) ) = ( w1 + w2+ w1+ w2) = (w1 + w1) +(w2+w2) = (w, w1)+( w, w2).
Проверим равенство:
(ww1, ww1) = (w, w)(w1, w1).
Действительно,
(ww1, ww1) = (( ww1)() + (ww1)()) = (( ww1)(1) + (ww1)(1)) = (ww1)(1) = w(w11) = | w1 |2* w11 = | w |2 * | w1 |2 = (a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2) * () = (w, w)(w1, w1).
Итак, все условия скалярного произведения при
(w, w1) = (w1+w1)
для октав w и w1 выполнены.
Лемма 2. В любой нормированной линейной алгебре имеет место тождество:
(a1b1,a2b2) + (a1b2, a2b1) = 2(а1, a2)(b1, b2). (1)
Подставим в основное тождество () данной нормированной линейной алгебры вместо х сумму a1 + а2, а вместо у - элемент b. Тогда:
((a1 + а2)b, (а1 + a2)b) = (a1 + а2, а1 + а2)(b, b)
(a1b + a2b, a1b + a2b) = (a1+a2, a1+a2)(b, b)
(a1b + a2b, a1b) + (a1b + a2b, a2b) =
(а1, a1)(b, b) + (a2, a2)(b, b) + 2(a1, a2)(b, b)
(a1b, a1b) + (a2b, a2b) + 2(а1b, a2b) =
(a1, a1)(b, b) + (a2, a2)(b, b)+2(a1, a2)(b, b). (2)
Но в силу условия ():
(a1b, a1b) = (a1, a1)(b, b); (a2b, a2b) = (a2, a2)(b, b).
Тогда из (2) следует
(a1b,a2b) = (a1, a2)(b, b). (3)
Заменим в (3) b на сумму b1 + b2:
(a1(b1 + b2), a2(b1 + b2)) = (a1, a2)(b1 + b2, b1 + b2)
(a1b1+a1b2, a2b1+a2b2) = (a1, а2)((b1, b1)+(b2, b2)+2(b1, b2))
(a1b1, a2b1) + (a1b1, a2b2) + (a1b2, a2b1) + (a1b2, a2b2) =
(a1, a2)(b1, b1) + (a1, a2)(b2, b2) + 2(a1, a2)(b1, b2). (4)
Но в силу (З):
(a1b1, a2b1) = (a1, a2)(b1, b1); (a1b2, a2b2) = (a1, a2)(b2, b2).
Тогда из (4) следует
(a1b1, a2b2) + (a1b2, a2b1) = 2(a1, a2)(b1, b2),
что и требовалось доказать.
Лемма 3. В нормированной линейной алгебре с единицей имеет место равенство
(аb) = (b, b)а. (5)
Докажем это равенство для случая b 1 . По следствию из леммы 1 тогда для любого х А имеет место х = k1 + b, откуда при х = b следует k = 0. В этом случае
= - b.
Рассмотрим элемент с = (ab) - а, где = (b, b).
В силу свойств скалярного произведения имеем:
(с, с) = ((аb) - а, (аb) - а) =((аb) , (ab) ) + 2(a, а)- 2((ab) , а). (6)
Упростим первое слагаемое в правой части равенства (6):
((аb) , (ab) ) = (ab, аb)( , ) = (а, а)(b, b)( , ) = (a, а)(b, b)2 = 2(а, а).
Для упрощения третьего слагаемого в правой части равенства (6) воспользуемся тождеством (1), записав его в виде:
(а1b1, а2Ь2) = 2(а1, a2)(b1, b2) - (a1b2, a2b1).
Положив a1 = ab, b1 = , a2 = a, b2 = 1, получим:
((аb) , a) = 2(ab, а)( , 1) - (ab, а). (7)
Так как
b1, то (, 1) = (-b, 1) = -(b, 1) = 0.
Далее:
-(ab, а) = -(ab, а(-b)) = (ab, ab) = (a, a)(b, b) = (а, а).
Тогда:
((аb) , а) = (а, а).
Отсюда в равенстве (6) получаем:
(с, с) = 2(а, а) + 2(а, а) - 22(а, а) = 0.
Так как (с, с) = 0, то с = 0, или (ab) - а = 0, откуда
(аb) = а = (b, b)a.
Если b не ортогонален 1, то b = k1 + b/, где b/ 1. Тогда
= k1 - b/ и (аb) = (а(k1+ b/))(k1- b/) = k2а - (ab/)b/ = k2а + (аb/)/.
Так как по доказанному выше:
(аb/)/.= (/,/)а, то (аb) = k2a + (b/, b/)a = [k2 + (b', b')]a = (b, b)a,
так как
(b, b) = (k1+ b/, k1+ b/) = k2(1, l) + (b', b')+2k(b', l) = k2 + (b', b')
в силу того, что (1, 1) = 1 и (b/ , 1) = 0, так как b/ 1.
Следствие 1. В нормированной линейной алгебре с единипей имеет место равенство
(ах)+(ау) = 2(х,у)а. (8)
Подставим в тождество (5) вместо b сумму х + y. Тогда
(а(х + у))() = (х + у, х + у)а (а(х + у))( +) = ((х, х) + (у, у) + 2(х, у))а (ах) + (ау) + (ах) + (ау) = (х, х)а+(у, у)а + 2(х, у)а.
В силу тождества (5):
(ax)= (х, х)а, (ау) = (у, у)а.
Тогда:
(ах) + (ау) = 2(х, у)а,
что и требовалось доказать.
Следствие 2. Нормированная линейная алгебра с единицей является альтернативной линейной алгеброй.
Если в равенстве (5) (ab) = (b, b)a положить а = 1, то получается b = (b, b)l = (b, b). Тогда (ab) = a(b), откуда следует, что (ab)b = a(bb).
Аналогично можно доказать, что b(ba) = (bb)a.
Отсюда следует, что алгебра является альтернативной линейной алгеброй.
п. п. 6.2 Теорема Гурвица
Пусть - линейная алгебра с единицей. Согласно Лемме 1 каждый элемент а А однозначно представляется в виде
а = k1+ а', где k R и а' 1.
В алгебре введем операпию сопряжения: элемент, сопряженный элементу а, есть элемент a = k1- а' Если а = kl, то а' = 0 и a = k1, т.е. a = а. Если же а 1, то a = - а.
Имеют место:
а) a = а;
б) () = = = (k+l)1-(a/ + b/) = (k1 - a/)(l1 - b/).
Пусть - подалгебра алгебры ,содержащая 1 и не совпадающая с .Выберем в В базис 1, i1, i2, … in, такой, что i1 1, i2 1, … in 1. Тогда любой элемент b B имеет вид: b = bо + b1i1 + b2i2 + … + bnin , а сопряженный ему элемент b = b0 - b1i1 - b2i2 - … - bnin, откуда и В.
Пусть е - единичный элемент, ортогональный В, т.е. для любого b В имеет место e b.
Рассмотрим множество В + Be = {b1 + b2e|b1, b2 В}. Покажем, что есть снова подалгебра алгебры .
Лемма 4. Подпространства и ортогональны друг другу, т.е. для любых u1, u2 B имеет место u1u2e.
Для доказательства этого факта в тождестве (1) положим вместо
а1 = u1, b1 = u2, a2 = e, b2 = 1.
Тогда
(u1u2, e) + (u1, eu2) = 2(u1, e)(u2, 1).
Так как u1, u2 В, то u1u2 В, а тогда u1u2 e, u1 e.
Значит,
(u1, u2e) = 0, (u1, e) = 0.
Тогда:
(u1, u2e) = 0, т.е. u1 u2e.
Теорема 1.
Представление любого элемента из В + Be в виде u1+ u2e, где u1, u2 В, единственно.
Пусть
u1 + u2e = u1/ + u2/e u1 - u1/ = (u2/ - u2)e,
откуда следует, что v=u1 - u1/ принадлежит одновременно двум ортогональным подпространствам В и Be. Тогда (v, v) = 0, откуда v = 0. Следовательно, u1 - u1/ = 0 и (u2/ - u2)e = 0. Из второго равенства либо u2/ - u2 = 0, либо е = 0. Но е ? 0, следовательно, u2/ - u2= 0. Тогда u1 = u1/ и u2 = u2', т.е. представление элемента из В + Be в виде u1 + u2e единственно.
Лемма 5. Для любых u, v А имеет место
(ue)v = (u)e. (9)
Воспользуемся тождеством (8) из следствия к лемме 3, положив в нем а = u, х = е, у = . Тогда:
(ue)v + (u)= 2(е, )u.
Так как е, то
(е, ) = 0 и (ue)v + (u)= 0.
Но = -е, так как е 1, тогда:
(ue)v + (u)(- е) = 0 (ue)v = (u)e.
Лемма 6. Для любых u, v A имеет место
u(ve) = (vu)e. (10)
Если в том же равенстве (8) положить а = 1, х = u, у = ve, то получаем:
(1*u)ve + 1*()u = 2(u, ) * 1 u(ve) + ()u = 2(u, ).
Так как u ve, то u , = -ve, в силу того, что из ve В следует ve 1. Следовательно,
u(ve) + (-ve)u = 0 u(ve) = (ve)u.
Воспользовавшись равенством (9), получаем, что (ve)u = (vu)e. Тогда:
u(ve) = (vu)e.
Лемма 7. Для любых u, v А имеет место
(ue)(ve) = -u. (11)
Прежде всего убедимся, что если формула (11) верна при v = с и при v = d, то она имеет место и при v = c + d. Действительно, если
(uе)(се) = -u и (ue)(de) = -u, то
ue((c + d)e) = (ue)(ce + de) = (ue)(ce) + (ue)(de) = -u - u = - ( + )u.
Так как для любого v В имеет место v = k1+ v/, где v/ 1, то докажем равенство (11) по отдельности для k1 для v/. Тогда на основании сделанного выше замечания, равенство (11) будет справедливо и для v.
Итак, пусть v = k1, откуда (11) принимает вид:
k(ue)e == -ku (ue)e = -u -(ue) = -(e, e)u (uе) =u,
которое верно в силу равенства (5), если учесть, что = -е и (е, е) = 1.
Пусть теперь vl. Тогда = -v. Полагая в том же равенстве (8) а = u, х = е, у = -ve, получаем:
(ue)(ve) + (u(-ve)) = 2(е, - ve)u (ue)(ve) - (u(ve)) = -2(е, ve)u. (12)
Но (е, ve) в силу тождества (3) равно (1, v)(e, e) = 0, так как по условию v1. В ситу (10) второе слагаемое в последнем равенстве (12) равно
-(u(ve)) = -((vu)e) = -vu = u (ue)(ve) = -u.
Теорема 2. Для любых u1 +u2e В+Be и v1 + v2e В+Be имеет место равенство:
(u1 + u2e)(v1 + v2e) = (u1v1 - 2u2) + (v2u1 + u21)e. (13) (13)
Воспользовавшись равенствами (9), (10) и (11), получаем:
(u1 + u2e)(v1+ v2e) = u1v1 + (u2e)v1 + u1(v2e) + (u2e)(v2e) = u1v1 + (u21)e + (v2u1)e - 2u2 = (u1v1 - 2u2) + (v2u2 + u21)e.
Теорема З. Любая подалгебра алгебры ,содержащая единицу и не совпадающая со всей алгеброй ,ассоциативна, т.е. для любых u, v, w А имеет место (uv)w = u(vw).
Снова воспользуемся равенством (8), положив в нем а =ve, х = , у = ue. Тогда
((ve))(-ue) + ((ve)(ue))w = 2(, ue)(ve).
Так как
(, ue) = (*1, ue) = 0
в силу того, что *1 ue, то
((ve))(-ue) +((ve)(ue))w = 0.
Применив равенства (9) и (10), получаем:
u(vw) - (uv)w = 0, откуда (uv)w = u(vw).
Замечание: Так как алгебра содержит единицу, то в ней имеется подалгебра, состоящая из элементов вида k1, где k R. Эта подалгебра изоморфна алгебре действительных чисел, обозначим ее D. Если в предыдущих рассуждениях в качестве В взять подалгебру D, то е будет любой вектор длины 1, ортогональный к 1.
Из формулы (13) тогда следует, что
е2 = (0 +1* е)(0 +1* е) = (0* 0 - * 1) + (1* 0 + 1*)е = -1 + 0* е = -1.
Отсюда можно сделать вывод, что квадрат любого вектора a1 1 равен 1, где ? 0.
Докажем и обратное: если квадрат какого-либо элемента равен 1, где ? 0, то этот элемент ортогонален 1. В самом деле, квадрат любого элемента, не ортогонального 1, т.е. элемента вида а = k1+a/ где k ? 0 и a/ 1, равен
(k1+ a/)(k1 + a/) = k21 + а'2 + 2ka/ = k21 + 1 + 2k a/.
Если это выражение пропорционально 1, то а/ = 0, следовательно, а = kl, но квадрат k1 не может равняться 1, где ? 0.
Отсюда следует, что элементы, ортогональные 1, и только они характеризуются тем свойством, что их квадраты равны 1, где ? 0. Тогда для произвольного элемента а А берется его единственное представление в виде
а = k1+a/, где а/2 = 1 и ? 0,
а сопряженный ему элемент в виде a = k1 - a'
Теорема Гурвица. Любая нормированная линейная алгебра, с единицей над полем действительных чисел изоморфна одной из четырех алгебр: полю действительных чисел, полю комплексных чисел, телу кватернионов или алгебре октав.
Пусть - нормированная линейная алгебра с единицей над полем действительных чисел, а - ее подалгебра, содержащая 1, е B, где е - единичный вектор. Как мы показали ранее, является подалгеброй алгебры (A, +, .R, .). Из теорем 1 и 2 следует, что.изоморфна удвоенной подалгебре .
Рассмотрим подалгебру , изоморфную полю действительных чисел (R, +, .). Если она не совпадает со всей алгеброй ,то найдется единичный вектор е D. Составим подалгебру , изоморфную удвоению , а следовательно, изоморфную полю комплексных чисел. Назовем ее комплексной подалгеброй алгебры . Из того, что сказано выше о сопряжении в алгебре , вытекает , что для элементов из D + De сопряжение совпадает с обычным сопряжением комплексных чисел.
Если, в свою очередь, подалгебра ,где С = D + De, не совпадает со всей алгеброй ,то опять-таки найдется единичный вектор е/ С. Составим подалгебру изоморфную удвоению , а следовательно, и изоморфную телу кватернионов. Назовем ее кватернионной подалгеброй алгебры. Из вышесказанного о сопряжении в алгебре следует, что для элементов из С+Се/ сопряжение с впадает с обычным сопряжением в теле кватернионов.
Если, в свою очередь, подалгебра , где К = C+Ce', не совпадает со всей алгеброй , то снова найдется единичный вектор е" K. Составим подалгебру изоморфную удвоению , а следовательно, и изоморфную алгебре октав.
Но эта подалгебра , где U = К + Ке// совпадает уже c самой алгеброй ,так как по теореме 3 любая подалгебра алгебры , содержащая 1 и не совпадающая со всей алгеброй , ассоциативна. А так как умножение октав не ассоциативно, а в ее подалгебре (теле кватернионов) оно ассоциативно, то подалгебра совпадает со всей алгеброй .
Резюмируя вышеизложенное, мы получаем, что если алгебра не изоморфна ни одной из алгебр , или , то она изоморфна алгебре октав ,что и доказывает утверждение теоремы Гурвица.
§7. Обобщенная теорема Фробениуса
Теорема. Любая альтернативная линейная алгебра над полем действительных чисел с делением является нормированной линейной алгеброй.
Пусть - альтернативная линейная алгнбра с делением над полем действительных чисел R. Введем в A операцию сопряжения следующим образом: если элемент а A пропорционален 1, то a = а; если же а не пропорционален 1. то он содержится в комплексной подалгебре . В этой подалгебре для элемента а имеется сопряженный элемент a, который и примем за элемент, сопряженный к а в алгебре .
Из определения a непосредственно следует, что = а, а также =ka, где k R.
Пусть а A не пропорционален 1. Рассмотрим кватернионную подалгебру (K, +, .R, .), содержащую а. В этой подалгебре для а A тоже имеется сопряженный элемент a. Покажем, что а совпадает с a.
Элементы а и a, как сопряженные в комплексной алгебре, удовлетворяют условиям:
а+a = 2а* 1, где а R, (14)
а* a = d*1, где d R. (15)
Элементы а и a, как сопряженные в кватернионной алгебре, удовлетворяют условиям:
а+ a = 2а1* 1, где а1 R, (14')
а * a = d1 *1, где d1 R. (15/)
Вычтем из (14) и (15) соответственно (14/) и (15'). Тогда:
a - a = 2(a - a1)*1.
а (a - a) = (d- d1)* 1 2(a - a1)a*1.= (d- d1)* 1.
Если
a(a - a), то a = *1,
т.е. а пропорционален 1, что противоречит предположению.
Отсюда следует, что элемент, сопряженный к а, один и тот же, независимо от того, рассматриваем ли мы а как элемент комплексной подалгебры или же как элемент кватернионной подалгебры алгебры .
Точно так же |а|2 = аa как в случае комплексной подалгебры,так и в случае кватернионной подалгебры алгебры , так , что модуль элемента а A не зависит от того, рассматриваем мы его как элемент комплексной или кватернионной подалгебры алгебры .
Тогда для любых a, b А справедливы равенства:
=a+ и = a *. (16)
Если а и b принадлежат одной комплексной подалгебре алгебры , то равенства (16) есть свойства, сопряжения в этой подалгебре. Если же они принадлежат разным комплексным подалгебрам, то они будут верны как свойства сопряжения в кватернионной подалгебре алгебры .
Из = b и из второго равенства (16) вытекает, что = ba, откуда
a + ba = с* 1, где с R.
Определим в (A, +, .R, .) скалярное произведение (а, b) как
a + ba = 2(а, b) * 1.
Покажем, что (а, b) удовлетворяет всем свойствам скалярного произведения:
1) (а, а) > 0 при а ? 0 и (0, 0) = 0.
В самом деле,
(а, а) * 1 = (аa + аa) = аa = |а|* 1,
а модуль комплексного числа, так же как модуль кватерниона, сторого положителен при а ? 0 и равен 0 при а = 0.
2) (a, b) = (b. а), так как
a + ba = 2(a, b)* 1, ba + a = 2(b, a)* 1,
но
a + ba = ba + a, тогда (a, b) = (b, a).
3) (a, kb) = k(a, b) при k R.
Действительно,
(a, kb) = (a() + kba) = (a(k) + kba) = k(a + ba) = k(a, b).
4) (a, b1 + b2) = (a, b1) + (a, b2)
следует из определения скалярного произведения и первого равенства (16).
Из (а, а) = |а|2 1 следует, что = |а|, т.е. норма элемента a А совпадает с модулем а как комплексного числа, так и кватерниона.
Так как любые два элемента а и b из алгебры принадлежат одной комплексной или одной кватернионной подалгебре, то
|ab|2 = |a|2 |b|2 (ab, ab) = (a, a)(b, b).
Следовательно, все свойства скалярного произведения для (а, b) выполняются. Отсюда следует, что алгебра есть нормированная линейная алгебра.
Обобщенная теорема Фробениуса. Любая альтернативная линейная алгебра над полем действительных чисел с делением и единицей изоморфна одной из четырех алгебр: полю действительных чисел, полю комплесных чисел, телу кватернионов или алгебре октав.
Так как по доказанному в предыдущей теореме альтернативная линейная алгебра над полем действительных чисел с делением и единицей является нормированной линейной алгеброй, а последняя по теореме Гурвица изоморфна либо полю действительных чисел, либо полю комплексных чисел, либо телу кватернионов, либо алгебре октав, то отсюда следует утверждение теоремы.
Список литературы
1. Виноградова И.А., Олехник С.Н., Садовничий В.А. Математический анализ в задачах и упражнениях (числовые и функциональные ряды). М.: Факториал, 1996, 477с.
2. Власова Е.А. Ряды. М.: Изд-во МГТУ им. Н.Э.Баумана, 2002, 608с.
3. Воробьев Н.Н. Теория рядов: Учебное пособие для втузов. М.: Наука, 1986, 408с.
4. Демидович Б.П., Марон И.А. Основы высшей математики. М.: Наука, 1986, 364с.
5. Зайцев В.В., Рыжов В.В., Сканави М.И. Элементарная математика. М.: Наука, 1984, 400с.
6. Никольский С.М. курс математического анализа: Учеб. для вузов: В 2 т. Т.1. М.: Наука, 1990, 528с.; Т.2. М.: Наука, 1991, 544с.
7. Шмелев П.А. Теория рядов в задачах и упражнениях. М.: Высш.шк., 1983, 176с.
Подобные документы
Понятие и свойства n-арных операций, универсальной алгебры и сигнатуры. Характеристика централизаторов конгруэнции универсальных алгебр и доказательство их основных свойств. Нильпотентные и абелевы алгебры, формулировка и метод доказательства их лемм.
курсовая работа [399,1 K], добавлен 22.09.2009Квадратные матрицы и определители. Координатное линейное пространство. Исследование системы линейных уравнений. Алгебра матриц: их сложение и умножение. Геометрическое изображение комплексных чисел и их тригонометрическая форма. Теорема Лапласа и базис.
учебное пособие [384,5 K], добавлен 02.03.2009Алгебра логики, булева алгебра. Алгебра Жегалкина, педикаты и логические операции над ними. Термины и понятия формальных теорий, теорема о дедукции, автоматическое доказательство теорем. Элементы теории алгоритмов, алгоритмически неразрешимые задачи.
курс лекций [652,4 K], добавлен 29.11.2009Раздел математики, непосредственно относящийся к задачам физической и инженерной практики. Элементы векторной и линейной алгебры; описание способов выполнения различных операций над векторами: сложение, вычитание, геометрически смешанное произведение.
презентация [411,9 K], добавлен 02.05.2012Применение матриц и их виды (равные, квадратные, диагональные, единичные, нулевые, вектор-строка, вектор-столбец). Примеры действий над матрицами (умножение на число, сложение, вычитание, умножение и транспонирование матриц) и свойства полученных матриц.
презентация [74,7 K], добавлен 21.09.2013Системы цифровой обработки информации. Понятие алгебры Буля. Обозначения логических операций: дизъюнкция, конъюнкция, инверсия, импликация, эквивалентность. Законы и тождества алгебры Буля. Логические основы ЭВМ. Преобразование структурных формул.
презентация [554,8 K], добавлен 11.10.2014Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.
реферат [175,1 K], добавлен 22.12.2013Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций.
реферат [63,3 K], добавлен 06.12.2010Сложение и умножение целых p-адических чисел, определяемое как почленное сложение и умножение последовательностей. Кольцо целых p-адических чисел, исследование свойств их деления. Объяснение данных чисел с помощью ввода новых математических объектов.
курсовая работа [345,5 K], добавлен 22.06.2015Биография немецкого математика А. Гурвица. Основные положения теоремы Ферма. Обзор систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Приложение теоремы Гурвица: теоремы Фробениуса и Лагранжа.
курсовая работа [220,5 K], добавлен 25.05.2010