Розкриття невизначеностей за правилом Лопіталя
Розкриття невизначеностей з використанням правила Лопіталя. Правило Лопіталя. Наслідок. Приклад. Розкриття невизначеностей виду. Правило Лопіталя - правило знаходження межі дробу, чисельник і знаменник якого прямує до 0.
Рубрика | Математика |
Вид | реферат |
Язык | украинский |
Дата добавления | 11.04.2006 |
Размер файла | 53,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
8
Міністерство охорони здоров'я України
Житомирський фармацевтичний коледж
ім. Г.С. Протасевича
Реферат
на тему:
“ Розкриття невизначеностей за правилом Лопіталя”
Роботу виконала
Студентка 211 групи
Піщук Олеся
Викладач:
Виговська В.Г.
Отриманий бал:
_____________
м. Житомир - 2006
План
І. Розкриття невизначеностей з використанням правила Лопіталя.
1) Правило Лопіталя.
а) Наслідок.
б) Приклад 1.
2) Розкриття невизначеностей виду: ?-?; 0•?; 18; 00; 80.
а) Приклад 2.
б) Приклад 3.
в) Приклад 4.
Список використаної літератури.
І. Розкриття невизначеностей з використанням правила Лопіталя.
Лопіталь де Гійом Франсуа (1661-2.02.1704 рр.). Французький математик, член Парижської АН, народився в Парижі, вивчав математику під керівництвом У. Бернуллі. Видав перший друкований підручник по диференціальному обчисленню - “Аналіз нескінченно малих” (1696р.). В підручнику є правило Лопіталя - правило знаходження межі дробу, чисельник і знаменник якого прямує до 0. Крім того, він створив курс аналітичної геометрії конічних перетинів. Йому також належить дослідження і розвиток за допомогою математичного аналізу декількох важких задач по геометрії і механіці, а також одне із рівнянь знаменитої задачі о браністохроні.
1. Правило Лопіталя.
Нехай виконані умови:
1. функції f(х) та g(х) визначені і диференційовані в колі точки х0;
2. частка цих функцій в точці х0 має невизначеність вигляду або ;
3. існує .
Тоді існує і виконує рівність:
(1)
а) Наслідок.
Нехай:
1. Визначені в колі точки х0 функції f(х), g(х) та їх похідні до n-го порядку включно;
2. Частки , , …, мають невизначеність вигляду або ;
3. Існує , тоді
(2)
б) Приклад 1.
Знайти: .
Розв'язання:
Функції та визначені з усіма своїми похідними в околі точки х=0.
Маємо:
.
2) Розкриття невизначеностей виду: ?-?; 0•?; 18; 00; 80.
Існують прийоми, що дозволяють зводити вказані невизначеності до невизначеностей вигляду або , які можна розкривати з використанням правила Лопіталя.
1. Нехай і , тоді
(3)
За умовою при , тому при .
Якщо не прямує до 0 при , то границя в правій частині (3) не існує, а тому і границя лівої частини (3) не існує.
Якщо при , то вираз має невизначеність .
2. Нехай , , тоді має невизначеність вигляду при .
В цьому випадку поступають так:
Під знаком останньої границі маємо невизначеність .
3. Нехай , при . Тоді має невизначеність вигляду .
Позначимо . Шляхом логарифмування цієї рівності одержимо:
Отже, обчислення натурального логарифма границі зводиться до розкриття невизначеності вигляду .
4. Невизначеності вигляду та зводять до невизначеностей або шляхом логарифмування аналогічно до невизначеності вигляду .
а) Приклад 2.
Знайти границю .
Розв'язання:
Функції та диференційовані, а їх частка має невизначеність вигляду при .
Використовуючи правило Лопіталя, одержимо:
.
б) Приклад 3.
Знайти границю .
Розв'язання:
В цьому випадку маємо невизначеність вигляду . Позначимо і про логарифмуємо цю рівність. Одержимо:
, тобто невизначеність вигляду . Використовуючи правило Лопіталя, одержимо:
.
Отже, .
в) Приклад 4.
Знайти границю .
В цьому випадку маємо невизначеність вигляду . Нехай . Логарифмуючи цю рівність, одержимо:
.
Чотири рази застосували правило Лопіталя.
Отже, маємо:
Список використаної літератури:
1. Кривуца В.Г., Барковський В.В., Барковська Н.В. К.82. Вища математика. Практикум. Навчальний посібник.-Київ: Центр навчальної літератури, 2005.-536с.
2. Бородин А.И., Бугай А.С., Биографический словарь деятелей в области математики. Радянська школа 1979.
3. Алгебра и начала анализа: В 2-х ч./ Под. ред. Г.Н. Яковлева.-2-е изд. -К.: Вища шк., Головное изд-во, 1984.-Ч.2. 293с.
Подобные документы
Дріб, числівник і знаменник якого є многочленами, називається раціональним (алгебраїчним). Приведення раціональних дробів до спільного знаменника. Скоротити дріб - це означає розділити числівник і знаменник дробу на спільний множник.
контрольная работа [45,1 K], добавлен 06.06.2004Корені многочленів. Пошук коренів рівняння з достатнім ступенем точності. Важлива проблема механіки – теорія стійкості і з‘ясування умов, коли усі корені даного алгебраїчного рівняння мають від‘ємні дійсні частини. Число дійсних коренів. Правило Декарта.
курсовая работа [62,6 K], добавлен 26.03.2009Определение предела последовательности. Понятие производной и правила дифференцирования. Теоремы Роля, Лангража, правило Лапиталя. Исследования графиков функций. Таблица неопределенных и вычисление определенных интегралов. Функции нескольких переменных.
презентация [917,8 K], добавлен 17.03.2010Решение задач по факультативному курсу комбинаторики, подготовка сообщений и докладов. Комбинаторика как ветвь математики, изучающая комбинации и перестановки предметов. Основные правила суммы и правило произведения. Поиск числа сочетаний с повторениями.
дипломная работа [508,5 K], добавлен 26.01.2011Задания на установление заданных пределов без использования правила Лопиталя. Определение точек разрыва функции и построение ее графика. Правило вычисления производной, заданной неявно. Исследование функции методами дифференциального исчисления.
контрольная работа [570,8 K], добавлен 10.10.2011Пределы функций и их основные свойства, операция предельного перехода, бесконечно малые функции. Производная функции, важнейшие правила дифференцирования, правило Лопиталя. Применение дифференциала функции в приближенных вычислениях, построение графиков.
методичка [335,2 K], добавлен 18.05.2010Дослідження історії виникнення та розвитку координатно-векторного методу навчання розв'язування задач. Розкриття змісту даного методу, розгляд основних формул. Розв'язання факультативних стереометричних задач з використанням координатно-векторного методу.
курсовая работа [2,5 M], добавлен 10.04.2011Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.
курсовая работа [261,6 K], добавлен 05.09.2009Определение, свойства, виды и историческое происхождение матриц. Расчет определителя третьего порядка. Правило Саррюса для треугольников. Алгоритм построения и единственность обратной матрицы. Исследование линейных отображений векторных пространств.
контрольная работа [308,2 K], добавлен 12.12.2013Производные от функций, заданных параметрически. Геометрический смысл дифференциала. Применение дифференциала в приближенных вычислениях. Теоремы Коши, Лагранжа и Ролля о дифференцируемых функциях, их геометрическая интерпретация. Правило Лопиталя.
презентация [334,8 K], добавлен 14.11.2014