Матричные антагонистические игры с нулевой суммой в чистых стратегиях
Принятие решений как особый вид человеческой деятельности. Рациональное представление матрицы игры. Примеры матричных игр в чистой и смешанной стратегиях. Исследование операций: взаимосвязь задач линейного программирования с теоретико-игровой моделью.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 05.05.2010 |
Размер файла | 326,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Задача об использовании сырья. Предположим, что изготовление продукции двух видов и требует использования четырех видов сырья , , , . Запасы сырья каждого вида ограничены и составляют соответственно , , , условных единиц. Количество единиц сырья, необходимое для изготовления единицы каждого из видов продукции, известно и задаётся таблицей 2.4.
Таблица 2.4
Виды сырья |
Запасы сырья |
Виды продукции |
||
Доход |
В этой экономической ситуации означает количество единиц сырья вида , необходимое для изготовления продукции вида . В последней строке таблицы указан доход, получаемый предприятием от реализации одной единицы каждого вида продукции.
Нужно определить такой план выпуска продукции видов и , при котором доход предприятия от реализации всей продукции оказался бы максимальным.
Математическую форму поставленной задачи изучим на следующем числовом примере (см. таблицу 2.5).
Таблица 2.5
Виды сырья |
Запасы сырья |
Виды продукции |
||
19 |
2 |
3 |
||
13 |
2 |
1 |
||
15 |
0 |
3 |
||
18 |
3 |
0 |
||
Доход |
7 |
5 |
Допустим, что предприятие выпускает единиц продукции вида и единиц продукции вида . Для этого потребуется единиц сырья (на основании таблицы 2.5). Так как в наличии имеется всего 19 единиц сырья , то должно выполняться неравенство . Неравенство, а не точное равенство появляется в связи с тем, что максимальный доход может быть достигнут предприятием и в том случае, когда запасы сырья вида используются не полностью.
Аналогичные рассуждения, проведённые для остальных видов сырья, позволяют записать следующие неравенства:
(сырьё )
(сырьё )
(сырьё ).
При этих условиях доход , получаемый предприятием, составит .
Таким образом, математически рассматриваемую экономическую ситуацию можно сформулировать так.
Дана система
четырёх линейных неравенств и линейная целевая функция
.
Требуется среди неотрицательных решений системы (4) выбрать такое, при котором целевая функция принимает наибольшее значение (максимизировать).
Рассмотрим на примере ещё несколько игр.
Игра Морро. Игроки показывают одновременно 1 или 2 пальца и в тоже время называют число. Если число, названное одним игроком, совпадает с общим числом пальцев, то игрок получит от своего противника выигрыш, равный этому числу. Если оба угадают верно, то чистый платёж будет равен нулю.
0 |
2 |
-3 |
0 |
||
-2 |
0 |
0 |
3 |
||
3 |
0 |
0 |
-4 |
||
0 |
-3 |
4 |
0 |
Оборона города («Игра полковника Блотто»)
Полковник Блотто имеет m полков, а его противник - n полков. Противник защищает 2 позиции. Позиция будет защищена полковником, если на ней наступающие полки окажутся в численном превосходстве. Противоборствующим сторонам тре6уется распределить полки между двумя позициями. Если игрок 1 (полковник) имеет на позиции больше полков, то выигрыш равен числу полков противника плюс один (занимаемая позиция равносильна захвату одного полка). Если у противника (игрока 2) больше полков на позиции, то игрок 1 таким образом теряет свои полки на этой позиции и ещё единицу. Если обе стороны имеют одинаковое количество полков на позиции, то имеет место ничья. Посмотрим на стратегии игроков.
Игрок 1 имеет следующие стратегии:
- послать все полки на первую позицию
- послать полков на первую позицию, а полков - на вторую позицию и т.д.
- послать все полки на вторую позицию
Игрок 2 имеет такие стратегии:
- послать все полки на первую позицию
- послать полков на первую позицию, а полков - на вторую позицию и т.д.
- послать все полки на вторую позицию
Пусть m=4, n=3. Тогда рассмотрев всевозможные ситуации, получим матрицу выигрышей, для этой игры
Игрок 1 Игрок 2 |
|||||
4 |
2 |
1 |
0 |
||
1 |
3 |
0 |
-1 |
||
-2 |
2 |
2 |
-2 |
||
-1 |
0 |
3 |
1 |
||
0 |
1 |
2 |
4 |
Основная задача линейного программирования.
Любую задачу линейного программирования можно свести к ОЗЛП (основной задаче линейного программирования). Основной принцип данной задачи таков: найти такие неотрицательные значения переменных , которые удовлетворяли условиям - равенствам
и обращали бы в максимум линейную функцию этих переменных: . Если функцию L требуется обратить в минимум, то для этого нужно изменить знак этой функции (т.е. максимизировать не L, а ). Рассмотрим конкретный пример, объясняющий эту позицию.
Пример. Пусть требуется найти неотрицательные значения переменных , удовлетворяющих ограничениям - неравенствам и обращающие в максимум линейную функцию . Приведём условия в фигурной скобке к стандартному виду. Получим (1). А теперь обозначим левые части неравенств через y1 и y2 => (2). Из условий (1) и (2) следует что переменные y1 и y2 тоже должны быть неотрицательными.
Выводы
1 Представлены основные понятия теории игр и исследования операций.
2 Приведены примеры игр в чистой и смешанной стратегиях (задача Борьба двух предприятий за рынок продукции региона»).
3 Представлена основная теорема Теории игр (с доказательством) и использован принцип сведения теоретико-игровой модели к ЗЛП (задаче линейного программирования)
4 В работе приведена серия задач, связанных с теорией игр и исследованием операций (в частности - основная задача линейного программирования).
5 Раскрыто современное понятие «Принятие решений» на основе математических методов и моделей Теории игр
ЛИТЕРАТУРА
1. Борисова С.П., Власова И.А., Коваленко А.Г. Теория игр и исследование операций - Издательство «Самарский университет», 2006.
2. Берж Л. Общая теория игр нескольких лиц - М.: ГИФМЛ, 1961. 327.стр.
3. Барсов А.С. Линейное программирование в технико-экономических задачах. М.: Наука, 1964. - 278 с.
4. Воробьёв Н.Н. Матричные игры - М.: Физматгиз, 1961.
5. Власов Д.А., Монахов Н.В., Монахов В.М. Математические модели и методы внутримодельных исследований - Издательство «Альфа», 2007.
6. Вентцель Е.С. Исследование операций. Задачи, принципы, методология - М.: Дрофа, 2006. 208 страниц.
7. Гасс С. Линейное программирование (методы и приложения) - М., 1961.
8. Гамецкий А.Ф., Слободенюк В.А., Спиридонова Г.В. Теория игр, исследование операций - Издательство КГУ, 1987.
9. Громенко Г.Н. Теория игр - М.: Издательство МГОУ, 2005. 198 стр.
10. Дюбин Г.Н., Суздаль В.Г. Введение в прикладную теорию игр - М.: Наука, 1989. 310 стр.
12. Давыдов Э.Г. Исследование операций: учебное пособие - М., 1990.
13. Зайченко Ю.П. Исследование операций - Киев, 1979. 278 стр.
14. Краснов М.Л., Киселёв А.И. Высшая математика, том 5 - М.: Издательство ЛКИ, 2007. 300 стр.
15. Конюховский П.В. Математические методы исследования операций в экономике - СПб.: Издательство СПбГУ. 394 стр.
16. Карлин С. Математические методы в теории игр, программировании и экономике - М., 1964. 400 стр.
17. Льюис Р.Д., Райфа Г. Игры и решения. - М.: ИЛ, 1961 285 стр.
18. Лагунов В.Н. Игры преследования и введение в теорию игр. Т., 1993
19. Мак-Кинси Дж. Введение в теорию игр. - М.: Физматгиз, 1960.
20. Малыхин В.И.. Статкус А.В. Теория принятия решений. МИУ, М., 1989. 382 стр.
21. Мулен Э Теория игр с примерами из математической экономики - М.: Мир 1985.
22. Нейман Дж. Фон, Моргенштерн О. Теория игр и экономическое поведение - М.: Издательство «Наука», 2007. 420 стр.
23. Нестеров Е.П. Транспортные задачи линейного программирования - М.: Транспорт 1971. 216 стр.
24. Оуэн Г. Теория игр - М.: Издательство ЛКИ, 2007. 232 стр.
25. Петросян Л.А. Теория игр - М.: Издательство «Высшая школа», 1998.
26. Протасов И.Д. Теория игр и исследование операций - М.: Издательство «Гелиос» АРВ, 2006. 368 страниц.
27. Парфёнов Г.Н. Принципы теории игр - Издательство СПбГУ, 2001.
28. Секацкий В.В., Худякова Г.И. Элементы теории матричных игр в курсе математики.// Ярославский педагогический вестник. 2000, №1(23).
29. Терехов Л.Л. Применение математических методов в экономике - М.: Статистика, 1968. 188 стр.
30. Таха Х. Введение в исследование операций - М.: издательство «Вильямс», 2001.
31. Фатхутдинов Р.А. Управленческие решения - М.: нфра 2007.
32. Хорн Р., Джонсон Ч. Матричный анализ - М.: Мир, 1989. 427 стр.
33. Хазанова Л.Э. Математические методы в экономике - М.: издательство БЕК, 2002. 144 стр.
34. Шикин Е.В. От игр к играм - М.: УРСС, 1997. 149 стр.
35. Юдин Д.Б., Гольштейн Е.Г. Линейное программирование. Теория, методы, приложения - М.: «Наука», 1969. 364 стр.
36. Яновская Е.Б. Антагонистические игры // Проблемы кибернетики. - М.: Наука, 1978. С. 221 - 246.
Подобные документы
Определение матричных игр в чистых стратегиях. Смешанные стратегии и их свойства. Решения игр матричным методом. Метод последовательного приближения цены игры. Отыскание седлового элемента. Антагонистические игры как первый класс математических моделей.
контрольная работа [855,7 K], добавлен 01.06.2014Теория игр - математическая теория конфликтных ситуаций. Разработка математической модели игры двух лиц с нулевой суммой, ее реализация в виде программных кодов. Метод решения задачи. Входные и выходные данные. Программа, руководство пользователя.
курсовая работа [318,4 K], добавлен 17.08.2013Составление платежной матрицы, поиск нижней и верхней чисты цены игры, максиминной и минимаксной стратегии игроков. Упрощение платежной матрицы. Решение матричной игры с помощью сведения к задаче линейного программирования и надстройки "Поиск решения".
контрольная работа [1010,3 K], добавлен 10.11.2014Общее понятие вектора и векторного пространства, их свойства и дополнительные структуры. Графический метод в решении задачи линейного программирования, его особенности и область применения. Примеры решения экономических задач графическим способом.
курсовая работа [1,2 M], добавлен 14.11.2010Проектирование математической модели. Описание игры в крестики-нолики. Модель логической игры на основе булевой алгебры. Цифровые электронные устройства и разработка их математической модели. Игровой пульт, игровой контроллер, строка игрового поля.
курсовая работа [128,6 K], добавлен 28.06.2011Понятие равных матриц, их суммы и произведения. Нахождение элемента матрицы, свойства ее произведения. Расположение вне главной диагонали элементов квадратной матрицы. Понятие обратной матрицы, матричные уравнения. Теорема о базисном миноре, ранг матрицы.
реферат [105,3 K], добавлен 21.08.2009Теория игр – раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта. Итеративный метод Брауна-Робинсона. Монотонный итеративный алгоритм решения матричных игр.
дипломная работа [81,0 K], добавлен 08.08.2007Изучение общих сведений о матричных и антагонистических играх. Понятие позиционной игры, дерева, информационного множества. Рассмотрение принципа максимина и принципа равновесия. Оптимальность по Парето. Позиционная неантагонистическая игра, ее свойства.
курсовая работа [1,4 M], добавлен 17.10.2014Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.
задача [656,1 K], добавлен 01.06.2016Проектирование методов математического моделирования и оптимизации проектных решений. Использование кусочной интерполяции при решении задач строительства автомобильных дорог. Методы линейного программирования. Решение специальных транспортных задач.
методичка [690,6 K], добавлен 26.01.2015